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Agriculture is one of the significant factors A decrease in 
the yield of agricultural food crops due to plant diseases results in great loss to the 
economy of the developing country. Detection of plant disease at an early stage will 
decrease the chance of loss on the overall economy. Nowadays, ICT (Information And 
Communication Technology) plays a major role in all sectors including agriculture. 
Classical agriculture has been reformed using ICT. Farmers are getting the correct 
information on time. ICT is necessary for agriculture, it may increase productivity using 
data generation, storage, and analysis. This paper presents a survey of various image 
processing techniques and machine learning tools to detect, quantify, and classify plant 
diseases. Methods that explore visible symptoms in leaves and stems were considered. 
This paper aims on exploring this wide research area and possible scope of further 
researcher there by looking at various aspects of review such as accuracy, image 
processing techniques, machine learning models, and plants on which work has been 
carried out. This survey is likely to be useful to researchers working both on disease 
detection on the leaf and pattern recognition, providing a quick overview of this 
important field of research. 

Keywords: Image Processing, Plant Disease, K-Means, Neural Network, SVM. 

 
1. INTRODUCTION  

 
(Barbedo, 2013). 
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3.1 K-Means Clustering 
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4. Neural networks 
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5. Support vector machines (SVM) 
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The extensive diversity of applications 
on the subject of identifying objects in 
digital images makes it hard for 
someone to outlook all possible 
treasured ideas present in the literature. 
In this context, this paper tried to 
present a short review on the subject, 
pointing at being a starting point for 
those researching the issue. 
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EARLY RECOGNITION OF MUNG LEAF DISEASES BASED ON SUPPORT VECTOR MACHINE AND 
CONVOLUTIONAL NEURAL NETWORK 
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Abstract  This paper proposed a model that Classifies 
a Mung (Vigna mungo L.) leaf to check if it is healthy or 
infected with a disease with the aid of Machine Learning 
and Deep Learning algorithms. The dataset is created in a 
controlled environment, where a controlled environment 
is a data item (image) that comprises only a single subject 
(leaf) and a white background collected from the south 
Gujarat Region in India. SVM and CNNs with different 
architectures have been trained and compared to each 
other. It aimed at detecting 3 mung leaf disease categories 
and a healthy leaf category. The model extracts complex 
features of various diseases. Comparative experiment 
results show that in the proposed work SVM overfit the 

on the Mung leaf image dataset. Early detection will help 
farmers to improve their productivity. The main objective 

advanced deep learning approaches and image data.  

 

Keywords  Mung leaf, Classification in Machine 
Learning, SVM, Deep Neural Networks, Convolutional 
Neural Networks 

 

1.  Introduction 

Mungbean is also known as green gram which is a highly 
nutritious legume crop and considered as a quality pulse 
due to its rich protein content and excellent digestibility. 
India is the largest producer of mungbean where it is the 
third most important pulse crop with an area of 
approximately 34.50 lakh hectares with 15.91 lakh tonnes 
of total production [1]. To meet global demand, it is 
commanding to increase the current average global 
productivity [2]. Having diseases in plants is a natural 
process. In traditional practice, farmers try to evaluate the 
diseases by their past experience. Or in other cases, the 
expert observes the plant organs like leaves and stems for 
any diseases. It is a very time-consuming and costly 
method because it requires continuous monitoring by an 
expert in large fields. Early identification and treatment 
will help farmers to reduce the overall loss. We require a 
fast approach to protect the crop from diseases. Using 
advanced technology like mobile phones, tablets, and 
similar devices farmers can input data in form of digital 

images and get an immediate response. That will result in 
crop productivity.  We need automated approaches that 
can support farmers in the early detection and prevention 
of Mung leaf diseases. Machine Learning and Deep 
Learning are part of Artificial Intelligence that 
emphasizes making predictions using algorithms that 
increase automatically through experience and by the use 
of data. Algorithms build an inference model based on 
training data to generalize the context and make 
predictions. Different deep learning models such as 
VGG16, MobileNetV2, and Custom CNN were 
implemented. Here we try to classify a mung leaf to check 
if it is healthy or diseased. Our model performance 
showed favourable results. 

 

2.  Related Work 

The yield of mungbean is affected by several diseases 
from which the three most common mung leaf diseases 
are Cercospora Leaf Spot, Powdery Mildew, and Yellow 
Mosaic Virus.  

Mungbean yellow mosaic disease (MYMD) is one of the 
major destructive diseases of mungbean in India.  It was 
first reported on Mungbean from India in 1940 [3], since 
then, it has been reported from all over India and other 
countries of the Indian subcontinent [4]. When it is severe 
crop losses extent up to 85- a 
potential threat to the cultivation of not only mungbean 
but also in other species like soybean, urdbean, moth 
bean, and cowpea [5]. 

