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CHAPTER-4 

 

4 Proposed Methodology 

 

4.1 Introduction 

 

In this chapter, we delve into the heart of our proposed methodology for addressing the 

classification problem at hand, which leverages the power of transfer learning. The 

introduction provides an overview of the primary architectural components we will be 

working with, namely the VGG16 and ResNet50 architectures, both in their original forms 

and as modified models tailored to our specific requirements.  

 

The framework of the proposed model for classification of real and retouching faces is 

described in detailed first. The vgg16 model detailed architecture is explained and the 

modified architecture is introduced later. The second widely used CNN model, namely 

ResNet50 and its acrhitecture is explained, followed by modified version of the CNN which 

is used for this research task.  

 

4.2 Proposed Methodology using Transfer Learning 

 

Transfer Learning can be used in variety of fields like medical, weather reporting, 

forecasting, road map detection, image retouching to classify the deceases, or cancer or 

tumors, sky conditions, map detection and to detect forgery on images, etc. As compared to 

ML & DL approach, TL(transfer learning) approach are faster and trained more accurately 
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than other traditional methods like manual grading and other machine vision techniques or 

other classifiers.[19] there are several challenges ,when using DL(Deep Learning) model to 

detect retouching on facial images. 1. Need of large facial dataset containing real and 

retouched face images 2. Proper labelled data 2.large amount of images for training the 

mdoel for accurately detecting retouched images this is difficult to obtain such a large facial 

dataset. the DL models are prone to overfitting too which leads to give biased output. Using, 

TL, all these challenges are overcome and optimal detection accuracy can be achieved. TL 

offers following advantages in ML and DL tasks[20],  

 

1. Reduced Training Time: Transfer learning allows you to leverage pre-trained 

models that have been trained on large datasets. By using a pre-trained model as a 

starting point, you can save a significant amount of time and computational 

resources that would otherwise be required to train a model from scratch. 

2. Lower Data Requirements: Training deep learning models often requires large 

amounts of labeled data. Transfer learning enables you to overcome this challenge 

by using the knowledge gained from a source task (where data may be abundant) to 

improve the performance on a target task with limited data. This is particularly 

beneficial in scenarios where collecting large amounts of labeled data is difficult or 

expensive. 

3. Improved Generalization: Transfer learning helps improve the generalization 

capabilities of a model. Pre-trained models have learned useful features from a 

diverse range of data, which can be transferred to a new task. This transfer of 

knowledge allows the model to extract relevant features from the data more 

effectively, even when the target task has different characteristics or a smaller 

dataset. 

4. Avoiding the "Cold Start" Problem: When starting a new machine learning project, 

especially with limited data, it can be challenging to train an accurate model from 

scratch. Transfer learning helps overcome the "cold start" problem by providing a 

well-initialized model that has already learned useful representations from a 

different but related task. 

5. Effective in Domain Adaptation: Transfer learning is highly useful in domain 

adaptation scenarios, where the distribution of the source data differs from the target 

data. By using a pre-trained model on a source domain and fine-tuning it on the 
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target domain, transfer learning enables the model to adapt and perform well in the 

target domain. 

6. Useful for Small-Scale Deployment: In resource-constrained environments, such as 

edge devices or mobile applications, transfer learning allows you to deploy efficient 

models that consume less computational power and memory. By leveraging pre-

trained models and fine-tuning them on specific tasks, you can achieve good 

performance with fewer resources. 

 

 

FIGURE 4.1: Flow diagram for detection and classification of retouched images using Fine-tuned pre-

trained CNNs  

 

The steps for proposed methodology is shown in fig. 4.1. This approach enables the 

utilization of knowledge acquired by the pre-trained model on a sizable dataset and its 

adaptation to the particular task at hand. the steps involved in this process are as follows: 

 

1. Dataset Preparation: The standard dataset ND-IIITD retouched dataset is divided 

into training, validation, and test subsets. To mitigate the risk of overfitting, data 

augmentation techniques are applied, including horizontal flipping and a 0.20-

degree rotation, generating artificially enhanced yet authentic images during training 
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phase. 

