
ATMIYAUNIVERSITY

RAJKOT

A

Report On

DOOM

Under subject of

PROJECT

B. TECH Semester– VIII

(Computer Engineering)

Submitted by:

1. Pushpak Gohil 190002067

2. Purvit Dhaduk 190002026

Prof. Krina Masharu

(Faculty Guide)

Prof. Tosal M. Bhalodia

(Head of the Department)

Academic Year

(2022-23)

CANDIDATE’S DECLARATION

We hereby declare that the work presented in this project entitled “DOOM”

submitted towards completion of project in 7th Semester of B.Tech. (Computer

Engineering) is an authentic record of our original work carried out under the

guidance of “Prof. Krina Masharu”.

We have not submitted the matter embodied in this project for the award of any

other degree.

Semester:7th

Place: Rajkot

Signature:

Pushpak Gohil (190002035)

Purvit Dhaduk (190002026)

ATMIYA

UNIVERSITYRAJKOT

CERTIFICATE

Date:

This is to certify that the “DOOM” has been carried out by Pushpak Gohil and

Purvit Dhaduk under my guidance in fulfillment of the subject Project in

COMPUTER ENGINEERING (7thSemester) of Atmiya University, Rajkot during

the academic year 2022-23.

Prof. Krina Masharu Prof.Tosal M.Bhalodia

(Project Guide) (Head of the Department)

I

ACKNOWLEDGEMENT

We have taken many efforts in this project. However, it would not have been

possible without the kind support and help of many individuals and organizations.

We would like to extend our sincere thanks to all of them.

We are highly indebted to Prof. Janak Maru for their guidance and constant

supervision as well as for providing necessary information regarding the Major

Project titled “DOOM”. We would like to express our gratitude towards staff

members of Computer Engineering Department, Atmiya University for their kind

co-operation and encouragement which helped us in completion of this project.

We even thank and appreciate to our colleague in developing the project and people

who have willingly helped us out with their abilities.

Pushpak Gohil (190002035)

Purvit Dhaduk (190002067)

II

ABSTRACT

DOOM is an adventure game for windows computer. You must tackle all the obstacles

to level up your powers. There are amazing levels which can check your gaming skills

too. You can play this game and enjoy it.

III

INDEX

Sr.

No.
TITLES

Page

No.

 Acknowledgement I

 Abstract II

 Index III

 List of Figures VI

 List of Tables VII

1. Introduction 1

 1.1 Introduction 1

 1.2 Purpose 1

 1.3 Scope 1

 1.4 Feasibility study 2

 1.4.1 Operational Feasibility 2

 1.4.2 Technical Feasibility 2

 1.4.3 Economical Feasibility 3

 1.5 Organization of the report 3

 1.5.1 Introduction 3

 1.5.2 Software Requirements Specification 3

 1.5.3 Design &Planning 3

 1.5.4 Results and Discussion 3

 1.5.5 Summary and conclusion 3

2. Software Requirements Specification 4

 2.1 Hardware Requirement 4

 2.2 Software Requirement 4

3. Design &Planning 5

 3.1 Software Development Life Cycle Model 5

 3.1.1 Waterfall Model 5

 3.2 General overview 5

 3.3 DFD(data flow diagram) 6

 3.4 Use case Diagram 8

 3.5 Class Diagram 9

 3.6 Input / Output Interface 10

IV

4. Implementation Details 12

 4.1 Front End 12

 4.1.1 Unity3D 12

 4.2 Back End 12

 4.2.1 C# 12

5 Testing and Implementation 13

 5.1 Unit Testing 13

 5.1.1 Introduction 13

 5.1.2 Benefits 13

 5.2 Integration Testing 14

 5.2.1 Purpose 14

 5.2.1.1 Big Bang 15

 5.2.1.2 Top-down And Bottom-up 15

 5.3 Software Verification and Validation 16

 5.3.1 Introduction 16

 5.3.2 Classification Of Methods 17

 5.3.3 Test Cases 17

 5.3.3.1 Test Suit 17

 5.4 Black-Box Testing 17

 5.4.1 Test Procedures 17

 5.4.2 Test Cases 18

 5.5 White-Box Testing 18

 5.5.1 Levels 18

 5.5.2 Procedures 19

 5.5.3 Advantages 19

 5.5.4 Disadvantages 19

 5.6 System Testing 20

6 Limitations 21

7 Conclusion 22

LIST OF FIGURES

Figure

No.
Table Title

Page

No.