CLS is the most widespread and destructive fungal 
disease of the mungbean. Cercospora leaf spot disease 
caused by Cercospora spp. The disease was first time 
reported in Delhi, India [6]. Cercospora leaf spot is also 
causing serious losses to mungbean crop. It 58% yield 
loss annually [7]. The disease starts appearing about 30-
40 days after planting. The leaf spots develop on infected 
leaves with a somewhat circular/subcircular to broadly 
irregular shape, the central area turn reddish-brown and 
grey center surrounded by a dark brown margin. 

Powdery mildew diseases in mungbean caused by the 
fungal pathogen Erysiphe polygoni. Yield losses due to 
the disease were reported to be up to 20-40% at the 
reproductive stages [8], but the damage can be more 
serious when the epidemic starts at the reproductive 
stages it may reach up to 55% [9]. 
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Each disease has unique symptoms that appear on the 
leaf, which can be used to categorize the disease by deep 
learning algorithms [10] [11] [12] [13]. 

Deep learning for plant disease detection in the primary 
works [14] [15] [16] [17] all used leaf images as a data 
source. However, these methods require a lot of data to 
work accurately, and this might be a challenge.  Initially, 
gathering new data for the problem domain, for example, 
object identification in biomedical or medical images 
may be difficult [18] [19] [20]. Besides, once the images 
have been gathered, they must be manually labelled and 

conducting it properly [21]. 

Data augmentation is an effective method that deals with 
a limited amount of data [22] [23]. This method generates 
new training samples from the original dataset by 
applying transformations to them. Several libraries like 
Tensorflow [24], Augmentor [25], or Imgaug [26], 
provide features for augmentation. However, these 
libraries not meant to be deal with object localization, 
object detection, semantic segmentation, and instance 
segmentation. Transformation methods used to perform 
augmentation on images may alter the notation but do not 
change the class of the image. For illustration, the 
horizontal or vertical flip operation to an image does not 
change the class of image, but only the location of the 
objects in the new image has changed. So for each 
problem, a special-purpose technique needs to be 
implemented, or augmented images must be manually 
labelled. Both the solutions are not feasible when there 
are hundreds or thousands of images to deal with.  

 

For training using Convolutional neural networks 
(CNNs) require a large number of sample images. 
Collecting required images is time-consuming and costly 
in many applications [27]. For limited dataset conditions, 
many researchers combined deep learning with transfer 
learning for data expansion [28]. A method of deep 
learning model combined with transfer learning proposed 
by Srdjan [29] classifies 13 different diseases and healthy 
plant leaf and reaches 96.3% average accuracy. Liu et 
al.[30] increases the size of the training dataset 12 times 
by applying rotation, mirroring, brightness, and contrast 
adjustment and adding Gaussian noise, and reducing the 
overfitting problem. 

 

Mohanty et al.[31] classify and recognize 54,306 
diseased and healthy plant leaf images using GoogleNet 
and AlexNet and conclude that GoogleNet provides a 
better average classification effect than AlexNet and 
achieves accuracy on the test set up to 99.35%. Wang et 
al. [32] trained a chain of deep convolutional neural 

networks that detect the severity of diseases and found 
that VGG16 is the best model and achieves 90.4% of 
accuracy.Too et al., [33] performs comparative test and 
verified that compared to VGG and ResNet, DenseNets 
requires fewer parameters and less calculation time to 
achieve advanced performance and achieve 99.75% test 
accuracy. Three different CNN architectures were 
retrained by [34] using the transfer learning method and 
deep transfer learning was performed using pre-trained 
models that generate networks that could make accurate 
predictions. Three methods of regression, focus loss 
function, and multilabel classification based on 
DenseNet-121 CNN was proposed by [35] to identify 
apple leaf diseases and achieve 93.51, 93.31, and 93.71% 
accuracy on the test set. 

 

3.  Proposed Method 

The proposed algorithms for this work we have used 
Support Vector Machine and Convolutional Neural 
Networks to detect mung leaf disease through machine-
learning and deep learning.  

Support Vector Machines (SVMs) is a model that can be 
used for both classification and regression. The algorithm 
tries to find a decision boundary, or a hyperplane when 
data is characterized in more than two dimensions that 
splits the classes.  

A Convolutional Neural Network is a type of neural 
network that can successfully recognize the Spatial and 
Temporal dependencies in the data by passing through 
multiple filters. It is frequently used with images. The 
architecture of the Convolutional Neural Network is 
designed in such a way that it performs better because of 
the relatively different number of parameters involved 
and the reusability of weights. The pre-processing steps 
required for ConvNets are considerably less compared to 
traditional machine learning algorithms. Each image 
when training goes through a series of operations, known 
as convolutions, a dot product of a 2D kernel of a 
specified size is slid over the image and the small region 
of the image the kernel is connected to. The resultant is 
then followed by an activation function like ReLU 
(Rectified Linear Unit) and then followed by a Pooling 
layer that generally reduces the image resolution by 
making it half the number of pixels. After this, stacked 
layers of the fully connected layer are usually added to 
learn non-linear combinations of the high-level features 
presented by the convolutional layers. But before passing 
the feature maps to the fully connected layers, there is a 
need to flatten the features maps. Figure 1 shows the 
structure of the Mung Leaf disease detection system. 
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Figure 12: The Structure of Mung Leaf Disease Detection 