2. Pre-processing on images: VGG16 and ResNet50 accepts images of size 224x224. 

Hence, data transformation is done over the training and validation dataset to rescale 

and fit the images as per the pre-trained models. The images are then divided into 

batch of 32.  

3. Modify the Base model: VGG16/ResNet50 pre-trained model is loaded using a 

deep learning framework such as Keras or TensorFlow. The top layers of the pre-

trained models are removed and one FC layer is build up by adding Global average 

pooling, a dropout and a dense layer. 

4. Compile & Fit: The new model is trained using training set and evaluate its 

performance on the validation set. The convolution layers of pre-trained model are 

freeze during first training and only custom added FC layer will learn the feature 

maps from the given dataset. The Adam optimizer is used during this training phase 

rather than the SGD algorithm. 

5. Fine-tune the new model: Since the VGG16/ResNet50 model was pre-trained on a 

large dataset, it already has learned many features that can be used for image 

classification. However, we fine-tune the model by unfreezing some top convolution 

layers and re-train the new model. Hence, the weight of Custom FC layers and 

unfreeze layers are updated during fine- tuning, which improves the performance of 

the model. During this training, either Adam or RMSprop optimizer is used and the 

performance is compared based on the selected optimizer.  

6. Test the new model: The accuracy of the model is tested on the test dataset. the 

class of the images of test dataset are predicted and normalized the values of 

prediction near to one of the values 0 or 1 using sigmoid function. As it is binary 

classification, threshold is defined to determine the predicted values as either 0 or 1. 

 

4.3 VGG16 model architecture  
 

VGG-16 is a network of 16 levels that was proposed by the Visual Geometric Group, an 

organisation based at Oxford University. These 16 Covolution layers do contain the 

trainable parameters.There are further layers, such as the Max pool layer, but they do not 

contain any trainable parameters. This architecture, created by Simonyan and Zisserman, 

came in first place in the 2014 Visual Recognition Challenge, also known as ILSVRC-2014. 
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The top-1 error and top-5 error achieved by the VGG16 model when trained on an ImagNet-

large scale dataset, is 28.1% and 9.3% respectively[21].  

 

 

FIGURE 4.2: Architecture of VGG16 ,a CNN model. The FC layers of base model (highlighted by 

yellow rectangle). Modified VGG16 model (highlighted by blue rectangle)  

 

The key characteristic of VGG16 is its use of a series of small 3x3 convolutional filters 

stacked on top of each other, which allows the network to learn hierarchical features at 

different levels of abstraction. The architecture consists of 16 layers, including 13 

convolutional layers and 3 fully connected layers. The hierarchical structure of VGG16 

model is shown in below table 3. The layers are organized into blocks, and the network 

architecture can be summarized as follows: 

 Input Layer: The network takes an input image with a fixed size (e.g., 224x224 

pixels). 

 Convolutional Blocks: The network consists of five sets of convolutional layers, 

each followed by a max pooling layer. Each convolutional layer applies a 3x3 filter 

and stride of 1 to the input feature maps, followed by a ReLU activation function to 

introduce non-linearity. The number of filters in each convolutional layer increases 

as we go deeper into the network. 

 Max Pooling Layers: After each set of convolutional layers, a max pooling layer 

with a 2x2 window and a stride of 2 is applied to reduce the spatial dimensions of 

the feature maps and help in capturing more robust features. 

 Fully Connected (FC) Layers: After the last max pooling layer, the network has 
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three fully connected layers. The fully connected layers act as a classifier, taking the 

high-level features learned by the convolutional layers and transforming them into 

class probabilities. The last fully connected layer has units equal to the number of 

classes which are 1000 in ImageNet dataset and uses the softmax activation function 

to produce class probabilities. 

