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Abstract. An edge labeling of a graph is a bijection from E(G) to the set {1,2,… , |E(G)|}. 
If for any two distinct vertices u and v, the sum of labels on the edges incident to u is 
different from the sum of labels on the edges incident to v then an edge labeling is called 
antimagic labeling. We investigate antimagic labeling for some path and cycle related 
graphs. 
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1. Introduction 

We begin with a finite, connected and undirected graph G=(V(G),E(G)) without 
loops and multiple edges. Throughout this paper |V(G)| and |E(G)| denote the number of 
vertices and number of edges respectively. For any graph theoretic notation and 
terminology we rely upon Balakrishnan and Ranganathan [1].  

A graph labeling is an assignment of integers to the vertices or edges or both subject 
to certain condition(s). If the domain of the mapping is the set of vertices (edges) then the 
labeling is called a vertex labeling (an edge labeling). 

According to Beineke and Hegde[2] labeling of discrete structure is a frontier 
between graph theory and theory of numbers. For an extensive survey of graph labeling 
as well as bibliographic references we refer to Gallian[3]. 

The concept of magic labeling was introduced during 1963 by Sedlacek[5]. A graph 
is said to be magic if it has a real-valued edge labeling such that; 

(i) distinct edges have distinct non-negative labels;  
(ii) the sum of the labels of the edges incident to a particular vertex is same for all 

the vertices. 
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An antimagic labeling of a graph G is a bijection from E(G) to the set {1, 2, … , 
|E(G)|} such that for any two distinct vertices u and v, the sum of the labels on edges 
incident to u is different from the sum of the labels on edges incident to v. 

Hartsfield and Ringel[4] have introduced the concept of an antimagic graph in 1990. 
They proved that paths Pn (n ≤ 3), cycles, wheels, and complete graphs Kn (n ≤ 3)  admit 
antimagic labeling. They have also conjectured that; 

(i) all trees except K2 are antimagic. 
(ii) all connected graphs except K2 are antimagic. 

These two conjectures are still not settled. 
The graphs obtained by switching of vertex in path Pn, cycle Cn, wheel Wn, helm Hn 

and fan fn are proved to be antimagic by Vaidya and Vyas[6]. 
The middle graph M(G) of a graph G is the graph whose vertex set is V(G)∪  E(G) 

and in which two vertices are adjacent if and only if either they are adjacent edges of G or 
one is a vertex of G and the other is an edge incident on it. The total graph T(G) of a 
graph G is the graph whose vertex set is V(G) ∪  E(G) and two vertices are adjacent 
whenever they are either adjacent or incident in G. For a graph G the splitting graph 
S'(G) is obtained by adding a new vertex v' corresponding to each vertex v of G such that 
N(v)=N(v') where N(v) and N(v') are the neighborhood sets of v and v' respectively.  The 
shadow graph D2(G) of a connected graph G is constructed by taking two copies of G, 
say G' and G''. Join each vertex u' in G' to the neighbours of the corresponding vertex u'' 
in G''. 
 
2. Main Results 
 
Theorem 2.1. Middle graph of path Pn is antimagic. 
Proof. Let v1, v2, ... , vn be the vertices and e1, e2, ... , en be the edges of path Pn and G = 
M(Pn) be the middle graph of path Pn. According to the definition of middle graph 
V(M(Pn)) = V(Pn) ∪  E(Pn) and E(M(Pn)) = {viei ; 1≤ i ≤ n – 1, viei-1 ; 2≤ i ≤ n, eiei+1 ; 1≤ i 
≤ n – 2}. Here |V(G)| = 2n – 1    and |E(G)| = 3n – 4.  To define f : E(G) → { 1, 2, … , 3n 
– 4 }, we consider following two cases.  
 
Case  1: n = 3, 5  and n ≡ 0 (mod 2)  
For  1 ≤ i ≤ n – 1: 
f (viei) = 2i – 1 ;    f (eivi+1) = 2i; 
For  1 ≤ i ≤ n – 2: 
f (eiei+1) = 2(n – 1 ) + i ; 
 
Case  2: n ≡ 1 (mod 2) where n > 5 
For  1 ≤ i ≤ n – 1: 
f (viei) = 2i – 1 ;    f (eivi+1) = 2i; 
For  1 ≤ i ≤ n – 4: 
f (eiei+1) = 2(n – 1) + i; 
f (en-3en-2) = 3n– 4;   f (en-2en-1) = 3n– 5; 
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Above defined edge labeling function will generate all the distinct vertex labels satisfying 
the condition for antimagic labeling. Hence M(Pn) is antimagic. 
 
Illustration 2.2. Middle graph of path P5 and its antimagic labeling is shown in Figure 1. 
 