3.3 Data Flow Diagram 6

 3.3.1 Level-0 6

 3.3.2 Level-1 6

 3.3.3 Level-2 7

3.4 Use case Diagram 8

3.5 Class Diagram 9

3.6 Input/ Output Interface 10

 3.6.1 Interface 10

 3.6.2 Main Menu 10

 3.6.3 Enemy View 11

 3.6.4 Game Map 11

V

VI

LISTOFTABLES

Table
No.

Table Title
Page
No.

2.1.1 Hardware Requirements 4

2.2.1 Software Requirements 4

5.3.3.1 Admin Login Test 17

1

1.1 Introduction

INTODUCTION

DOOM is a windows application for the gaming. In this project, we use C# and Unity3D.The

entire project mainly consists of 3 modules, which are

• Host module

• Client module

It is a windows-based application which acts as a communication bridge between the gamers.
This application maintains a centralized repository of all information related to game.

This game provides online service to the users. By using this application, the user can
playgame anywhere with their friends.

Users need to download this application. They can simply open the game and play easily.

1.2. PURPOSE

User can play game from anywhere with their friends and enjoy it.

1.3. SCOPE

(1.) The entire project mainly consists of 2 modules, which are

• Host module

• User module

(2.) Host has the authority to create and delete the room.

(3.) Host Dashboard: In this section, host can start the game.

(4.) User Dashboard: In this section, user can see game settings.

2

1.4. FEASIBILITY STUDY

A feasibility study is a high-level capsule version of the entire System analysis and Design Process. The

study begins by classifying the problem definition. Feasibility is to determine if it’s worth doing. Once

an acceptance problem definition has been generated, the analyst develops a logical model of the system.

A search for alternatives is analyzed carefully. There are 3 parts in feasibility study.

1) Operational Feasibility

2) Technical Feasibility

3) Economical Feasibility

1.4.1 OPERATIONAL FEASIBILITY

Operational feasibility is the measure of how well a proposed system solves the problems, and takes

advantage of the opportunities identified during scope definition and how it satisfies the requirements

identified in the requirements analysis phase of system development.The operational feasibility

assessment focuses on the degree to which the proposed development projects fits in with the existing

business environment and objectives with regard to development schedule, delivery date, corporate

culture and existing business processes.To ensure success, desired operational outcomes must be

imparted during design and development. These include such design-dependent parameters as

reliability, maintainability, supportability, usability, produceibility, disposability, sustainability,

affordability and others. These parameters are required to be considered at the early stages of design if

desired operational behaviours are to be realised. A system design and development requires appropriate

and timely application of engineering and management efforts to meet the previously mentioned

parameters. A system may serve its intended purpose most effectively when its technical and operating

characteristics are engineered into the design. Therefore, operational feasibility is a critical aspect of

systems engineering that needs to be an integral part of the early design phases.

1.4.2 TECHNICAL FEASIBILITY

This involves questions such as whether the technology needed for the system exists, how difficult it will

be to build, and whether the firm has enough experience using that technology. The assessment is based

on outline design of system requirements in terms of input, processes, output, fields, programs and

procedures. The application is the fact that it has been developed on windows XP platform and a high

configuration of 1GB RAM on Intel Pentium Dual core processor. This is technically feasible .The

technical feasibility assessment is focused on gaining an understanding of the present technical resources

of the organization and their applicability to the expected needs of the proposed system. It is an evaluation

of the hardware and software and how it meets the need of the proposed system.