 

 

 

4.  DATASET AND PREPROCESSING 

 

4.1 The Dataset 

The dataset primarily accounts for a controlled 
environment. An image from the controlled environment 
contains a single mung leaf with a white background i.e. 
no noise. After image acquisition, the images are 

manually screened to avoid duplication and classification 
in the dataset. Finally, a dataset contained a total of 883 
Mung leaf images for controlled environments: 
Cercospora (224), Healthy (211), Powdery Mildew (225), 
and Yellow Mosaic (223) is obtained. After that size of 
each picture is fixed at 256 x 256. A leaf can be one of 
the four distinct categories i.e. Healthy, Cercospora, 
Yellow Mosaic, and Powdery Mildew.  

The images of Mung leaves in 4 categories are shown in 
Figure 2. 

    

    

(a) Yellow Mosaic Virus (b) Cercospora Leaf Spot (c) Powdery Mildew (d) Healthy 

Figure 2: All Categories (Controlled Environment) 

 

4.2 Preprocessing 

In this study SVM and ConvNets are built with different 
model architectures and hence need to implement 
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different preprocessing steps. The image first needs to be 
read into a three-dimensional NumPy array and rescaled 
to one-third its size to train an SVM. In Computer Vision, 
the Histogram of Object Gradients (HOG) is used for 
object detection. HOG act as feature descriptors by 

focusing on the shape or structure of the object. In the 
end, a histogram is created for each local region of the 
image.

(a)

(b)

(c)
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(d)

Figure 3:  A leaf image after applying HOG: (a) Cercospora Leaf Spot, (b) Healthy, (c) Powdery 
Mildew, (d) Yellow Mosaic Virus

The image is converted to grayscale before applying this 
method. Mapping of the label is done using integers 1 
through 4. Figure 3 displays a converted grayscale leaf 
image and HOG image.

Before applying this technique, we change the leaf image 

no need to hot encode the training labels. Labels are 
mapped here to the integers 1 through 4. 

When using ConvNets, low preprocessing steps prove to 
be sufficient to get decent results. The image is first read 
into a 3-dimensional NumPy array and then resized to a 
size of 256 x 256 pixels. Data normalization ensures that 
each pixel of the image has a similar data distribution and 
helps to converge faster while training the model.

4.3 Data Augmentation

A ConvNet is said to have invariance when it is robust 
enough to classify objects even in different orientations. 
A model can be trained to be invariant to size, translation, 
and even illumination. We can generate additional 
synthetically modified data to train our network 
prediction accurately in various conditions. This is known 
as Data Augmentation. It involves augmenting the 
datasets with perturbed versions of themselves. Various 
Augmentation properties are applied to the dataset to 
create new images. This paper used a variety of image 
enhancement techniques for enhanced image data. Table 
1 shows various augmentation properties applied to the 
dataset.

Table 1: Data Augmentation Property

Property min max

Width Shift Range 0 0.2

Height Shift Range 0 0.2

Brightness Range 0.8 1.2

Zoom Range 0 0.3

Flip Horizontal Vertical

5. TRAINING PROCESS

5.1 Support Vector Machine

An SVM is capable of providing high accuracy compared 
to other machine learning models like logistic regression 
etc. To handle nonlinear input spaces, the SVM uses a 
kernel trick to map the data to a higher dimension so that 
it is possible to find a hyperplane that divides the different 
classes. Sklearn.svm.SVC provides a Support Vector 
Classifier. An SVC with a polynomial kernel and the 

binary classification on all the classes one by one for 
multiclass classification. Each binary classification 
predicts one class label and the model with the most 
predictions is predicted by the one-by-one strategy. SVM 
after training yielded a test accuracy of 86.9% but it 
overfits the dataset and thus was not a reliable model. 
Figure 4 shows the confusion matrix for 4 Mung leaf 
categories that include 3 diseased and a healthy category 
and Table 2 shows the classification report for the 
controlled environment with SVM.
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Figure 4: Confusion Matrix (Controlled); 0-Cercospora, 1-Healthy, 2-Powdery Mildew, 3-Yellow Mosaic 

 
Table 2: Classification Report 

 precision recall f1-
score 

support 

0 0.82 0.89 0.85 56 

1 0.86 0.94 0.90 53 

2 0.93 0.88 0.90 57 

3 0.88 0.77 0.82 56 

accuracy   0.87 222 

macro 
avg 

0.87 0.87 0.87 222 

weighted 
avg 

0.87 0.87 0.87 222 

     

0  Cercospora  1  Healthy   

2  Powdery Mildew 3  Yellow 
Mosaic Virus 

 

 

To regularize the effect of overfitting, different values for 
the regularization parameter and other hyperparameters 
are tried. Grid Search is used to find the hyperparameters 
that yield better accuracy and do not overfit. Various 
hyperparameters like C, Gamma, Kernel, Degree, and 
Strategy with a set of values are applied on Grid Search 
with 5-fold cross-validation. 

