Chapter 2

Literature Review

The information on the literature of SNEDDS was obtained from various search engines such as Pubmed, Scopus, Science Direct, PMC, Google Scholar, Web of Sciences, ChemWeb, and so on. Highly reputed and peer review Journals/Publications were reviewed for data collection. Extensive literature search was done on SNEDDS using SNEDDS, SMEDDS, self-emulsifying formulations, LBDDS, in vitro lipolysis and many others as keywords. Following is a brief review of various approaches by researchers for increasing solubility and bioavailability of drugs by employing SNEDDS approach.

2.1. Review of Work done on Benidipine

Objective	Description	Conclusion	Reference
To design a	The method of	The formulation (F4) that is	Mishra, V.
mucoadhesive tablet of	preparation is direct	made up of the drug	V. B. K.,
Benidipine to control	compression by	carbopol 934P and HPMC	Sethy, S.,
the release of	employing a simplex	in a ratio of 1:6.5:18.5	& Rath, A.
Benidipine employing	lattice design.	exhibited a strong Bucco	K., 2015
Carbopol 934P and		adhesive force and maximal	[100]
НРМС К4М.		drug release of 99.0219% in	
		8 hours.	
The purpose of the	Using the first derivative	The linearity of the method	Karasaka,
investigation was to	spectrophotometric	that was used was in the	A., 2015
create a simple and	method, the difference	range of 0.2–2.0 μg/mL.	[101]
quick first-order	between two extremum	The limits of detection and	
derivative	values (peak-to-peak	quantification were 0.58	
spectrophotometric	amplitudes) is	and 1.73 µg/mL,	
method for the	230.2/241.5 nm. The	respectively.	
measurement of	suggested method was		

benidipine	verified in accordance		
hydrochloride in pure	with the ICH guidelines.		
form and			
pharmaceutical			
products.			
To develop an	The tablets were made	Formulation F5, which	Prusty,
extended-release	using the direct	includes HPMC polymer	A.,
matrix tablet of	compression technique	along with eudragit RS 100,	Mishra,
benidipine	and the agglomerative	demonstrates prolonged	A. K., &
hydrochloride (BH) by	phase of comminution	drug release because of the	Kumar
employing hydrophilic	(APOC).	swelling of HPMC	Gupta,
polymers,		polymer, and the release	B., 2018
hypromellose		pattern could continue for	[102]
(hydroxyl propyl		more than 18 h. The APOC	
methyl cellulose		approach keeps the	
[HPMC] K100M),		formulation stable and	
polyacrylate polymers,		enhances the aqueous	
eudragit RL100 and		solubility of drugs.	
eudragit RS100, and			
also chitosan.			
To create an easy,	The UV	The linearity of the	Manish
quick, accurate, robust,	spectrophotometric	procedure was shown to be	Kumar,
and economical	method was designed	good for the concentration	Ajay
spectrophotometric	using methanol as a	range of 3 to 18 µg/ml, with	Kumar
technique for the	solvent, and a	a high correlation	Shukla,
quantification of	wavelength of 236 nm	coefficient value of 0.9999.	Ram
benidipine	was selected as the	The limits of detection and	Singh
hydrochloride by	absorbance maximum	quantification were	Bishnoi,
implementing quality	(max).	determined to be 0.20	

by design (QbD)"		μg/ml and 0.60 μg/ml,	C. P. Jain
approach.		respectively. The overall	2018
		average recovery was	[103]
		determined to be 100% with	
		a low percentage relative	
		standard deviation (%	
		RSD) value.	
To prepare and	Microballoons of	The produced batches of the	Satao, J.,
develop	benidipine	microballoons exhibited an	Pallavi
gastroretentive	hydrochloride were	excellent drug entrapment	Wadaskar
microballoons to	produced by emulsion	value of 77.28%; the	, Aman
extend the floating	solvent diffusion	buoyancy was determined	Bais,
duration as well as	utilizing Eudragit RS100	to be 84.25%; and the yield	Sushant
sustain the drug	and Eudragit S100 as the	was reported to be 90.41.	Bhambur
content in the blood for	coating polymers.	The cumulative drug	kar, 2020
a prolonged period of		release profile	[104]
time.		demonstrated sustained	
		drug release actions for	
		greater than 24 hours	
		because the drug release	
		percentage remained at	
		83.51% in 24 hours.	
The purpose of the	Process was verified	The linearity of the	Savkare
present research was	based on International	developed method was	A. D.,
the application of	Conference on	demonstrated throughout the	Kauthale
quality by design	Harmonization (ICH)	concentration range of 50-	Jayshri
(QbD) methodology to	Q2 (R1) requirements	150 μg/mL for benedipine	D.,
the development and	for linearity, precision,	hydrochloride, with a	Khomane
validation of an	range, accuracy, and	correlation value of 0.998.	Pankaj