3

1.4.2 ECONOMICAL FEASIBILTY

Establishing the cost-effectiveness of the proposed system i.e. if the benefits do not outweigh the costs

then it is not worth going ahead. In the fast paced world today there is a great need of online social

networking facilities. Thus the benefits of this project in the current scenario make it economically

feasible. The purpose of the economic feasibility assessment is to determine the positive economic

benefits to the organization that the proposed system will provide. It includes quantification and

identification of all the benefits expected. This assessment typically involves a cost/benefits analysis.

1.5 ORGANISATION OF REPORT

1.5.1 INTRODUCTION

This section includes the overall view of the project i.e. the basic problem definition and the general

overview of the problem which describes the problem in layman terms. It also specifies the software

used and the proposed solution strategy.

1.5.2 SOFTWARE REQUIREMENTS SPECIFICATION

This section includes the Software and hardware requirements for the smooth running of the

application.

1.5.3 DESIGN & PLANNING

This section consists of the Software Development Life Cycle model.It also contains technical diagrams
like the Data Flow Diagram and the Entity Relationship diagram..

1.5.4 RESULTS AND DISCUSSION

This section has screenshots of all the implementation i.e. user interface and their

description.

1.5.5 SUMMARY AND CONCLUSION

This section has screenshots of all the implementation i.e. user interface and their

description.

4

CHAPTER 2 :

 SOFTWARE REQUIREMENTS SPECIFICATION

2.1 Hardware Requirements

Table 2.1.1 Hardware Requirements

Number Description

1 PC with 120 GB or more Hard disk.

2 PC with 2 GB RAM

3 PC with Pentium 1 and Above.

2.2 Software Requirements

Table 2.2.1 Software Requirements

Number Description Type

1 Operating System Any Windows

2 Language C#

3 Database PUN (Photon Unity Network)

4 IDE Visual Code

5 Editor Unity3D

5

CHAPTER 3

 DESIGN & PLANNING

3.1 Software Development Life Cycle Model

3.1.1 WATERFALL MODEL
The waterfall model was selected as the SDLC model due to the following reasons:

Requirements were very well documented, clear and fixed. Technology was adequately understood. Simple

and easy to understand and use. There were no ambiguous requirements.

Easy to manage due to the rigidity of the model. Each phase has specific deliverables and a reviewprocess.

Clearly defined stages. Well understood milestones easy to arrange tasks.

3.2 GENERAL OVERVIEW

Health Advisor is powerful, flexible, and easy to use and is designed and developed to deliver real

conceivable benefits to hospitals. More importantly it is backed by reliable and dependable support. Health

Advisor is custom built to meet the specific requirement of the mid and large size hospitals across the

globe.It has a counter that counts calories which will be accessed by users. It contains modules like booking

appointment, managing reports and medical history, patient search, etc.It contains a section named as

contact us queries where you can ask for any doubts related to your appointment booking or rescheduling.

6

3.3 DATA FLOW DIAGRAM

3.3.1 Level 0 DFD

3.3.2 Level 1 DFD

7

3.3.3 Level 2 DFD

8

3.4 USE CASE DIAGRAM

9

3.5 CLASS DIAGRAM

10

3.6 Input /Output Interface

Fig.3.6.1 Interface

Fig.3.6.2 Main Menu

11

Fig.3.6.3 Enemy View

Fig.3.6.4 Game Map

12

CHAPTER 4

IMPLEMENTATION DETAILS

In this Section we will do Analysis of Technologies to use for implementing the project.

4.1 FRONT END

4.1.1 Unity 3d:

• Unity is, simply put, the world’s most popular game engine. It packs a ton of features

together and is flexible enough to make almost any game you can imagine.

• With unrivalled cross-platform features, Unity is popular with both hobby developers and

AAA studios. It’s been used to create games like Pokémon Go, Heath stone, Rim world,

Cuphead, and plenty more.

• While3Dis inthename, Unity3D also packs toolsfor2D game development.

• Programmers love It because of the C# scripting API and built-in Visual Studio integration.

Unity also offers JavaScript as a scripting language and Mono Develop as an IDE to those

who want an alternative to Visual Studio.

• But artists love it as well since it comes with powerful animation tools that make it simple

to create your own 3D cut scenes or build 2D animations from scratch. Nearly anything can

be animated in Unity.