 

Training accuracy of the model reached 100% and test 
accuracy fell to 86.4% when the results of the grid search 
were applied.  

 

5.2 Convolutional Neural Networks 

CNN models with different architectures are trained to 
complete our objective. The comparison process is 
divided into 2 different rounds. A batch size of 64, input 
shape (256, 256, 3), and a learning rate of 0.0003 are 
maintained throughout the comparison. In the first round, 
a custom CNN architecture and two pre-built models: 
VGG16 and MobileNetV2 are compared with each other. 

in all three models. Except for the Custom CNN, the pre-
trained weights for the other models are loaded and thus 
its training process is Transfer Learning. All three models 
are trained for 20 epochs and categorical cross-entropy as 
their loss function. MobileNet V2 model performs very 
poorly and also overfits the dataset with a huge 
difference. On the other hand, the VGG16 architecture 
performs the best with a test accuracy of 95.5%. Our 
Custom CNN model also performs decently with a test 
accuracy of 89.9% but can still be improved by 
hyperparameter tuning. Data Augmentation did not 
positively affect the training process and thus is not 
applied in the training process. Table 3 displays Custom 
CNN model architecture. 

 
Table 3: Model Architecture (Custom CNN) 

Layer  Filters Kernel Act. MP 

Conv2D 32 3 x 3 ReLU  

Conv2D 64 3 x 3 ReLU  

Conv2D 128 3 x 3 ReLU  

Conv2D 128 3 x 3 ReLU  

Conv2D 256 3 x 3 ReLU  
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Layer Neurons  Act  

Flatten - - - - 

Dense 256 - ReLU - 

Dense 128 - ReLU - 

Dense 128 - ReLU - 

Dense 64 - ReLU - 

Dense 4 - Softmax - 

 

 

 

 

 

 

 

 

 

 
 (a) 

 
 (b)

 
 (c) 
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Figure 7: (a) Accuracy Graph for Custom CNN, VGG 16, and Mobilenet V2 for train  and validation, (b) Loss 
Graph for Custom CNN, VGG 16, and Mobilenet V2 for train and validation, (c)  Legends 

 

Here, Figures 5 and 6 displays accuracy and loss graphs. 
The accuracy and loss comparison is displayed in below 
table 4. 

 
Table 4: Accuracy and Loss Metrics in the first round 

Model Accuracy (%) 

(Train / Test) 

Loss 

(Train / Test) 

Custom CNN  96.67 / 89.19 0.1006 / 0.2553 

VGG16 93.65 / 95.5 0.2182 / 0.1487 

MobileNet V2 99.8 / 35.14  0.0001 / 29.7 

 

In the second round, we try to tune the hyperparameters 
of the custom CNN model to yield the best results we 
could. The following parameter grid combination is used 
to search for the best hyperparameters: 

 
Table 5: Parameter grid (controlled  CNN) 

Batch Norm.  {True, False} 

Optimizer  {SGD, RMSprop, Adagrad, 
Adadelta, Adam, Adamax} 

Learning Rate  {0.01, 0.03, 0.001, 0.003, 0.0001, 
0.0003 } 

Dropout rate  {0.0, 0.1, 0.2} 

 

After performing the hyperparameter tuning using Keras-
tuner, we found that the best hyperparameter for our 
Custom CNN model was: 

 

Batch Norm.  False  Optimizer  Adamax 

Dropout rate  0.1  Learning rate  0.0003. 

 

 

Figure 8: Keras Tuner Results (Controlled - CNN ) 

 

The CNN model has trained again but with the given 
hyperparameters and yields a training accuracy of 
97.67% and testing accuracy of 91.03%. Figures 9  
represent the accuracy and loss graphs for training and 
validation. 
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(a) 

 

(b) 

 

(c) 

Figure 9: (a) Accuracy Graph for Custom CNN, (b) 
Loss Graph for Custom CNN, (c) Legends 

 

 

6.  CONCLUSION 

In the controlled environment, even after applying high 
regularization, the SVM overfit the data. Due to the 
lack of sufficient data to train the model, it overfits. In 
machine learning, a huge sample of data is needed to 
decently predict any activity. CNN proved to be robust 
in a Controlled Environment despite the lack of huge 
amounts of data. They successfully captured features 
from the image and classified them with a test accuracy 
of 95.05%. 
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1. Creation and Segmentation of image dataset of Mung bean 
plant leaf 
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Abstract. Automated plant disease identification is an enduring research subject. Leaves are available for most 

using image analysis. Data collection and pre-processing are the most significant and crucial stages to obtain the 
data that can be taken as accurate and appropriate for further processing. Machine learning techniques require a 
large amount of data for training. The present paper focuses on process standardization for the creation of an 
image dataset of Mung bean plant leaves and pre-processing steps to enhanced captured images. The diseases in 
leaves result in loss of economic, and production status in the agricultural industry worldwide. The identification 
of disease in leaves using image processing, reduce the reliance on the farmers for the safeguard of agricultural 
crops. In this paper creation and segmentation process of Mung bean plant leaf, performed. Present Dataset will 
be available to be used by researchers to save their time, efforts, and cost related to dataset creation. Segmentation 
of images will intensify the accuracy of the identification of various diseases. 

