
ATMIYAUNIVERSITY

RAJKOT

A

Report On

CORONA WEBSITE

Under subject of

MAJOR PROJECT

B.TECH Semester– VII

(Computer Engineering)

Submitted by:

1. PUSHTI DEPANI 190002023

2. JANVI GARACH 190002033

Prof. Nirali Borad

(Faculty Guide)

Prof. Tosal M.Bhalodia

(Head of the Department)

Academic Year

(2020-21)

CANDIDATE’SDECLARATION

We hereby declare that the work presented in this project entitled “CORONA

WEBSITE” submitted towards completion of project in 7th Semester of B.Tech.

(Computer Engineering) is an authentic record of our original work carried out under

the guidance of “Prof. Nirali Borad”.

We have not submitted the matter embodied in this project for the award of any

other degree.

Sem:7th

Place:Rajkot

Signature:

Pushti Depani(190002023)

Janvi Garach (190002033)

ATMIYA

UNIVERSITYRAJKOT

CERTIFICATE

Date:

This is to certify that the “CORONA WEBSITE” has been carried out by Pushti

Depani under my guidance in fulfillment of the subject Project in COMPUTER

ENGINEERING (7thSemester) of Atmiya University, Rajkot during the academic

year 2021.

Prof. Nirali Borad Prof.Tosal M.Bhalodia

(Project Guide) (Head of the Department)

ATMIYA

UNIVERSITYRAJKOT

CERTIFICATE

Date:

This is to certify that the “CORONA WEBSITE” has been carried out by Janvi

Garach under my guidance in fulfillment of the subject Project in COMPUTER

ENGINEERING (7th Semester) of Atmiya University, Rajkot during the academic

year 2021.

Prof. Nirali Borad Prof.Tosal M.Bhalodia

(Project Guide) (Head of the Department)

I

ACKNOWLEDGEMENT

We have taken many efforts in this project. However, it would not have been

possible without the kind support and help of many individuals and organizations.

We would like to extend our sincere thanks to all of them.

We are highly indebted to Prof. Nirali Borad for their guidance and constant

supervision as well as for providing necessary information regarding the Major

Project titled “CORONA WEBSITE”. We would like to express our gratitude

towards staff members of Computer Engineering Department, Atmiya University

for their kind co- operation and encouragement which helped us in completion of

this project.

We even thank and appreciate to our colleague in developing the project and people

who have willingly helped us out with their abilities.

Pushti Depani(190002023)

Janvi Garach (190002033)

II

ABSTRACT

Since its emergence in December 2019, corona virus diesease 2019 (COVID-19) has

impacted several countries, affecting more than 90 thousand patients and making it a

global public threat.The project ‘Corona Website’ is based on the database ,object

oriented and networking techniques as there are many areas where we keep the records

in database for which we are using my sql software which is one of the best and easiest

software to keep our information. This project uses node js as the front-end software

which is an Object Oriented Programming and has connectivity with database.

III

INDEX

Sr.

No.
TITLES

Page

No.