4.2 BACK END

4.2.1 C#:

• C# is a strongly typed object-oriented programming language. C# is open source, simple,

modern, flexible, and versatile. In this article, let’s learn what C# is, what C# can do, and

how C# is different than C++ and other programming languages.

• A programming language on computer science is a language that isused to write software

programs.

• C# is a programming language developed and launched by Microsoft in 2001. C# is a simple,

modern, and object-oriented language that provides modern day developers flexibility and

features to build software that will not only work today but will be applicable for years in

the future.

13

CHAPTER 5

TESTING AND IMPLEMENTATION

The term implementation has different meanings ranging from the conversation of a basic application to
a complete replacement of a computer system. The procedures, however, are virtually the same.

Implementation includes all those activities that take place to convert from old system to new. The new

system may be totally new replacing an existing manual or automated system or it may be major

modification to an existing system. The method of implementation and time scale to be adopted is found

out initially. Proper implementation is essential to provide a reliable system to meet organization

requirement.

5.1 UNIT TESTING

5.1.1 Introduction

In computer programming, unit testing is a software testing method by which individual units of source

code, sets of one or more computer program modules together with associated control data, usage

procedures, and operating procedures, are tested to determine whether they are fit for use. Intuitively, one

can view a unit as the smallest testable part of an application. In procedural programming, a unit could be

an entire module, but it is more commonly an individual function or procedure. In object- oriented

programming, a unit is often an entire interface, such as a class, but could be an individual method. Unit

tests are short code fragments created by programmers or occasionally by white box testers during the

development process. It forms the basis for component testing. Ideally, each test case is independent from

the others. Substitutes such as method stubs, mock objects, fakes, and test harnesses can be used to assist

testing a module in isolation. Unit tests are typically written and run by software developers to ensure that

code meets its design and behaves as intended.

5.1.2 Benefits

The goal of unit testing is to isolate each part of the program and show that the individual parts are correct.

A unit test provides a strict, written contract that the piece of code must satisfy. As a result, it affords several

benefits.

1) Find problems early: Unit testing finds problems early in the development cycle. In test-driven

development (TDD), which is frequently used in both extreme programming and scrum, unit tests are

created before the code itself is written. When the tests pass, that code is considered complete. The same

unit tests are run against that function frequently as the larger code base is developed either as the code is

changed or via an automated process with the build. If the unit tests fail, it is considered to be a bug either

in the changed code or the tests themselves. The unit tests then allow the location of the fault or failure to

be easily traced. Since the unit tests alert the development team of the problem before handing the code

off to testers or clients, it is still early in the development process.

2) Facilitates Change: Unit testing allows the programmer to refactor code or upgrade system libraries

later, and make sure the module still works correctly (e.g., in regression testing). The procedureis to write

test cases for all functions and methods so that whenever a change causes a fault, it can be quickly

identified. Unit tests detect changes which may break a design contract.

14

3) Simplifies Integration: Unit testing may reduce uncertainty in the units themselves and can be used

in a bottom-up testing style approach. By testing the parts of a program first and then testing the sum of

its parts, integration testing becomes much easier.

4) Documentation: Unit testing provides a sort of living documentation of the system. Developers

looking to learn what functionality is provided by a unit, and how to use it, can look at the unit tests to

gain a basic understanding of the unit's interface (API).Unit test cases embody characteristics that are

critical to the success of the unit. These characteristics can indicate appropriate/inappropriate use of a

unit as well as negative behaviors that are to be trapped by the unit. A unit test case, in and of itself,

documents these critical characteristics, although many software development environments do not rely

solely upon code to document the product in development.

5.2 INTEGRATION TESTING

Integration testing (sometimes called integration and testing, abbreviated I&T) is the phase in software

testing in which individual software modules are combined and tested as a group. It occurs after unit testing

and before validation testing. Integration testing takes as its input modules that have been unit tested,

groups them in larger aggregates, applies tests defined in an integration test plan to those aggregates, and

delivers as its output the integrated system ready for system testing.