4.3.1 Modified VGG16 Architecture 

 

In the modification of the VGG16 model, several key changes were made to adapt it for a 

specific classification task, as shown in fig 4.2. Firstly, the top layers of the model, which 

typically consist of fully connected layers, were removed. This step is often taken to prepare 

the model for custom classification. Next, a single fully connected (FC) layer was 

introduced to the architecture. This added layer helps in learning task-specific features from 

the extracted representations. In addition to the FC layer, global average pooling was 

incorporated into the network. Global average pooling reduces the spatial dimensions of the 

feature maps, which can enhance model generalization and reduce overfitting. To further 

prevent overfitting, a dropout rate of 0.2 was applied after the global average pooling layer. 

Dropout randomly deactivates a portion of neurons during training, promoting better 

generalization. Finally, the newly introduced FC layer was configured with 2 output 

neurons, aligning it with the binary classification nature of the task, indicating two distinct 

classes or categories. This modification ensures that the model's final output is compatible 

with the specific classification problem at hand.  

 

4.4 ResNet50 Model Architecture 
 

ResNet-50 is a deep convolutional neural network architecture that belongs to the family of 

Residual Networks (ResNets) [35]known for its exceptional performance in image 

classification and various computer vision tasks, primarily due to its ability to train very 

deep neural networks effectively. The ResNet-50 model architecture involves following 

layers. 

1. Input Layer: The model takes an input image of size typically 224x224 pixels with 

three color channels (RGB). 
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2. Convolutional Layers: The initial convolutional layer performs a 7x7 convolution 

with 64 filters, followed by a 3x3 max-pooling layer. This stage helps extract basic 

features from the input image. 

3. Residual Blocks: The core innovation of ResNet is the residual block. Residual 

blocks enable training of extremely deep networks without the vanishing gradient 

problem. Each residual block consists of several convolutional layers, with shortcut 

connections that skip one or more layers. The residual blocks come in different 

variations, but in ResNet-50, there are four types: 

4. A bottleneck layer with 1x1, 3x3, and 1x1 convolutional layers, which reduces 

computational complexity. 

5. The number of filters in each block gradually increases, creating a pyramid-like 

structure. The convolution layer in each bottleneck layer with filter size is shown in 

table 3. 

6. Global Average Pooling (GAP): After the convolutional layers, ResNet-50 uses 

global average pooling to reduce the spatial dimensions of the feature maps to a 1x1 

size. This operation computes the average value of each feature map, producing a 

fixed-size vector regardless of the input size. 

7. Fully Connected Layer: A final fully connected layer with 1000 neurons (for the 

original ImageNet challenge with 1000 classes) is added for classification. The 

softmax activation function is typically applied to generate class probabilities. 

8. Output Layer: The output layer produces the final classification predictions. Which 

is either 0 (fake/retouched) or 1(real) for facial retouching task. 

4.4.1 Modified ResNet50 

 

In the modification made to the ResNet50 model, the top layers, including the fully 

connected layers, have been removed. Instead, a single new fully connected (FC) layer has 

been introduced, serving as a bridge between the existing architecture and the final 

classification layer. This new FC layer is followed by global average pooling, which helps 

in reducing spatial dimensions while preserving essential feature information. Additionally, 

a dropout layer with a dropout rate of 0.2 has been incorporated before the newly added FC 

layer to prevent overfitting and enhance generalization. 
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TABLE 4.1: Layer wise architecture of ResNet50 base model  

Layer Name Output Size Kernel Size Filters Repetition(i) 

Conv1 112x112 7x7 64 x 0 

 3x3 Max pool, stride 2 

Conv2.i 56x56 1x1 

3x3 

1x1 

64 

64 

256 

x 3 

Conv3.i 28x28 1x1 

3x3 

1x1 

128 

128 

512 

x 3 

Conv4.i 14x14 1x1 

3x3 

1x1 

256 

256 

1024 

x 4 

Conv5.i 7x7 1x1 

3x3 

1x1 

512 

512 

2048 

x 6 

 Avg. Pooling 1x1x2048 

Dense 1x1x1000 

 

4.5 Fine-tuned proposed CNN models 

 

Fine-tuning in transfer learning is a technique commonly used in machine learning and deep 

learning, particularly in the context of neural networks and natural language processing. 