Keywords: Mung bean, Leaf, Image analysis, Image Dataset, Disease Identification, Pre-processing, 
Segmentation. 

Introduction 
 

Pulses play important role in nutritional requirements. Pulses help to reduce inanition among the poor 
masses. They provide minerals, vitamins, energy, dietary fiber, the protein required for the health 
condition. Pulses contain substantial amounts of essential nutrients like calcium, iron, and lysine 
(Gowda et al 2013). Latest research studies suggested that consumption of pulses may have likely 
health benefits as well as reduced risk of hypertension, gastrointestinal disorders, cardiovascular 
diseases, cancer, diabetes, and osteoporosis (Jacobs and Gallaher 2004). 

(Gaston & 
intelligence and digital image processing techniques. Ever since many studies have proposed various 
methods for automated plant and plant disease identification. (Rzanny, Seeland, Wäldchen, & Mäder, 
2017a) explored many approaches for image acquisition and pre-processing to improve the quality of 
plant organ images to train classifiers for the classification process. 
This paper proposes an image dataset of Mung bean plant leaves to carry out an image-
based plant disease identification and classification. There are no standard plant leaves 
image dataset for Mung bean leaves is available. The database is created manually by 
capturing mung leaves images using various smart mobile phones in a controlled 
environment. How leaf images are acquired and pre-processed does have a substantial 
effect on the accuracy of the classifier trained on them. 

 
Literature Review 
 

Various effective and novel methods have been projected in recent times for the automatic 
identification of plant and plant organ diseases. Methods are exploring visual cues present in almost 
all of those parts, like fruits (Aleixos N, 2002) (Corkidi G, 2005) (López-García F, 2010), stems, roots 
(Smith SE, 1991), kernels (Ahmad IS, 1999), and leaves. (Amruta Ambatkar et al., 2017) proposed a 
method for rose diseases detection using an 8-connected boundary detection algorithm for edge 
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detection. (Sannakki et al., 2012) compared binary morphology and Sobel edge detector algorithms 
that detect edges and proved that morphology is more effective compared to others. (Sabu, Sreekumar 
& Nair, 2017) used HoG (Histogram of oriented Gradients) and SURF (Speeded Up Robust Features) 
together with a k-NN classifier to identify plants. (Wang et al. 2013) aimed at a new algorithm that 
segments a single leaf from real-time video and achieved clear and accurate edges. (Kumar, Surya & 
Gopi, 2017),  conducted the research that considered both front and backside of leaves with fresh and 
dried leaves and extracts features and test them using Support Vector Machine (SVM) and Multi-
Layered Perceptron (MLP) classifiers. (Dahigaonkar & Kalyane, 2018) done related work by 
extracting various features including geometric, texture, shape, and color using SVM Classifier. 
(Nisale et al. 2011) achieve 93% accuracy by extracting geometric features of a leaf for detecting 
various stages and deficiencies in the plant. (Arivazhagan et al. 2013) proposed an algorithm that 
detects and classify an unhealthy region of leaves and segmented only diseased region with the help 
of an SVM classifier and obtained 94.74% accuracy. (Venkataraman & Mangayarkarasi, 2017) 
performs classification and identification of plants using various statistical parameters, texture 
features, and SVM. (Aitwadkar, Deshpande & Savant, 2018) used Artificial Neural Network (ANN) 
for automatic identification of plants. (Batvia, Patel & Vasant, 2017) used Convolution Neural 
Network (CNN) for automatic identification of plants. 

Table 1. Summarizes the researches carried out in recent times 

Researcher
s 

Culture Primary 
Feature 

No. of 
Images 
Consid
ered 

Plant 
Orga
n 

Classifi
er / 
Techni
ques 

Image Acquisition / 
Dataset 

Accuracy 

(R. P. 
Narmadha 
& 
G.Arulvadiv
u) 

Paddy Shape, 
Color 

NA Leaf K-
means 

Custom 
(Smartphones or 
digital camera) 

NA 

(Hidayatulo
h et al., 
2018) 

Tomat
o 

Color 1400 Leaf CNN Custom (Smart 
Phone) 

86.92% 

(Kawacher 
Ahmed et 
al., 2019) 

Rice Color 480 Leaf Decisio
n Tree 

https://archive.ics.u
ci.edu/ml/datasets/
Rice+ 
Leaf+Diseases.) 