5.2.1 Purpose

The purpose of integration testing is to verify functional, performance, and reliability requirements placed

on major design items. These "design items", i.e., assemblages (or groups of units), are exercised through

their interfaces using black-box testing, success and error cases being simulated via appropriate parameter

and data inputs. Simulated usage of shared data areas and inter-process communication is tested and

individual subsystems are exercised through their input interface. Test cases are constructed to test whether

all the components within assemblages interact correctly, for example across procedure calls or process

activations, and this is done after testing individual modules, i.e., unit testing. The overall idea is a "building

block" approach, in which verified assemblages are added to a verified base which is then used to support

the integration testing of further assemblages. Software integration testing is performed according to the

software development life cycle (SDLC) after module and functional tests. The cross- dependencies for

software integration testing are: schedule for integration testing, strategy and selection of the tools used

for integration, define the cyclomatic complexity of the software and software architecture, reusability of

modules and life-cycle and versioning management. Some different types of integration testing are big-

bang, top-down, and bottom-up, mixed (sandwich) and risky-hardest. Other Integration Patterns [2] are:

collaboration integration, backbone integration, layer integration, client- server integration, distributed

services integration and high-frequency integration.

15

5.2.1.1 Big Bang

In the big-bang approach, most of the developed modules are coupled together to form a complete software

system or major part of the system and then used for integration testing. This method is very effective for

saving time in the integration testing process. However, if the test cases and their results are not recorded

properly, the entire integration process will be more complicated and may prevent the testing team from

achieving the goal of integration testing. A type of big-bang integration testing is called "usage model

testing" which can be used in both software and hardware integration testing. The basis behind this type

of integration testing is to run user-like workloads in integrated user-like environments. In doing the testing

in this manner, the environment is proofed, while the individual components are proofed indirectly through

their use. Usage Model testing takes an optimistic approach to testing, because it expects to have few

problems with the individual components. The strategy relies heavily on the component developers to do

the isolated unit testing for their product. The goal of the strategy is to avoid redoing the testing done by

the developers, and instead flesh-out problems caused by the interaction of the components in the

environment. For integration testing, Usage Model testing can be more efficient and provides better test

coverage than traditional focused functional integration testing. To be more efficient and accurate, care

must be used in defining the user-like workloads for creating realistic scenarios in exercising the

environment. This gives confidence that the integrated environment will work as expected for the target

customers.

5.2.1.2 Top-down and Bottom-up

Bottom-up testing is an approach to integrated testing where the lowest level components are tested first,

then used to facilitate the testing of higher-level components. The process is repeated until the component

at the top of the hierarchy is tested. All the bottom or low-level modules, procedures or functions are

integrated and then tested. After the integration testing of lower-level integrated modules, the next level

of modules will be formed and can be used for integration testing. This approach is helpful only when all

or most of the modules of the same development level are ready. This method also helps to determine the

levels of software developed and makes it easier to report testing progress in the form of a percentage.

Top-down testing is an approach to integrated testing where the top integrated modules are tested and the

branch of the module is tested step by step until the end of the related module. Sandwich testing is an

approach to combine top-down testing with bottom-up testing.

16

5.3 SOFTWARE VERIFICATION AND VALIDATION

5.3.1 Introduction

In software project management, software testing, and software engineering, verification and validation

(V&V) is the process of checking that a software system meets specifications and that it fulfills its

intended purpose. It may also be referred to as software quality control. It is normally the responsibility

of software testers as part of the software development lifecycle. Validation checks that the product

design satisfies or fits the intended use (high-level checking), i.e., the software meets the user

requirements. This is done through dynamic testing and other forms of review. Verification and

validation are not the same thing, although they are often confused. Boehm succinctly expressed the

difference between

Validation: Are we building the right product?

Verification: Are we building the product, right?
According to the Capability Maturity Model (CMMI-SW v1.1)

Software Verification: The process of evaluating software to determine whether the products of a given
development phase satisfy the conditions imposed at the start of that phase.

Software Validation: The process of evaluating software during or at the end of the development process

to determine whether it satisfies specified requirements.