 
Figure 1 

 
Theorem 2.3. Middle graph of cycle Cn is antimagic. 
Proof. Let v1, v2, ... , vn be the vertices and e1, e2, ... , en be the edges of cycle Cn and G = 
M(Cn) be the middle graph of cycle Cn. According to the definition of middle graph 
V(M(Cn)) = V(Cn) ∪  E(Cn) and E(M(Cn)) = {vi ei ; 1 ≤ i ≤ n, vi ei-1 ; 2 ≤ i ≤ n,  ei ei+1 ; 1≤ i 
≤ n – 1,en e1}. Here |V(G)| = 2n and |E(G)| = 3n.  To define f : E(G) →{1, 2, … 3n}, we 
consider following two cases. 
 
Case 1:  n ≡ 1 (mod 2)  
For  1 ≤ i ≤ n : 
f (viei) = 2i ; 
For  1 ≤ i ≤ n – 1 : 
f (eivi+1) = 2i + 1 ;   f (env1) =  1; 
f (eiei+1) = 2n + 1 + i ;   f (ene1) = 2n + 1; 
 
Case 2: n ≡ 0 ( mod  2)  
f (v1e1) = 2 ; 
For 2 ≤ i ≤ n:  
f (viei) = 2i ; 
For 1 ≤ i ≤ n – 1:  
f (eivi+1) = 2i + 1 ;   f (env1) = 1 ; 
For 1 ≤ i ≤ n – 1:  
f (eiei+1) = 2n + 1 + i ;   f (ene1) = 2n + 1 ; 
 
Above defined edge labeling function will generate all the distinct vertex labels satisfying 
the condition for antimagic labeling. Hence M(Cn) is antimagic. 
 
Illustration 2.4. Middle graph of cycle C5 and its antimagic labeling is shown in Figure 
2. 
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Figure 2 

 
Therom 2.5. Total graph of path Pn is antimagic. 
Proof. Let v1, v2, ... , vn be the vertices and e1, e2, ... , en-1 be the edges of path Pn and G = 
T(Pn) be the total graph of path Pn with V(T(Pn)) = V(Pn) ∪  E(Pn) and E(T(Pn)) = {vi vi+1 ; 
1≤ i ≤ n – 1, vi ei ; 1 ≤ i ≤ n – 1, ei ei+1 ; 1 ≤ i ≤ n – 2, vi ei-1; 2 ≤ i ≤ n}. Here |V(G)| = 2n – 1 
and |E(G)| = 4n – 5 . Define f :E(G) →{1, 2, … 4n – 5}  as follows.  
 
For  1 ≤ i ≤ n – 2:  
f (vivi+1) = 4i ;   f (vn-1vn) = 4n – 5 ;    
f (eiei+1) = 4i – 3 ; 
For  1 ≤ i ≤ n – 2:   
f (viei) = 4i – 1; 
For  2 ≤ i ≤ n – 1: 
f (viei-1) = 4i – 2 ;  f (vnen-1) = 4n – 7 ; 
 
Above defined edge labeling function will generate all the distinct vertex labels satisfying 
the condition for antimagic labeling. Hence  T(Pn) is antimagic. 
 
Illustration 2.6. Total graph of path T(P6) and its antimagic labeling is shown in Figure 
3. 

 
Figure 3 

 
Theorem 2.7. Total graph of cycle Cn is antimagic. 
Proof. Let v1, v2, ... , vn be the vertices and e1, e2, ... , en be the edges of cycle Cn and  
G=T(Cn) be the total graph of cycle Cn with V(T(Cn))=V(Cn)∪ E(Cn) and E(T(Cn)) = 
{vivi+1 ;1≤ i ≤ n – 1, vn v1,vi ei ;1 ≤ i ≤ n, ei ei+1 ;1 ≤ i ≤ n – 1, en e1, vi ei+1;2≤ i ≤ n, v1en}. 
Here |V(G)| = 2n and |E(G)| = 4n. To define  f:E(G) →{1, 2, … 4n} we consider 
following two cases.  
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Case 1: n ≡ 1 (mod  2) 
For  1 ≤ i ≤ n – 1:  
f (vivi+1) = 3n+i ;   f (vnv1) = 4n ; 
For  2 ≤ i ≤ n – 1: 
f (eiei+1) = i + 1 ;    f (ene1) = 1 ; 
For  1 ≤ i ≤ n : 
f (viei) = n +2i ; 
For  2 ≤ i ≤ n : 
f (viei-1) = n –1+2i ;   f (v1en) = n +1 ; 
 