97.91% 

(V. N. T. Le 
et al., 
2019) 

Canola 
radish 
& 
Barley 

Texture 30000 Leaf SVM Custom (On-Semi 
VITA 2000 camera 
sensor) 

91.85% 

( 
Sridhathan 
C. et al., 
2018) 

Multi-
Species 

Color NA Leaf K-
mean 

Custom (Digital 
camera or Mobile 
Phone) 

98.27% 

(G. Dhingra 
et al., 
2019) 

Basil Color 400 Leaf SVM Custom (EOS 5D 
Mark III, 22.3 
megapixel CMOS 
sensor) 

98% 

(G. Saleem 
et al., 
2019) 

Multi-
Species 

Color 1600 
625 

Leaf KNN Existing (Flavia) 
Custom 

97.6% 
96.1% 

(Y. Sun, 
2019) 

Tea 
Plant 

Texture 1308 Leaf SVM Custom (digital SLR 
camera) 

98.5% 

(S. 
Sivasakthi, 
2020 ) 

Greenh
ouse 
Crop 

Color, 
Texture 

NA Leaf SVM, 
ANN 

Custom (Camera) 92% 
87% 

(Majid et 
al., 2013) 

Rice Color NA Leaf PNN Custom 91.46% 

(Arvind et 
al., 2018) 

Maize Texture 2000 Leaf Multicl
ass 
SVM 

Existing (Plant 
Village) 

83.7% 
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(Suryawati 
et al., 
2018) 

Tomat
o 

Color 18160 Leaf CNN Existing (Plant 
Village) 

94% 

(Suresha et 
al., 2017) 

Rice Color NA Leaf kNN Custom (Digital 
Camera) 

76.59% 

(Saradham
bal. G et 
al., 2018) 

Multi-
Species 

Color 75 Leaf k-
means 

Custom NA 

(Tucker et 
al., 1997) 

Sunflo
wer & 
Oat 

Shape 40 Leaf Thresh
olding 

Custom (TMC-76 
color CCD) 

NA 

(Zhang et 
al., 2011) 

Citrus Color, 
Texture 

500 Leaf AdaBo
ost 

Custom 
(DigitalCamera) 

88% 

(Wang et 
al., 2012) 

Wheat 
& 
Grape 

Color, 
Texture 
& Shape 

185 Leaf PNN Custom (Digital 
Camera) 

94.29% 

(Zhang et 
al., 2016) 

Cucum
ber 

Color 100 Leaf SVM Custom 92% 
Approx. 

(Quin et al., 
2016) 

Alfalfa Color, 
Texture 
& Shape 

899 Leaf SVM Custom (Digital 
Camera) 

80% 
Approx. 

(Dey et al., 
2016) 

Betel 
Vine 

Color 12 Leaf Otsu Custom NA 

(Youssef et 
al., 2016) 

Vegeta
ble 
Crop 

Color, 
Texture 
& Shape 

284 Leaf SVM Custom (Digital 
Camera) 

87.805 

(Ali et al., 
2017) 

Citrus Color & 
Texture 

199 Leaf Bagged 
Tree 
Classifi
er 

Custom (DSLR 
Camera) 

99.9% 

(Tippannav
ar et al., 
2017) 

Multi 
Species 

Color 500 Leaf KNN, 
PNN 

Custom (Digital 
Camera) 

75.04% 
71.24% 

(Kaur et al., 
2017) 

Multi-
Species 

GLCM 
Features 

NA Leaf SVM NA 95.16  
98.38% 

(Mondal et 
al., 2017) 

Okra & 
Bitter 
gourd 

Texture 79(Okr
a) 
75(Bitt
er 
gourd) 

Leaf Naives 
Bayes 
Classifi
er 

Custom (Digital 
Camera) 

NA 

(Ma et al., 
2017) 

Cucum
ber 

Color 93 Leaf Color 
map 

Custom (Digital 
Camera) 

NA 

(Al-Otaibi 
et al., 
2017) 

Basil & 
Parsley 

Statistical 
Feature 

30 Leaf NN Custom (Digital 
Camera) 

80% 

(Manimega
lai et al., 
2017) 

Apple GLCM 
Features 

NA Leaf SVM NA 98.46% 

(Chouhan 
et al., 
2018) 

Plant 
Leaf  

Region 
Growing 

276 Leaf NN Existing (Plant 
Village) 

86.21% 

(Zhang et 
al., 2018) 

Apple 
& 
Cucum
ber 

Color 150 
(Apple) 
150 
(Cucu
mber) 

Leaf k-
means 

Custom 90.43% 
(Apple) 
92.15% 
(Cucumb
er) 

(Picon et 
al., 2018) 

Wheat Color 8178 Leaf Deep 
Convol
ution 

Custom (Mobile 
Phones) 

>98% 

(Junior et 
al., 2018) 

Multi-
Species 

Shape 600 Leaf RNN NA 88.92% 

(Sunny et 
al., 2018) 

Citrus Texture 100 Leaf SVM Custom (Digital 
Camera) 

NA 



Design and development of a model to classify crop foliar diseases 
 

Atmiya University, Rajkot, Gujarat, India                                       Page 210 of 245 
 

(Nababa et 
al., 2018) 

Oil 
Palm 

Probabilit
y 
Function 

NA Leaf Naïve 
Bayes 

NA 80% 

(Fuentes et 
al., 2018) 