 Acknowledgement I

 Abstract II

 Index III

 List of Figures V

 List of Tables VI

1. Introduction 1

 1.1 Introduction 1

 1.2 Purpose 1

 1.3 Scope 1

 1.4 Organization of the report 2

 1.4.1 Introduction 2

 1.4.2 Software Requirements Specification 2

 1.4.3 Design &Planning 2

 1.4.4 Results and Discussion 2

 1.4.5 Summary and conclusion 2

2. Software Requirements Specification 3

 2.1 Hardware Requirement 3

 2.2 Software Requirement 3

3. Design &Planning 4

 3.1 Software Development Life Cycle Model 4

 3.1.1 Waterfall Model 4

 3.2 DFD(data flow diagram) 4

 3.3 Use case Diagram 7

 3.4 Class Diagram 8

 3.5 Input / Output Interface 9

4. Implementation Details 12

 4.1 Front End 12

 4.2 Back End 12

5 Testing and Implementation 13

 5.1 Unit Testing 13

 5.1.1 Introduction 13

IV

 5.1.2 Benefits 13

 5.2 Integration Testing 14

 5.2.1 Purpose 14

 5.3 Software Verification And Validation 14

 5.3.1 Introduction 14

 5.3.2 Classification Of Methods 15

 5.3.3 Test Cases 16

 5.4 Black-Box Testing 16

 5.4.1 Test Procedures 16

 5.4.2 Test Cases 16

 5.5 White-Box Testing 16

 5.5.1 Levels 17

 5.5.2 Procedures 17

 5.5.3 Advantages 17

 5.5.4 Disadvantages 17

 5.6 System Testing 18

6 Limitations 19

7 Conclusion 20

8 References 21

V

LIST OF FIGURES

Figure

No.
Table Title

Page

No.

3.3 Data Flow Diagram 4

 3.3.1 Level-0 4

 3.3.2 Level-1 5

 3.3.3 Level-2 6

 3.4 Use case Diagram 7

 3.5 Class Diagram 8

 3.6 Input/ Output Interface 9

 3.6.1 Home Page 9

 3.6.2 Sign In Page 9

 3.6.3 Sign Up Page 10

 3.6.4 Contact Page 10

 3.6.5 About Us Page 11

 3.6.6 Landing Platform Page 11

VI

LISTOFTABLES

Table

Table Title

Page

No. No.

2.1.1

Hardware Requirements

3

2.2.1 Software Requirements 3

1

INTODUCTION

1.1 INTRODUCTION

This project aims to develop content in the COVID 19 category and also the Respiratory

and Mental Health Sections of Physiopedia as a response to the COVID-19 pandemic.

We intend to populate the site with practical, credible and thought-provoking

information on all aspects of management of individuals with a diagnosis of COVID-

19.

 It maintained a daily-updated dataset of state-level information related to the outbreak,

including counts of the number of cases, tests, hospitalizations, and deaths, the racial and

ethnic demographic breakdowns of cases and deaths, and cases and deaths in long-term

care facilities.

1.2. PURPOSE

Manual hours that need to spend in record keeping and generating reports. The data in a

centralized way which is available to all the event managers. Easy to manage historical data

in database. Participants can register for any happening event from anywhere. Event manager

can keep records of participants. Easily generate certificates for participants and winners.

Certificate mail to particular participants.

1.3. SCOPE

1. The entire project mainly consists of 3 modules, which are

• Admin module

• User module

2. Admin has the authority to add/delete users,grant permission to doctors.

3. Dashboard: In this section, doctor can view his/her own profile and online appointments.

4. Appointment History: In this section, Doctor can see patient’s appointment history.

5. Patients: In this section, doctor can manage patients (Add/Update).

6. Search: In this section, doctor can search patient with the help of patient name and mobile number.

2

1.4 ORGANISATION OF REPORT

1.4.1 INTRODUCTION

This section includes the overall view of the project i.e. the basic problem definition and the

general overview of the problem which describes the problem in layman terms. It also specifies

the software used and the proposed solution strategy.

1.4.2 SOFTWARE REQUIREMENTS SPECIFICATION

This section includes the Software and hardware requirements for the smooth running of the

application.

1.4.3 DESIGN & PLANNING

This section consists of the Software Development Life Cycle model.It also contains technical

diagrams like the Data Flow Diagram and the Entity Relationship diagram..

1.4.4 RESULTS AND DISCUSSION

This section has screenshots of all the implementation i.e. user interface and their

description.

1.4.5 SUMMARY AND CONCLUSION

This section has screenshots of all the implementation i.e. user interface and their

description.