In other words, software verification is ensuring that the product has been built according to the

requirements and design specifications, while software validation ensures that the product meets the user's

needs, and that the specifications were correct in the first place. Software verification ensures that "you

built it right". Software validation ensures that "you built the right thing". Software validation confirms

that the product, as provided, will fulfill its intended use.

From Testing Perspective

Fault – wrong or missing function in the code.

Failure – the manifestation of a fault during execution.

Malfunction – according to its specification the system does not meet its specified functionality

Both verification and validation are related to the concepts of quality and of software quality assurance.

By themselves, verification and validation do not guarantee software quality; planning, traceability,

configuration management and other aspects of software engineering are required. Within the modeling

and simulation (M&S) community, the definitions of verification, validation and accreditation are

similar:

M&S Verification is the process of determining that a ⦁ computer model, simulation, or federation of

models and simulations implementations and their associated data accurately represent the developer's

conceptual description and specifications.

M&S Validation is the process of determining the degree to which a model, simulation, or federation of

models and simulations, and their associated data are accurate representations of the real world from the

perspective of the intended use(s).

17

5.3.2 Classification of Methods

In mission-critical software systems, where flawless performance is absolutely necessary, formal methods

may be used to ensure the correct operation of a system. However, often for non-mission- critical software

systems, formal methods prove to be very costly, and an alternative method of software V&V must be

sought out. In such cases, syntactic methods are often used.

5.3.3 Test Cases

A test case is a tool used in the process. Test cases may be prepared for software verification and software

validation to determine if the product was built according to the requirements of the user. Other methods,

such as reviews, may be used early in the life cycle to provide for software validation.

5.3.3.1 Test Suit

Admin login test:

Test Case Test Data Test Result Test Report
Blank Username Username Invalid Fill required detail

Invalid Username Username:

ADMIN

Invalid Username

Incorrect

Invalid Password Password: user Invalid Password

Incorrect

Valid Username

and Password

Username: admin

Password: admin

Valid Login

Table 5.3.3.1.1 Admin Login Test

5.4 Black-Box Testing

Black-box testing is a method of software testing that examines the functionality of an application

without peering into its internal structures or workings. This method of test can be applied virtually to

every level of software testing: unit, integration, system and acceptance. It typically comprises most if

not all higher-level testing but can also dominate unit testing as well.

5.4.1 Test Procedures

Specific knowledge of the application's code/internal structure and programming knowledge in general is

not required. The tester is aware of what the software is supposed to do but is not aware of how it does it.

For instance, the tester is aware that a particular input returns a certain, invariable output but is not aware

of how the software produces the output in the first place.

18

5.4.2 Test Cases

Test cases are built around specifications and requirements, i.e., what the application is supposed to do.

Test cases are generally derived from external descriptions of the software, including specifications,

requirements and design parameters. Although the tests used are primarily functional in nature, non-

functional tests may also be used. The test designer selects both valid and invalid inputs and determines

the correct output, often with the help of an oracle or a previous result that is known to be good, without

any knowledge of the test object's internal structure.

5.5 White-Box Testing

White-box testing (also known as clear box testing, glass box testing, transparent box testing, and

structural testing) is a method of testing software that tests internal structures or workings of an application,

as opposed to its functionality (i.e. black-box testing). In white-box testing an internal perspective of the

system, as well as programming skills, are used to design test cases. The tester chooses inputs to exercise

paths through the code and determine the appropriate outputs. This is analogous to testing nodes in a

circuit, e.g. in-circuit testing (ICT). White-box testing can be applied at the unit, integration and system

levels of the software testing process. Although traditional testers tended to think of white-box testing as

being done at the unit level, it is used for integration and system testing more frequently today. It can test

paths within a unit, paths between units during integration, and between subsystems during a system–level

test. Though this method of test design can uncover many errors or problems, it has the potential to miss

unimplemented parts of the specification or missing requirements.