analytical RP HPLC	robustness. The	The percentage RSD for	Н.,
technique for	separation was	precision and accuracy of the	Sapkal
benedipine	conducted on Chemsil	approach was determined to	Prasanna
hydrochloride.	ODS C18 and detection	be less than 2%. The peak	M., 2020,
	was done using a UV	was recorded at a retention	[105]
	detector at 237 nm. The	time of 3.47 minutes. The	
	described technique uses	recommended method may	
	mobile-phase methanol,	be conveniently applied to	
	ammonium acetate	evaluate the drug contents in	
	buffer (85:15), pH 3, and	commercialized	
	a flow rate of 1.2 ml/min.	formulations.	
The purpose of the	Solid dispersion was	The highest improvements	Vyas
research was to	created by applying	in solubility and in-vitro	Sanket,
increase the solubility	multiple methods,	drug release have been	Patel
and dissolution rate of	including a physical	observed in solid dispersion	Dhaval &
the drug Benidipine	mixture and the	produced with Poloxamer	Kasota
(BEN) by solid	microwave-induced	188 (F18) in 1:3 by the	Priya,
dispersion utilizing	fusion method. FTIR	microwave-induced fusion	2022
PEG 6000 and	was utilized to	technique. The enhanced	[106]
Poloxamer 188	characterize the samples	dissolution rate of BEN	
carriers in various	of SDs and BEN.	from solid dispersion may	
ratios and applying		be attributed to improved	
different methods such		wettability and	
as physical mixture		dispersibility of BEN.	
and microwave-			
induced fusion.			

2.2. Review of Work done on Telmisartan

Objective	Description	Conclusion	Reference
Research	Safsol-218, Tween-20,	The droplet size of the	Ahmad, J.,
conducted upon	and Transcutol P have	optimized emulsion was in the	Kohli, K.,
the formulation of	been chosen as oils,	nano range. The results of the	Mir, S. R., &
a self-	surfactants, and	study demonstrated a 4.34-	Amin, S.,
nanoemulsifying	cosurfactants,	fold improvement in the oral	2011 [107]
drug delivery	respectively, since they	bioavailability of drugs in	
system for	demonstrate the greatest	comparison with a tablet. It	
telmisartan with	solubility for	revealed an extensively	
improved	telmisartan. The	significant reduction (p <	
dissolution and	solubility of drugs was	0.001) in the mean blood	
oral	further raised by adding	pressure of hypertensive rats	
bioavailability.	sodium hydroxide	over 48 hours.	
	(0.67%).		
The study target is	The solubility of TEL in	The optimized formulation of	Jaydeep
to build a self-	various oils was	the TEL-loaded SNEDDS	Patel, Garala
nanoemulsifying	investigated to identify	demonstrated extensive in	Kevin,
drug delivery	the oil phase of	vitro drug release in 15 min in	Anjali Patel,
system (SNEDDS)	SNEDDS. The designed	comparison with the plain	Mihir Raval,
to improve the oral	SNEDDS formulation	drugs, which had a limited	Navin Sheth
bioavailability of	consists of TEL (20 mg),	dissolving rate. The in vivo	2011, [108]
slightly water-	Tween® 20 (43.33%	investigation demonstrated a	
soluble telmisartan	w/w), Carbitol® (21.67%	7.5-fold improvement in the	
(TEL).	w/w), and Acrysol® EL	oral bioavailability of TEL	
	135 (32% w/w).	from the SNEDDS compared	
		with the pure drug suspension.	
To create solid	Telmisartan solid	Formulation having a 1:2 ratio	Lakshmi K,
dispersions of	dispersions were created	of drug: PEG-4000	Pranav