Case 2: n ≡ 0 (mod  2) 
Sub case 1: n ≡ 0 (mod  4) 
For  1 ≤ i ≤ n – 1: 
f (vivi+1) = 3n+i ;   f (vnv1) = 4n ; 
For  2 ≤ i ≤ n – 1: 
f (eiei+1) = i+1 ;    f (ene1) = 2 ; 
f (e1e2) = 1 ; 
For  1 ≤ i ≤ n : 
f (viei) = n+2i ; 
For  2 ≤ i ≤ n : 
f (viei-1) = n – 1 + 2i ;   f (v1en) = n + 1 ; 
 
Sub case 2: n ≡ 2 (mod  4) 
f (v1v2) = 3n + 2 ;   f (v2v3) = 3n + 1 ; 
For  3 ≤ i ≤ n – 1: 
f (vivi+1) = 3n + i ; 
For  2 ≤ i ≤ n – 1: 
f (eiei+1) =  i +1 ; 
f (ene1) =  2 ;    f (e1e2) =  1 ; 
For  1 ≤ i ≤ n : 
f (viei) = n +2i ; 
For  2 ≤ i ≤ n : 
f (viei-1) = n – 1 +2i ;   f (v1en) = n + 1; 
 
Above defined edge labeling function will generate all the distinct vertex labels satisfying 
the condition for antimagic labeling. Hence T(Cn) is antimagic. 
 
Illustration 2.8. Total graph of cycle C6 and its antimagic labeling is shown in Figure 4. 
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Figure 4 

Theorem 2.9. Splitting graph of path Pn is antimagic. 
Proof. Let v1, v2, ... , vn be the vertices and e1, e2, ... , en-1 be the edges of path Pn. Let 

1 2, , , nv v v′ ′ ′…  be the newly added vertices to form the splitting graph of path Pn. Let G= 
S(Pn) be the splitting graph of path Pn . V(S'(Pn)) = { , /1 }i iv v i n′ ≤ ≤  and E(S'(Pn)) 
= 1 1 1{ ;1 1, ;2 , ;1 1}i i i i i iv v i n v v i n v v i n+ − +

′ ′≤ ≤ − ≤ ≤ ≤ ≤ − . Here |V(G)| = 2n and |E(G)| = 3n – 3.  
Define  f :E(G) → {1, 2, … , 3n – 3} as follows.  
 
For  1 ≤ i ≤ n – 1: 
( )1   3i if v v i+ = ; 

1( ) 3 2i if v v i+′ = − ; 

1( ) 3 1i if v v i+′ = − ; 
 
Above defined edge labeling function will generate all the distinct vertex labels satisfying 
the condition for antimagic labeling. Hence S'(Pn) is antimagic. 
 
Illustration 2.10. Splitting graph of path P6 and its antimagic labeling is shown in Figure 
5. 

 
Figure 5 

 
Theorem 2.11. Splitting graph of cycle Cn is antimagic. 
Proof. Let 1 2, , , nv v v…  be the vertices and 1 2, , , ne e e… be the edges of cycle Cn. Let 

1 2, , , nv v v′ ′ ′…  be the newly added vertices to form the splitting graph of cycle Cn. Let 
G=S'(Cn) be the splitting graph of cycle Cn. V(S'(Cn)) = { , /1 }i iv v i n′ ≤ ≤  and E(S'(Cn)) 
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= 1 1 1 1 1 1{ ;1 1, , , ;2 , ;1 1, }i i n n i i i i nv v i n v v v v v v i n v v i n v v+ − +′ ′ ′ ′≤ ≤ − ≤ ≤ ≤ ≤ − . Here |V(G)| = 2n and 
|E(G)| = 3n. To define f :E(G) →{1, 2, … , 3n} we consider following two cases. 
 
Case 1: 1( 2)n mod≡  
For 1 ≤ i ≤ n – 1 : 

1( ) 2 1i if v v n i+ = + + ;   1( ) 2nf v v n= ; 

1
2 1, 1(mod 2);

( )
2 , .i i
i i

f v v
i otherwise+

+ ≡⎧′ = ⎨
⎩

 1( ) 2 1nf v v n′ = + ; 

For 2 ≤ i ≤ n: 

1
2 1, 1(mod 2);

( )
2 2, .i i
i i

f v v
i otherwise−

− ≡⎧′ = ⎨ −⎩
 1( ) 1nf v v′ = ; 

 
Case 2: n ≡ 0 (mod  2) 
For 1 ≤ i ≤ n – 1 : 

1( ) 2 1i if v v n i+ = + + ;   1( ) 3nf v v n= ;  
 
Sub Case 1: n ≡ 0 (mod  4), n ≠ 4 

2 1( ) 4f v v′ = ;    2 3( ) 2f v v′ = ; 
For 1 ≤ i ≤ n, (i ≠ 2): 