Tomat
o 

Color 5000 Leaf NN Custom (Digital 
Camera) 

96% 

(Sabu et al., 
2017) 

Multi-
Species 

SURF, 
HOG 

200 Leaf kNN Custom NA 

(Vijayashre
e & Gopal, 
2017) 

Multi-
Species 

Texture 127 Leaf Dissimi
larity 

Custom NA 
 
 

(Pushpa, 
Anand & 
Nambiar, 
2016) 

Multi-
Species 

Shape & 
Edge 

208 Leaf NA Custom 93.75% 

(Kumar & 
Talasila, 
2014) 

Multi-
Species 

Shape, 
Texture 
& Color 

500 Leaf Unique 
ID 

Custom NA 

(Kumar, 
Surya & 
Gopi, 2017) 

Multi-
Species 

Color & 
Texture 

1200 Leaf SVM Custom (Scanned 
Images) 

94% 

(Dahigaonk
ar & 
Kalyane, 
2018) 

Multi-
Species 

Color, 
Texture 
& Shape 

128 Leaf SVM Custom 96.66% 

(Venkatara
man & 
Mangayark
arasi, 2017) 

Multi-
Species 

Texture 260 Leaf SVM Custom NA 

(Aitwadkar, 
Deshpande 
& Savant, 
2018) 

Multi-
Species 

Edge, 
Color 

50 Leaf ANN Custom 75% 

(Batvia, 
Patel & 
Vasant, 
2017) 

Multi-
Species 

Shape 4000 
approx
. 

Leaf CNN Custom NA 

(Venkatara
man & 
Mangayark
arasi, 2016) 

NA Shape 5 Leaf ANN, 
SVM 

Custom NA 

(Arun & 
Christopher 
Durairaj, 
2017) 

Multi 
Species 

Color & 
Texture 

250 Leaf SVM Custom (Digital 
camera) 

98.7% 

 

Used Abbreviations; SVM: Support Vector Machine, ANN: Artificial Neural Networks, PNN: 
Probabilistic Neural Networks, KNN: k-nearest neighbors, CNN: convolutional neural 
network. 

 

A detailed study of the research work done during the last few years on leaf images are 
summarized in Table 1. From the information presented in Table 1 main point noticeable is, 
researches in the field of plant disease identification mostly focuses on a single plant organ 
leaf. Also, the researchers are forming a custom dataset for their research work as there is 
no standard dataset available for Mung bean plant organs. The abbreviations used are 
summarized in the last row of Table 1.  Below mentioned Table 2 contains a list of some 
existing plant image datasets. 
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Table 2. Existing plant image datasets 

Dataset Organ No. of Species Culture No. of 
Images 

Flavia Leaf 32 Multi-Species 1907 

Plantvillage Leaf 3 Bell Paper, Potato, 

Tomato 

15442 

Oxford_flower102 Flower 102 Flowers 7000+ 

Swedish Leaf 15 15 tree classes 1125 

New Plant Disease Leaf 14 Fruits & Vegetables 87000 

Coffee-dataset Leaf 1 Coffee 1747 

 

The main point to note in Table 2 is that none of the above plant organ image datasets are 
dedicated to the Mung bean plant leaf organ. This research addresses the need for a 
benchmark dataset for Mung bean plant organs. 

 
MATERIALS AND METHODS 
 

Dataset Collection 

 

The crucial necessity for accurate plant disease identification is a standard dataset of plant 
organ images. The dataset creation consists of stages as follows: 

 Plant Selection 

 Capturing Images 

 Dataset Creation. 

For this research, the Mung bean plant is under consideration as it is a local crop of the 
South Gujarat Region. In the present work, the leaf dataset consists of four types of healthy 
and diseased Mung bean leaf images; these are Cercospora Leaf Spot, Yellow Mosaic Virus, 
and Powdery Mildew. These were collected from The Navsari Agriculture University at 
Navsari, Gujarat, India for reflective study. A pictorial assessment of the above-mentioned 
study site is shown in Fig. 1. 
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Fig. 1. Study Site of Mung bean Plants 

Leaf samples are acquired indoor to minimize the effect of lighting conditions. Leaves were 
digitally captured in a controlled environment using Oppo A5 13MP and MI Note 8 Pro 64MP 
smartphones. 

The Database consists of 1500+ images which include 400+ healthy and 1000+ diseased 
leaves.  The diseases considered are Cercospora Leaf Spot, Powdery Mildew, and Yellow 
Mosaic Virus. Fig. 2 represents the healthy and diseased Mung bean leaves. 

 

 

Fig. 2. Healthy & Diseased Mung Bean Leaves 

 

System Model and Discussion 

The system model is consist of four crucial steps as follows: 

1) Pre-processing: Pre-processing helps to bring out useful information from an image. 

2) Segmentation: Segmentation is used for locating objects in the image and to detect 
bounding lines of the image, background subtraction. 

3)  Feature extraction: In this phase, unique characteristics of an object or group of objects 
are collected.  