telmisartan	in 1:1, 1:2, and 1:4 ratios	demonstrated the best release	Kumar
utilizing polyvinyl	of the drug to polymer	with a cumulative release of	Reddy M,
pyrrolidone (PVP),	ratio (by weight)	99.49% as compared with	Rajesh
polyethylene	employing the solvent	35.82% for the pure drug. The	Kaza., 2012,
glycol-1500 (PEG-	evaporation technique.	interaction investigations	[109]
1500), and	The formulations were	found no interaction between	
polyethylene	assessed for solubility	the drugs and polymers. It has	
glycol-4000 (PEG-	parameters, drug content	been found that PEG-4000 as a	
4000) to enhance	studies, drug release	carrier could potentially be	
its water solubility.	studies, and drug-	extremely good to increase the	
	polymer interactions by	solubility of poorly soluble	
	utilizing the FTIR	drugs.	
	spectrum.		
To generate a self-	SMEDDS is generated	The formulation, which	Parul
microemulsifying	from castor oil, tween	includes telmisartan (20 mg),	Jaiswal,
drug delivery	20, and propylene glycol	castor oil (30% w/w), tween	Geeta
system (SMEDDS)	as oil, surfactant, and co-	20 (55% w/w), and propylene	Aggarwal,
and solid	surfactant.	glycol (15% w/w), was found	Sasidharan
SMEDDS of		to be optimal. The optimized	Leela
telmisartan to deal		SMEDDS and solid-SMEDDS	kumari
with the		demonstrated 100% in vitro	Harikumar,
difficulties of low		drug release up to 120 min.	Kashmir
solubility and		Solid-SMEDDS may be seen	Singh 2014,
bioavailability.		as a superior solid dose form	[110]
		because solidified	
		formulations are more	
		effective than liquid forms in	
		terms of their stability.	

To design a self-	Telmisartan SMEDDS is	The prepared liquid SMEDDS	Nirali Padia,
microemulsifying	composed of oil,	had globule sizes in the	Arunkumar
drug delivery	surfactant, and	nanometric range. The optimal	Shukla,
system (SMEDDS)	cosurfactant.	formulation is composed of	Pragna
and to boost the	Psuedoternary phase	telmisartan (20mg), Capmul	Shelat 2015,
oral bioavailability	diagrams were built to	MCM (14.40% w/w), Tween	[111]
of poor water-	find the effective self-	80 (27.20% w/w), and	
soluble	emulsifying zone.	propylene glycol (54.40%	
telmisartan.		w/w). The exposure (Cmax	
		and AUClast) of the designed	
		SMEDDS was found to be	
		relatively greater (1.54 times)	
		than the reference	
		commercially available	
		product.	
Research plan to	In this study, camphor,	Pellet compositions showed	Patel, Hetal,
work on the	cross-carmellose sodium	satisfactory morphological,	Patel, H.,
dissolution rate	(CCS), and spray-dried	flow, and mechanical	Gohel, M.,
enhancement of	lactose (SDL) were	qualities. Compared to	& Tiwari, S.
telmisartan by	utilized to create MCC	38.54% drug release after 60	2016, [112]
modified MCC	pellets. A complete	min with MCC pellets, pellets	
pellets, utilizing 3 ²	factorial design 3 ² was	developed with an optimal	
complete factorial	utilized in the	composition, consisting of a	
designs.	investigation. Conc. of	suitable mix of MCC, SDL,	
	camphor and CCS have	camphor, and CCS, released	
	been chosen as	100% drug throughout 60 min.	
	independent factors,		
	while % porosity and %		
	drug release in 60 min		

	were selected as		
	dependent variables.		
The aim of the	Based on drug solubility,	Agglomerates generated by	Praveen
research is to study	N, N dimethyl	the QESD approach displayed	Srikumar
comparison work	formamide (DMF),	higher improvements in	and Sai
on the enhanced	chloroform, and water	solubility (2.89 in 0.1N HCl	Krishna
solubility and	were selected as	and dissolution rate (2.81 fold)	Putta 2017,
dissolution rate of	outstanding solvents,	compared with pure drugs.	[113]
telmisartan (TEL)	bridging liquids, and bad	QESD technology is an	
using quasi-	solvents in accordance	affordable and easy approach	
emulsion solvent	with spherical	for enhancing the solubility	
diffusion (QESD)	agglomeration.	and dissolving rate of TEL.	
and spherical			
agglomeration			
methods.			
To construct a self-	SMEDDS were created	The SEDDS formulations	Suvendu
microemulsifying	utilizing cinnamon	were produced utilizing	Kumar
drug delivery	essential oil as the oil	different quantities of	Sahoo,
system (SMEDDS)	phase, Gelucire 44/14 as	cinnamon oil (20–70%),	Padilam
for augmentation	the surfactant, and	gelucire 44/14 (20–69%), and	Suresh,
of oral	Transcutol HP as the co-	transcutol HP (4–27%). The in	Usharani
bioavailability of	surfactant. Selected	vitro drug release study and in	Acharya
the weakly water-	compositions were	vivo experiments	2018, [114]
soluble drug	evaluated in terms of	demonstrated that the release	
Telmisartan (TLS),	droplet size distribution,	from SMEDDS was more	
a BCS class II	zeta potential, and cloud	efficient when compared with	
medicine, by	point and then subjected	the drug suspension. The	
enhancing its	to in vitro drug release	relative bioavailability of	
dissolution rate.	tests. The bioavailability	SMEDDS to the suspension	