1
2 1, 1(mod 2);

( )
2 , .i i
i i

f v v
i otherwise+

+ ≡⎧′ = ⎨
⎩

 1( ) 1nf v v′ = ; 

For 3 ≤ i ≤ n : 

1
2 1, 1(mod 2);

( )
2 2, .i i
i i

f v v
i otherwise−

− ≡⎧′ = ⎨ −⎩
 

 
Sub Case 2: n = 4 and n ≡ 1 (mod  4) 

1( ) 3nf v v′ = ;    1 2( ) 1f v v′ = ; 
For 2 ≤ i ≤ n: 

1
2 1, 1(mod 2);

( )
2 , .i i
i i

f v v
i otherwise+

+ ≡⎧′ = ⎨
⎩

 1
2 1, 1(mod 2);

( )
2 2, .i i
i i

f v v
i otherwise−

− ≡⎧′ = ⎨ −⎩
 

 
Above defined edge labeling function will generate all the distinct vertex labels satisfying 
the condition for antimagic labeling. Hence ( )nS C′ is antimagic. 
 
Illustration 2.12. Splitting graph of cycle C4 and its antimagic labeling is shown in 
Figure 6. 
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Figure 6 

 
Theorem 2.13. Shadow graph of path Pn is antimagic. 
Proof. Let nP′ , nP′′  be two copies of path Pn. We denote the vertices of first copy of Pn by 

1 2, ,...., nv v v′ ′ ′  and second copy by 1 2, ,...., nv v v′′ ′′ ′′ . Let G be 2 ( )nD P  with |V(G)| = 2n and 
|E(G)| = 4n – 4. Define  f : E(G) →{1, 2, … , 4n – 4 } as follows.  
 
For 1 ≤ i ≤ n – 1 : 

1( ) 4i if v v i+′ ′ = ;  1( ) 4 3i if v v i+′′ ′′ = − ;  1( ) 4 1i if v v i+′ ′′ = − ; 
For 2 ≤ i ≤ n: 

1( ) 4 2i if v v i−′ ′′ = − ;  
 
Above defined edge labeling function will generate all distinct vertex labels satisfying the 
condition for antimagic labeling. Hence  2 ( )nD P  is antimagic. 
 
Illustration 2.14. Shadow graph of path P6 and its antimagic labeling is shown in Figure 
7. 

 
Figure 7 

 
Theorem 2.15. Shadow graph of cycle Cn is antimagic. 
Proof. Let nC′ , nC′′be two copies of cycle Cn. We denote the vertices of first copy 
of Cn by 1 2, , , nv v v′ ′ ′… and second copy  by 1 2, ,...., nv v v′′ ′′ ′′ . Let G be 2 ( )nD C  with |V(G)| = 2n 
and |E(G)| = 4n. To define  f : E(G) → {1, 2, … , 4n}  we consider following three cases.  
 
Case 1: n ≡ 1(mod  2) 
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For 1 ≤  i  ≤ n – 1 : 
1( )i if v v i+′′ ′′ = ;    1( )nf v v n′′ ′′ = ; 

1( ) 3i if v v n i+′ ′ = + ;   1( ) 4nf v v n′ ′ = ; 

1( ) 2 1i if v v n i+′′ ′ = + − ;   1( ) 3 1nf v v n′′ ′ = − ; 

1( ) 2i if v v n i−′ ′′ = + ;   1( ) 3nf v v n′ ′′ = ; 
 
Case 2: n ≡ 0(mod  2), n ≠ 6 

1( ) 1nf v v′′ ′′ = ;    1( ) 4nf v v n′ ′ = ; 

1( ) 1nf v v n′ ′′ = + ;    1( ) 3nf v v n′ ′′ = ; 
For 1 ≤ i ≤ n – 1: 

1( ) 3i if v v n i+′′ ′′ = + ;   1( ) 1i if v v i+′ ′ = + ; 

1( ) 1 2i if v v n i+′ ′′ = + + ; 
For 2 ≤ i ≤ n: 

1( ) 2i if v v n i−′ ′′ = + ; 
 
Case 3: For n = 6, antimagic labeling of D2(C6) is shown in below Figure 8. 
 

 
Figure 8 

 
Above defined edge labeling function will generate all the distinct vertex labels satisfying 
the condition for antimagic labeling. Hence 2 ( )nD C  is antimagic. 
 
Illustration 2.16. Shadow graph of cycle C5 and its antimagic labeling is shown in Figure 
9. 
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Figure 9 

3. Concluding Remarks 
We have investigated antimagic labeling for shadow graph, middle graph and total graph 
of Pn and Cn. More exploration is possible for other graph families and in the context of 
different graph labeling problems. 
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