4) Classification: Classification is the phase where training and testing take place. It is where 
the decision takes place using features extracted from the previous phase.  

From the above four phases first, two phases have been discussed in detail in the following 
sub-sections and the remaining two phases will be implemented in the future. For 
implementation, OpenCV an open-source computer vision library with Python is used. 

1.1.1 a) Pre-processing:. Afterimage acquisition the pre-processing phase takes 
place. In this phase, image enhancement will be done. For this various operations are 
carried out in a series:  RGB image Acquisition and color transformation, normalization/ 
resize of image size, Augmentation, masking green pixels, Segmentation. This phase makes 
changes in the image and makes it appropriate for segmentation. 

1.1.1.1 Resize an image 
. Resizing refers to the scaling of an image. It helps to reduce or increase no of pixels from 
an image. Fig. 3 represents the image resize phase. 
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Fig. 3. (a) Original Image, (b) resized image 

1.1.1.2 Augmentation 
. Augmentation encompasses a wide range of techniques used to generate new training 
samples from the original ones. It helps us to increase the size of the Dataset for training. 
Image augmentation artificially creates training images through a combination of multiple 
transformations. The result of image augmentation is displayed in Fig. 4. 

 

 

Fig. 4. (a) Original Image, (b) Augmented images 

1.1.2 b) Segmentation:. Image segmentation is the first step in image analysis and pattern 
recognition it is a critical and essential step and is one of the most difficult tasks in image processing, as it 

determines the quality of the final result of the analysis (Jagtap et al., 2014). During the segmentation phase, the 
image will be divided into several segments so that the analysis process becomes easy. In this study, edge 

detection is performed using the canny() edge detector and Interactive foreground extraction is performed using 
Grebcut() algorithm. Fig. 5 depicts the edge detection and Fig. 6 depicts the Foreground extraction process. 
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Fig. 5. (a) Original images, (b) Extraction of Boundary 

1.1.1.3 Steps for segmentation 
.  

 

Fig. 6. Segmentation Process 

The GrabCut algorithm segments object from the background in an image. The user has to 
mark a rectangular area as the primary input. The outer part of this rectangle is considered 
as background and pixels in the outside area are considered as known background and 
inside are unknown background. A model is then created using this data, to find out 
whether the unknown pixels are foreground or background. Fig. 7 represents some of the 
segmented images. 
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Fig. 7. (a) Original Images, (b) Segmented Images 

GrabCut is one of the extensively used algorithms for removing background in images. The 
automatic GrabCut technique was experimentally tested using a dataset of Mung bean leaf 
images as shown in Fig. 7. This work can be used in regions like plant leaf image 
classification, plant leaf disease detection from plant leaf images. 

 

CONCLUSION 

 

We considered the creation of the Mung bean plant organ image dataset. Dataset will be 
released to be used by researchers to save their time, efforts, and cost associated with 
dataset creation. Segmentation of the image will increase the accuracy of identification of 
healthy and diseased pixels. 
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Summary 

 

Introduction 

  

 Agriculture field plays an important role in economy of any country. As India is 

one of the developing country agriculture is one of the backbone of economy. Having 

diseases in plants is a natural process. In traditional practice farmer try to evaluate the 

diseases by his past experience. Or in other case the expert observe the plant organs like 

leaves and stems for any diseases. It is very time consuming and costly method. We 

require an early identification to protect crop from diseases. This study perform 

classification techniques to identify mung bean plant leaf diseases using machine 

learning and deep learning techniques. 

 

Chapter 1 Introduction to Plant Disease Detection System 

 

 This chapter gives overview of the research work, its scope, objectives, need etc. 

in detail. Also chapter covers details of common mung bean plant diseases and diseases 

covered in this study. Application area of agriculture image processing, Crop/Plant 

diseases selection, image processing techniques are also covered in this chapter. The 

summary of the overall thesis is also discussed. 

 

Chapter 2 Literature Review 

 

Study of the previously done work up to now in the area of plant disease 

recognition for numerous plants and its organs is discussed in this chapter.  It includes 

journal articles, conference articles, electronic documents, web resources. 

 

Chapter 3 Plant Foliar Disease Identification Model 

 

In this chapter design of the foliar/leaf disease detection model is discussed in 

detail. Numerous components and subcomponents of model are explained in detail in 

this chapter.  
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Chapter 4 Development of Plant Foliar Disease Identification Model 

(PFDIM) 

 

This chapter describes component development of the model presented in chapter 

3 in detail. Input and output of the 

is discussed in this chapter.  

 

Chapter 5 Results and Conclusion 

 

This chapter converses result of the projected PFDIM model applied on mung leaf 

dataset collected to quantity the success of projected research work. Moreover this 

chapter presents conclusion of projected research work along with path for future scope 

in the present research space. 

 

Conclusion 

  

 Results and conclusion are discussed in detail in chapter 5 based on various 

parameters. This chapter presented the results concerning to the numerous proposed 

models. 

 

 

 

 