of the optimized	formulation (20 mg/ml) was	
formulation was	238%.	
examined in New		
Zealand white rabbits.		
Amorphous alkalinized	SuSMEDDS-SOL was more	Park, S. Y.,
Telmisartan was formed	effective in terms of dissolving	Jin, C. H.,
into a SMEDDS,	efficiency (> 90% over 2 h)	Goo, Y. T.,
comprised of Capmul®	and dissolution-retaining time	Chae, B. R.,
MCM (oil),	(no precipitation over 2 h). An	Yoon, H. Y.,
Cremophor® RH40	in vivo pharmacokinetic	Kim, C. H.,
(surfactant), and	investigation in rats found that	Song, S. H
tetraglycol (co-	the oral bioavailability of Su-	2020, [115]
surfactant). Su-	SMEDDS-SOL was 4.8-, 1.3-,	
SMEDDS-SOL was	and 1.2-fold greater than that	
produced by admixing	of the Telmisartan solution.	
Soluplus® with the		
SMEDDS at a 5:100		
(w/w) ratio.		
Bottom-up techniques	The nanosuspensions with a	Bhargav, E.,
such as anti-solvent	particle size of 338.1 nm, a	Chaithanya
precipitation and	PDI of 0.146 and zeta potential	Barghav, G.,
emulsification solvent	– 16.2 mV. In vitro drug	Padmanabha
evaporation techniques	diffusion studies demonstrated	Reddy, Y.
used to minimize the size	a drug release of 82.6% at the	2020, [116]
of the drugs in micron-	end of 3 h, whereas plain drug	
sized particles by HPMC	suspension displayed only	
E15 and PVP K-25 at	42.8% release, using nano	
1500–2000 rpm.	suspension.	
	formulation was examined in New Zealand white rabbits. Amorphous alkalinized Telmisartan was formed into a SMEDDS, comprised of Capmul® MCM (oil), Cremophor® RH40 (surfactant), and tetraglycol (co- surfactant). Su- SMEDDS-SOL was produced by admixing Soluplus® with the SMEDDS at a 5:100 (w/w) ratio. Bottom-up techniques such as anti-solvent precipitation and emulsification solvent evaporation techniques used to minimize the size of the drugs in micron- sized particles by HPMC E15 and PVP K-25 at	formulation was examined in New Zealand white rabbits. Amorphous alkalinized Telmisartan was formed into a SMEDDS, comprised of Capmul® and dissolution-retaining time (no precipitation over 2 h). An in vivo pharmacokinetic (surfactant), and investigation in rats found that tetraglycol (cosurfactant). SusmEDDS-SOL was 4.8-, 1.3-, SMEDDS-SOL was produced by admixing Soluplus® with the SMEDDS at a 5:100 (w/w) ratio. Bottom-up techniques such as anti-solvent precipitation solvent evaporation techniques used to minimize the size of the drugs in micronsized particles by HPMC E15 and PVP K-25 at 42.8% release, using nano