3

CHAPTER 2 :

 SOFTWARE REQUIREMENTS SPECIFICATION

2.1 Hardware Requirements

Table 2.1.1 Hardware Requirements

Number Description

1 PC with 512 GB

2 PC with 4 GB RAM

2.2 Software Requirements

 Table 2.2.1 Software Requirements

Number Description Type

1 Operating System Windows XP / Windows

2 Language NodeJS

3 Database MongoDB

4 IDE Visual studio Code

5 Browser Google Chrome

4

CHAPTER 3

 DESIGN & PLANNING

3.1 SOFTWARE DEVELOPMENT LIFE CYCLE MODEL

3.1.1 WATERFALL MODEL
The waterfall model was selected as the SDLC model due to the following reasons:

Requirements were very well documented, clear and fixed. Technology was adequately understood.

Simple and easy to understand and use. There were no ambiguous requirements.

Easy to manage due to the rigidity of the model. Each phase has specific deliverables and a review

process. Clearly defined stages. Well understood milestones easy to arrange tasks.

3.2 DATA FLOW DIAGRAM

3.2.1 Level 0 DFD

5

3.2.2 Level 1 DFD

6

3.2.3 Level 2 DFD

7

3.3 USE CASE DIAGRAM

8

3.4 CLASS DIAGRAM

9

3.5 Input /Output Interface

Fig.3.5.1 .Home Page

Fig.3.5.2 Sign In Page

10

 Fig.3.5.3 Sign Up Page

 Fig.3.5.4 Contact Page

11

Fig.3.5.5 About Us Page

Fig.3.5.6 Lending Platform Page

12

CHAPTER 4

IMPLEMENTATION DETAILS

 In this Section we will do Analysis of Technologies to use for implementing the project.

4.1 FRONT END

Node.js is a runtime environment used for executing server-side code with higher efficiency and it

presents a larger bandwidth to handle large code payloads.

4.2 BACK END

RDBMS TERMINOLOGY

Before we proceed to explain MySQL database system, let's revise few definitions related to database.

Database: A database is a collection of tables, with related data.

Table: A table is a matrix with data. A table in a database looks like a simple spadsheet.

Column: One column (data element) contains data of one and the same kind, for example the column

postcode.

Row: A row (= tuple, entry or record) is a group of related data, for example the data of one subscription.

Redundancy: Storing data twice, redundantly to make the system faster.

Primary Key: A primary key is unique. A key value cannot occur twice in one table. With a key, you

can find at most one row.

Foreign Key: A foreign key is the linking pin between two tables.

Compound Key: A compound key (composite key) is a key that consists of multiple columns because

one column is not sufficiently unique.

Index: An index in a database resembles an index at the back of a book.

Referential Integrity: Referential Integrity makes sure that a foreign key value always points to an

existing row.

13

CHAPTER 5

TESTING AND IMPLEMENTATION

 The term implementation has different meanings ranging from the conversation of a basic application to

a complete replacement of a computer system. The procedures however, are virtually the same.

Implementation includes all those activities that take place to convert from old system to new. The new

system may be totally new replacing an existing manual or automated system or it may be major

modification to an existing system. The method of implementation and time scale to be adopted is found

out initially. Proper implementation is essential to provide a reliable system to meet organization

requirement.

5.1 UNIT TESTING

5.1.1 Introduction

In computer programming, unit testing is a software testing method by which individual units of source

code, sets of one or more computer program modules together with associated control data, usage

procedures, and operating procedures, are tested to determine whether they are fit for use. Intuitively,

one can view a unit as the smallest testable part of an application. In procedural programming, a unit

could be an entire module, but it is more commonly an individual function or procedure. In object-

oriented programming, a unit is often an entire interface, such as a class, but could be an individual

method. Unit tests are short code fragments created by programmers or occasionally by white box testers

during the development process. It forms the basis for component testing. Ideally, each test case is

independent from the others. Substitutes such as method stubs, mock objects, fakes, and test harnesses

can be used to assist testing a module in isolation. Unit tests are typically written and run by software

developers to ensure that code meets its design and behaves as intended.

5.1.2 Benefits

The goal of unit testing is to isolate each part of the program and show that the individual parts are

correct. A unit test provides a strict, written contract that the piece of code must satisfy. As a result, it

affords several benefits.