5.5.1 Levels

1) Unit testing: White-box testing is done during unit testing to ensure that the code is working as

intended, before any integration happens with previously tested code. White box testing during unit

testing catches any defects early on and aids in any defects that happen later on after the code is

integrated with the rest of the application and therefore prevents any type of errors later on.

2) Integration testing: White box testing at this level is written to test the interactions of each interface

with each other. The Unit level testing made sure that each code was tested and working accordingly in an

isolated environment and integration examines the correctness of the behavior in an open environment

through the use of white box testing for any interactions of interfaces that are known to the programmer.

3) Regression testing: White-box testing during regression testing is the use of recycled white-box test

cases at the unit and integration testing levels.

19

5.5.2 Procedures

White-box testing's basic procedures involves the tester having a deep level of understanding of the source

code being tested. The programmer must have a deep understanding of the application to know what kinds

of test cases to create so that every visible path is exercised for testing. Once the source code is understood

then the source code can be analyzed for test cases to be created. These are the three basic steps that white-

box testing takes in order to create test cases:

Input involves different types of requirements, functional specifications, detailed designing of documents,

proper source code, security specifications. This is the preparation stage of white box testing to layout all

of the basic information.

Processing involves performing risk analysis to guide whole testing process, proper test plan, execute test

cases and communicate results. This is the phase of building test cases to make sure they thoroughly test

the application the given results are recorded accordingly.
Output involves preparing final report that encompasses all of the above preparations and results.

5.5.3 Advantages

White-box testing is one of the two biggest testing methodologies used today. It has several major

advantages:

Side effects of having the knowledge of the source code are beneficial to thorough testing.

Optimization f code by revealing hidden errors and being able to remove these possible defects. Gives

the programmer introspection because developers carefully describe any new implementation.

Provides traceability of tests from the source, allowing future changes to the software to be easily

captured in changes to the tests.

White box testing gives clear, engineering-based, rules for when to stop testing.

5.5.4 Disadvantages

Although white-box testing has great advantages, it is not perfect and contains some disadvantages:

White-box testing brings complexity to testing because the tester must have knowledge of the program,

including being a programmer. White-box testing requires a programmer with a high level of knowledge

due to the complexity of the level of testing that needs to be done.

On some occasions, it is not realistic to be able to test every single existing condition of the application

and some conditions will be untested.
The tests focus on the software as it exists, and missing functionality may not be discovered.

20

5.6 SYSTEM TESTING

System testing of software or hardware is testing conducted on a complete, integrated system to

evaluate the system's compliance with its specified requirements. System testing falls within the

scope of black-box testing, and as such, should require no knowledge of the inner design of the code

or logic. As a rule, system testing takes, as its input, all of the "integrated" software components that

have passed integration testing and also the software system itself integrated with any applicable

hardware system(s). The purpose of integration testing is to detect any inconsistencies between the

software units that are integrated together (called assemblages) or between any of the assemblages

and the hardware. System testing is a more limited type of testing; it seeks to detect defects both

within the "inter-assemblages" and also within the system as a whole.

System testing is performed on the entire system in the context of a Functional Requirement

Specification(s) (FRS) and/or a System Requirement Specification (SRS). System testing tests not

only the design, but also the behavior and even the believed expectations of the customer. It is also

intended to test up to and beyond the bounds defined in the software/hardware requirements

specification(s).

21

CHAPTER 6

LIMITATIONS

Though we tried our best in developing this game but as limitations are more parts of any

game so are of our game. Some limitations of DOOM are: -

• This game is in developing phase so there are limited levels.

• Avatar is not available, we will make sure to give you some amazing customize avatar.

• We will add powers so the player can shoot the enemy

22

CHAPTER 7

CONCLUSION

DOOM is a adventure game, which is created for fun enjoy by passing unique levels. To play

this game you just have to download it and play it.

23

 REFERENCE

Assets of the game are taken from Unity assets store:

• https://www.youtube.com/watch?v=ME8mHCvRymA&t=535s

• https://www.youtube.com/watch?v=IvGfss4fWEY

https://www.youtube.com/watch?v=ME8mHCvRymA&t=535s
https://www.youtube.com/watch?v=IvGfss4fWEY