2.3. Review of work done on combination of Benidipine with Telmisartan

Objective	Description	Conclusion	Reference
The purpose of the study	Reverse-phase	The technique was found	Naim, M.,
is the development and	chromatography was	linear from 20 to 60 µg/ml	Ahmed,
validation of a stability-	selected. A C18	and 2–6 µg/ml for TEL and	A., & G
indicating reverse-phase	column, a 250×4.6 mm	BND individually. The	Khan.
high-performance liquid	column with 5.0 μm	suggested method may be	2018,
chromatography (RP-	particle packing, was	employed for regular	[117]
HPLC) technique for	utilized for the	evaluation of benidipine HCl	
simultaneous	separation of TEL and	and TEL in combination	
determination of	BND. TEL (40 µg/ml)	dosage form and quality	
telmisartan (TEL) and	and BND (4 µg/ml) in	control in bulk manufacture.	
benidipine	buffer, pH 4.0:		
hydrochloride (BND) in	Methanol (50:50) was		
pharmaceutical dosage	employed as the		
form.	mobile phase.		
Research aims to create	The technique was	The linearity has been	Patel, K.,
a dual-wavelength	based on	achieved in the concentration	Shah, D.,
spectrophotometric	measurements of	range of 1–5 μg/ml for	&
method for the	benedipine HCl at the	Benidipine HCl and 10-50	Maheshwa
simultaneous	absorption difference	μg/ml with Telmisartan. The	ri, D.2018,
measurement of	between 228.36nm	approach showed high	[118]
benidipine HCl (BEN)	and 245.39nm and	repeatability and recovery,	
and telmisartan (TEL) in	telmisartan at the	with a RSD of less than 2.	
combination tablet	absorption difference		
dosage form.	between 280.21 nm		
	and 315.39 nm.		
The study objective is to	The separation of the	The retention times of	Payal G.
create an RP-HPLC	samples was carried	benidipine hydrochloride	Jain, Ankit

technique for the	out employing an	and telmisartan were	B.
simultaneous	Inertsil ODS C18	determined to be 2.977 and	Chaudhar
quantification of	column and a mixture	5.167, respectively. The	y and
benidipine	of 0.05M potassium	approach was linear across	Shweta M.
hydrochloride and	dihydrogen phosphate	the range of 2–6 µg/mL and	Bhadani
telmisartan in tablets.	buffer and acetonitrile	20–60 μg/mL for benedipine	2018,
	as a mobile phase. The	hydrochloride and	[119]
	flow rate was	telmisartan. The recovery	
	regulated to 1 mL/min,	rates of benedipine	
	and effluent was	hydrochloride and	
	measured at 267 nm by	telmisartan have been found	
	utilizing a PDA	to be 100.46%-101.17% and	
	detector.	100.20%-100.38%,	
		respectively.	

2.4. Review of work done on preparation of Self Emulsifying Drug delivery system

Objective	Description	Conclusion	Reference
The existing study	Formulation was created by	SNEDDS formulation	Bhupinder
endeavor	using combinations of	demonstrated a 3-4 fold	Singh,
comprises the	Capmul PG8, Cremophor	improvement in the	Lalit
creation of liquid	EL, and Trancutol HP. The	bioavailable fraction,	Khurana,
self-nano-	SNEDDS, optimized	absorption number, and	Shantanu
emulsifying drug	utilizing a central composite	wall permeability of	Bandyopa
delivery systems	design (CCD), were tested	carvedilol as in contrast to	dhyay,
(SNEDDS) to	for several response factors,	the pure drug and marketed	Rishi
enhance the	viz., drug release	formulation. 100% release	Kapil &
bioavailability of	parameters, emulsification	of drug had been identified	O.O.P.
carvedilol by	time, emulsion droplet size,	within 20 minutes in the	Katare
enabling its	and mean dissolution time.	case of VAL7, but merely	2011,
transport through		67% and 77% of the drug	[120]
lymphatic		had been released at the	
circulation.		same time in the case of	
		pure drug and marketed	
		composition, respectively.	
The purpose of this	Formulations were	Optimize formulation,	Ahmed A,
research is to	developed utilizing Capryol	which involves 10% oil,	Aboelwafa
develop and	90®as oil, two surfactants,	1.31 as Smix : Cosurfactant,	and Amal I.
structurally	Cremophor EL® and	and 2 as Cremophor EL®:	A.
optimize self-	Labrasol®, and cosurfactant,	Labrasol®. It demonstrates	Makhlouf
emulsifying drug	transcutol HP. CCRD was	quicker and more complete	2012,
delivery system	utilized for optimization.	dissolution of amisulpride	[121]
formulations	Oil%, Smix: Cosurfactant	than aqueous drug	
incorporating	ratio, and	suspension. Also, it	