1) Find problems early : Unit testing finds problems early in the development cycle. In test-driven

development (TDD), which is frequently used in both extreme programming and scrum, unit tests are

created before the code itself is written. When the tests pass, that code is considered complete. The same

unit tests are run against that function frequently as the larger code base is developed either as the code is

changed or via an automated process with the build. If the unit tests fail, it is considered to be a bug

either in the changed code or the tests themselves. The unit tests then allow the location of the fault or

failure to be easily traced. Since the unit tests alert the development team of the problem before handing

the code off to testers or clients, it is still early in the development process.

2) Facilitates Change : Unit testing allows the programmer to refactor code or upgrade system libraries

at a later date, and make sure the module still works correctly (e.g., in regression testing). The procedure

is to write test cases for all functions and methods so that whenever a change causes a fault, it can be

quickly identified. Unit tests detect changes which may break a design contract.

14

3) Simplifies Integration : Unit testing may reduce uncertainty in the units themselves and can be used

in a bottom-up testing style approach. By testing the parts of a program first and then testing the sum of

its parts, integration testing becomes much easier.

4) Documentation : Unit testing provides a sort of living documentation of the system. Developers

looking to learn what functionality is provided by a unit, and how to use it, can look at the unit tests to

gain a basic understanding of the unit's interface (API).Unit test cases embody characteristics that are

critical to the success of the unit. These characteristics can indicate appropriate/inappropriate use of a

unit as well as negative behaviors that are to be trapped by the unit. A unit test case, in and of itself,

documents these critical characteristics, although many software development environments do not rely

solely upon code to document the product in development.

5.2 INTEGRATION TESTING

Integration testing (sometimes called integration and testing, abbreviated I&T) is the

phase in software testing in which individual software modules are combined and tested as a group. It

occurs after unit testing and before validation testing. Integration testing takes as its input modules that

have been unit tested, groups them in larger aggregates, applies tests defined in an integration test plan to

those aggregates, and delivers as its output the integrated system ready for system testing.

5.2.1 Purpose

The purpose of integration testing is to verify functional, performance, and reliability requirements

placed on major design items. These "design items", i.e., assemblages (or groups of units), are exercised

through their interfaces using black-box testing, success and error casesbeing simulated via appropriate

parameter and data inputs. Simulated usage of shared data areas and inter-process communication is

tested and individual subsystems are exercised through their input interface. Test cases are constructed to

test whether all the components within assemblages interact correctly, for example across procedure calls

or process activations, and this is done after testing individual modules, i.e., unit testing. The overall idea

is a "building block" approach, in which verified assemblages are added to a verified base which is then

used to support the integration testing of further assemblages.Software integration testing is performed

according to the software development life cycle (SDLC) after module and functional tests. The cross-

dependencies for software integration testing are: schedule for integration testing, strategy and selection

of the tools used for integration, define the cyclomatical complexity of the software and software

architecture, reusability of modules and life-cycle and versioningmanagement.Some different types of

integration testing are big-bang, top-down, and bottom-up, mixed (sandwich) and risky-hardest. Other

Integration Patterns[2] are: collaboration integration, backbone integration, layer integration, client-

server integration, distributed services integration and high-frequency integration.

5.3 SOFTWARE VERIFICATION AND VALIDATION

5.3.1 Introduction

In software project management, software testing, and software engineering, verification and validation

(V&V) is the process of checking that a software system meets specifications and that it fulfills its

15

intended purpose. It may also be referred to as software quality control. It is normally the responsibility

of software testers as part of the software development lifecycle. Validation checks that the product

design satisfies or fits the intended use (high-level checking), i.e., the software meets the user

requirements.This is done through dynamic testing and other forms of review.Verification and validation

are not the same thing, although they are often confused. Boehm succinctly expressed the difference

between

Validation : Are we building the right product?

Verification : Are we building the product right?

According to the Capability Maturity Model (CMMI-SW v1.1)

Software Verification: The process of evaluating software to determine whether the products of a given

development phase satisfy the conditions imposed at the start of that phase.