Fine-tuning is widely used in various applications, including image classification, object 

detection, text classification, sentiment analysis, machine translation etc. Although 

wonderful, pre-trained language models are not by nature task-specific. These general-

purpose models are modified through fine-tuning to carry out specific tasks more precisely 

and successfully[36]. The pre-trained model is needed to fine-tuned to comprehend the 

intricacies of that unique job and domain when we come across a particular classification 

task, such as retouching detection. It involves modifying the pre-trained model by updating 

its weights through additional training on your target task. This process helps the model to 

learn task-specific patterns and information. During fine-tuning, a few layers are replaced 

or added at the end of the pre-trained model to match the number of classes or the specific 

requirements of the task. Fine-tuning offers several advantages, such as faster convergence, 

lower data requirements, and better performance. Since the model has already learned 

general features and representations from the pre-training, it often requires fewer training 

examples to adapt to the new task. This is especially valuable when working with limited 

data or computational resources[37]. 

VGG16 and ResNet50 models are pre-trained on different large scale datasets. Hence, based 

on the training over specific dataset, the models will learn the new features for classification 
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task. Out of all weights (i.e. the large publically available datasets), ImageNet weight of the 

models is selected in this research for retouching classification.  

.  

Before fine-tuning, the CNN model has a fixed set of parameters. These parameters are 

learned from ImageNet data and are generalized to capture various low-level and high-level 

features in images. During initial training of the new CNN model, all convolution layers 

except FC layers are freeze. Hence, the weight of only newly added FC layer is updated. 

During fine tuning, few convolution layers of the new CNN model are made unfreeze and 

the weight of FC layers including unfreeze layers is updated. This process will allow more 

parameters to be trained for and learned new features for classification task. A summary of 

trainable and non-trainable parameters for modified VGG16 and ResNet50 model is given 

in Table 4.2. The table reflects out of total parameters of the respective model, only few 

convolution layers are involved in weight updating task. And these are the parameters which 

are highly involved for reducing the training loss of the model. 

 

TABLE 4.2: Summary of parameters which are being updated during training process of the models  

Model 
Trainable parameters Non-trainable parameters Total 

Parameters Before fine-tune After fine-tune Before fine-tune After fine-tune 

Vgg16 513 7079937 14714688 7635264 14715201 

ResNet50 2049 19454977 2049 19454977 23589761 

 

4.6 Experimental Setup 
 

The proposed methods were implemented using the Python programming language within 

the Google Colab environment, leveraging GPU runtime capabilities. These 

implementations were applied to two datasets, namely the ND-IIITD and MDRF retouched 

faces datasets (Dataset 1 & Dataset2 respectively), utilizing the TensorFlow-Keras 

framework and other freely available libraries like pandas, matplotlib, cv2, numpy, seaborn, 

OpenCV etc. A total of 16 experiments were conducted for each dataset, and the ideal model 

was selected based on its performance with the most suitable split ratio for the retouching 

classification task. The hyper parameters are set as per Table 4.3.  

 

For the initial training, the Adam optimizer is employed. This optimizer is chosen for its 

efficiency in optimizing the model's weights during the initial phase. The Hyperparameters 
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like batch size, learning rate and epoch are set to 32, 0.001 and 10 respectively. During fine-

tuning, two different optimizers, Adam and RMSprop, are used one by one for each model 

along with 32 image size, learning rate set to be 0.0001 and epoch 20(for VGG16) and 10 

(foe ResNet50). The Adam optimizer is applied to fine-tune the model's weights. It is known 

for its adaptive learning rates and is effective in addressing the nuances of the training data, 

potentially leading to better convergence during fine-tuning[38]. The RMSprop optimizer 

is also employed during fine-tuning as an alternative to Adam. It is adaptive like Adam but 

employs a slightly different update rule for the learning rates. This choice allows for a 

comparison of the optimizers' performance during fine-tuning.  