Software Validation: The process of evaluating software during or at the end of the development process

to determine whether it satisfies specified requirements.

In other words, software verification is ensuring that the product has been built according to the

requirements and design specifications, while software validation ensures that the product meets the

user's needs, and that the specifications were correct in the first place. Software verification ensures that

"you built it right". Software validation ensures that "you built the right thing". Software validation

confirms that the product, as provided, will fulfill its intended use.

From Testing Perspective

Fault – wrong or missing function in the code.

Failure – the manifestation of a fault during execution.

Malfunction – according to its specification the system does not meet its specified functionality

Both verification and validation are related to the concepts of quality and of software quality assurance.

By themselves, verification and validation do not guarantee software quality; planning, traceability,

configuration management and other aspects of software engineering are required.Within the modeling

and simulation (M&S) community, the definitions of verification, validation and accreditation are

similar:

M&S Verification is the process of determining that a ⦁ computer model, simulation, or federation of

models and simulations implementations and their associated data accurately represent the developer's

conceptual description and specifications.

M&S Validation is the process of determining the degree to which a model, simulation, or federation of

models and simulations, and their associated data are accurate representations of the real world from the

perspective of the intended use(s).

5.3.2 Classification of Methods

In mission-critical software systems, where flawless performance is absolutely necessary, formal

methods may be used to ensure the correct operation of a system. However, often for non-mission-

critical software systems, formal methods prove to be very costly and an alternative method of software

V&V must be sought out. In such cases, syntactic methods are often used.

16

5.3.3 Test Cases

A test case is a tool used in the process. Test cases may be prepared for software verification and

software validation to determine if the product was built according to the requirements of the user. Other

methods, such as reviews, may be used early in the life cycle to provide for software validation.

5.4 Black-Box Testing

Black-box testing is a method of software testing that examines the functionality of an application

without peering into its internal structures or workings. This method of test can be applied virtually to

every level of software testing: unit, integration, system and acceptance. It typically comprises most if

not all higher level testing, but can also dominate unit testing as well.

5.4.1 Test Procedures

Specific knowledge of the application's code/internal structure and programming knowledge in general is

not required. The tester is aware of what the software is supposed to do but is not aware of how it does it.

For instance, the tester is aware that a particular input returns a certain, invariable output but is not aware

of how the software produces the output in the first place.

5.4.2 Test Cases

Test cases are built around specifications and requirements, i.e., what the application is supposed to do.

Test cases are generally derived from external descriptions of the software, including specifications,

requirements and design parameters. Although the tests used are primarily functional in nature, non-

functional tests may also be used. The test designer selects both valid and invalid inputs and determines

the correct output, often with the help of an oracle or a previous result that is known to be good, without

any knowledge of the test object's internal structure.

5.5 White-Box Testing

White-box testing (also known as clear box testing, glass box testing, transparent box testing, and

structural testing) is a method of testing software that tests internal structures or workings of an

application, as opposed to its functionality (i.e. black-box testing). In white-box testing an internal

perspective of the system, as well as programming skills, are used to design test cases. The tester chooses

inputs to exercise paths through the code and determine the appropriate outputs. This is analogous to

testing nodes in a circuit, e.g. in-circuit testing (ICT). White-box testing can be applied at the unit,

integration and system levels of the software testing process. Although traditional testers tended to think

of white-box testing as being done at the unit level, it is used for integration and system testing more

frequently today. It can test paths within a unit, paths between units during integration, and between

subsystems during a system–level test. Though this method of test design can uncover many errors or

problems, it has the potential to miss unimplemented parts of the specification or missing requirements.

17

5.5.1 Levels

1) Unit testing : White-box testing is done during unit testing to ensure that the code is working as

intended, before any integration happens with previously tested code. White-box testing during unit

testing catches any defects early on and aids in any defects that happen later on after the code is

integrated with the rest of the application and therefore prevents any type of errors later on.

2) Integration testing : White-box testing at this level are written to test the interactions of each

interface with each other. The Unit level testing made sure that each code was tested and working

accordingly in an isolated environment and integration examines the correctness of the behaviorin an

open environment through the use of white-box testing for any interactions of interfaces that are known

to the programmer.

3) Regression testing : White-box testing during regression testing is the use of recycled white-box test

cases at the unit and integration testing levels.

5.5.2 Procedures

White-box testing's basic procedures involves the tester having a deep level of understanding of the source

code being tested. The programmer must have a deep understanding of the application to know what kinds

of test cases to create so that every visible path is exercised for testing. Once the source code is understood

then the source code can be analyzed for test cases to be created. These are the three basic steps that white-

box testing takes in order to create test cases:

Input involves different types of requirements, functional specifications, detailed designing of documents,

proper source code, security specifications. This is the preparation stage of white-box testing to layout all

of the basic information.

Processing involves performing risk analysis to guide whole testing process, proper test plan, execute test

cases and communicate results. This is the phase of building test cases to make sure they thoroughly test

the application the given results are recorded accordingly.

Output involves preparing final report that encompasses all of the above preparations and results.

5.5.3 Advantages

White-box testing is one of the two biggest testing methodologies used today. It has several major

advantages:

Side effects of having the knowledge of the source code is beneficial to thorough testing.

Optimization f code by revealing hidden errors and being able to remove these possible defects.

Gives the programmer introspection because developers carefully describe any new implementation.

Provides traceability of tests from the source, allowing future changes to the software to be easily captured

in changes to the tests.

White box testing give clear, engineering-based, rules for when to stop testing.

5.5.4 Disadvantages

Although white-box testing has great advantages, it is not perfect and contains some disadvantages:

White-box testing brings complexity to testing because the tester must have knowledge of the program,

18

including being a programmer. White-box testing requires a programmer with a high level of knowledge

due to the complexity of the level of testing that needs to be done.

On some occasions, it is not realistic to be able to test every single existing condition of the application

and some conditions will be untested.

The tests focus on the software as it exists, and missing functionality may not be discovered.

5.6 SYSTEM TESTING

System testing of software or hardware is testing conducted on a complete, integrated system to

evaluate the system's compliance with its specified requirements. System testing falls within the

scope of black-box testing, and as such, should require no knowledge of the inner design of the code

or logic. As a rule, system testing takes, as its input, all of the "integrated" software components

that have passed integration testing and also the software system itself integrated with any

applicable hardware system(s). The purpose of integration testing is to detect any inconsistencies

between the software units that are integrated together (called assemblages) or between any of the

assemblages and the hardware. System testing is a more limited type of testing; it seeks to detect

defects both within the "inter-assemblages" and also within the system as a whole.

System testing is performed on the entire system in the context of a Functional Requirement

Specification(s) (FRS) and/or a System Requirement Specification (SRS). System testing tests not

only the design, but also the behavior and even the believed expectations of the customer. It is also

intended to test up to and beyond the bounds defined in the software/hardware requirements

specification(s).

19

CHAPTER 6

 LIMITATIONS

Though we tried our best in developing this system but as limitations are mere parts of any system so are

of our system. Some limitations of health advisor are:-

• Online payment is not available at this version

• Data delete and edit system is not available for all section

• User account verification by mobile sms is not available in this system

• Loss of data due to mismanagement.

20

CHAPTER 7

 CONCLUSION

Health Advisor as an industry as an infant stage. It has long way to go. It has a bright

future. This industry is growing at reasonably quick rate. There should also be a set of

standard for the events that are being conducted. In the near future, the companies form a

network associations in different stages in order to expand the industry so that events can

be held professionally.

21

CHAPTER 8

 REFERENCES

Google browser

https://www.quora.com

https://www.w3schools.com

https://www.tutorialspoint.com

https://www.javatpoint.com/nodejs-tutorial

https://www.quora.com/
https://www.w3schools.com/
https://www.tutorialspoint.com/
https://www.javatpoint.com/nodejs-tutorial