The effect of using different optimizers during fine-tuning is analyzed. This analysis helps 

us understand how the choice of optimizer impacts the model's performance during this 

phase. Specifically, it evaluates how the loss and training accuracy of the model change 

when using Adam or RMSprop for fine-tuning. This comparison is essential to identify 

which optimizer is more effective in updating the weights of both the unfrozen 

convolutional layers and the newly added fully connected layers during fine-tuning. 

 

TABLE 4.3: Summary of Hyper Parameters which are set during learning phase of the proposed TL 

models  

TL Model 

Training Mode 

VGG16/ResNet50 

Parameters 

 

Value 

 

 

 

Initial Training 

Batch Size 32 

Image size 224x224 

LR(Learning Rate) 0.001 

Loss Cross Entropy 

Epoch 10 

Optimizer Adam 

β1 0.9 

β2 0.999 

 

 

 

Fine-Tuning 

Batch Size 32 

Image size 224x224 

LR(Learning Rate) 0.0001 

Loss Cross Entropy 

Epoch 10(VGG16) / 10(ResNet50) 

Optimizer Adam / RMSprop 

Momentum 0 

 

4.7 Evaluation Matric 
 

A confusion matrix is a fundamental tool in image classification and machine learning in 

general. It provides a clear and concise summary of how well a classification model is 

performing. In image classification, it helps us understand how many images were correctly 
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classified into their respective categories and how many were misclassified. The confusion 

matrix is typically organized into a grid, where the rows represent the true classes, and the 

columns represent the predicted classes[39]. The confusion metrics shows the value of TP 

(true Positive), True Negative(TN), FP(False Positive), FN(False Negative), as shown in fig 

4.3. These values allow us to calculate various performance metrics, such as accuracy, 

precision, recall, and F1-score, which are essential for assessing the effectiveness of an 

image classification model[40]. By examining the elements of the confusion matrix, we can 

gain insights into the model's strengths and weaknesses, making it a critical tool for model 

evaluation and improvement. 

 

 

 

FIGURE 4.3: Understanding of Confusion Matric 

 

Precision, is number of correctly identified real images from all images identified as real. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑥

𝑥 + 𝑦
 

(4.1) 

 

Recall, is number of correctly identified real images from all actual real images. 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑥

𝑥 + 𝑧
 

(4.2) 

 

Here, 𝑥= 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝑦 = 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝑧 = 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

F1-score, is average value of precision and recall. 

 
𝐹1_score =  

2 ∗ (𝑃 ∗  𝑅)

𝑃 + 𝑅
 

(4.3) 
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Acc(Accuracy), is the ratio of correctly identified samples to the total predicted samples.  

 
𝐴𝑐𝑐 =  

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠
 

(4.4) 

 

Receiver Operating Characteristic Curve (ROC), is a graph that displays how well a 

classification model performs across both classes. It gives the relation between TPR (True 

Positive Rate) and FPR (False Positive Rate). 

 

 TPR =  
𝑥

𝑥 + 𝑧
 

(4.5) 

 FPR =  
𝑧

y + 𝑧
 

 

(4.6) 

4.8 Summary  

 

This chapter provides an in-depth understanding of the VGG16 and ResNet50 architectures, 

their modifications for specific tasks, and the powerful technique of fine-tuning for transfer 

learning. These concepts are essential in deep learning and computer vision, enabling us to 

harness the strengths of pre-trained models while tailoring them to specific applications. 

The hyper parameters set considered during training process are briefly explained based on 

the our classification task and literature reviews. Hence, we can make informed decisions 

about which optimizer to use during the fine-tuning phase, considering its impact on loss 

reduction and training accuracy, and choose the most effective approach for adapting the 

pre-trained models (VGG16 and ResNet50) to the target task. 

 

 

 

 

 