amisulpride for the	CremophorEL®:Labrasol®	indicates a remarkable	
enhancement of	were chosen as independent	improvement in the	
dissolution as well	variables, whereas mean	bioavailability of	
as oral absorption	droplet size, drug loading,	amisulpride in rabbits.	
utilizing a central	and light absorbance were		
composite	taken as dependent		
rotatable design	variables.		
(CCRD).			
The purpose of the	A three-component, three-	The droplet diameter of the	Sunny R.
current	level Box-Behnken design	optimized formulation has	Shah,
investigation was	(BBD) was implemented to	been determined to be	Rajesh H.
to establish and	study the main and	34.10 nm. The most	Parikh,
analyze the self-	interaction effects of	effective formulation	Jayant R.
nanoemulsifying	independent variables,	produced by the response	Chavda ,
drug delivery	particularly X ₁ (amount of	optimization using the	And
system (SNEDDS)	Capmul MCM), X ₂ (amount	desirability function gave	Navin R.
of glimepiride	of Acrysol K 140), and X ₃	the final formulation with D	Sheth.
(GMP), a poorly	(amount of Transcutol P),	= 0.9943, which released	2013,
soluble medicine.	where percentage of	79.85% of GMP during 5	[122]
	transmittance value (Y ₁),	minutes. The optimized	
	droplet diameter (Y ₂), and	batch demonstrated a	
	percent drugs released in 5	considerably (P <0.001)	
	minutes (Y ₃) as the	higher release of medicine	
	dependent variables.	as compared to pure GMP.	
The research effort	SMEDDS may be	Developed SMEDDS	Shukla, J.
consists of the	manufactured utilizing	demonstrating release of	B., Jani,
production of a	Capryol 90 as oil, Labrasol	drugs for liquid SMEDDS	G. K., &
self-	as surfactant, and Captex	formulation (99.91%),	Omri, A.
microemulsifying	500 as cosurfactant,	droplet size (9.15 nm), Zeta	

drug delivery	containing 32 mg of	potential (-23.2), viscosity	W. 2016,
system (SMEDDS)	candesartan cilexetil. Solid	(0.8824 cP), and infinite	[123]
of candesartan	SMEDDS compositions	dilution capacity.	
cilexetil.	(Tablet) have been produced	Optimized formulation	
	by adsorption to solid carrier	converts into S-SMEDDS	
	technology, employing	employing Aeropearl 300	
	optimal liquid SMEDDS	pharma as optimum	
	formulation	adsorbents. The oral	
		bioavailability of drugs	
		(15%) has been increased	
		by up to 1.78 fold.	
The present	Equilibrium solubility tests	From the several solid	Beg S,
investigations	and pseudoternary phase	carriers employed, Neusilin	Katare O,
comprise the	diagrams displayed the	US2 showed better oil	Saini S,
development and	suitability of oleic acid,	adsorption capacity,	Garg B,
assessment of solid	Tween 40, and Transcutol	micrometric characteristics,	Khurana
self-	HP as the lipid, surfactant,	outstanding flowability,	RK, Singh
nanoemulsifying	and cosolvent for the	and compactibility.	B. 2016,
drug delivery	preparation of the liquid	Approximately 2.6-fold	[124]
systems (S-	SNEDDS. S-SNEDDS	improvement in the drug	
SNEDDS)	formulations were	release rate has been	
applying porous	developed by adsorbing L-	observed from the	
carriers to increase	SNEDDS onto the porous	optimized S-SNEDDS. In	
the oral	carriers, viz., Aerosil 200,	vivo pharmacokinetic tests	
bioavailability of	Aeroperl 300, Sylysia 550,	in Wistar rats indicated a	
olmesartan	Neusilin US2, and Fujicalin	2.32 and 3.27-fold	
medoxomil.	SG.	improvement in Cmax and	
		AUC of the drug generated	
		by optimized S-SNEDDS	

		compared to the pure drug	
		solution.	
The goal of the	Box-Behnken design (BBD)	The optimal composition of	Garg, V.,
present	was employed to create and	the SNEDDS formulation	Kaur, P.,
investigation was to	optimize the composition of	was 25% v/v oleoyl	Singh, S.
develop self-	SNEDDS. Oleoyl polyoxyl-	polyoxyl-6 glycerides, 37%	K.,
nanoemulsifying	6 glycerides (A), Tween 80	v/v Tween 80, 38% v/v	Kumar,
drug delivery	(B), and diethylene glycol	diethylene glycol	B., Bawa,
systems (SNEDDS)	monoethyl ether (C) were	monoethyl ether, and 3%	P., Gulati,
for polypeptide-K	utilized as oil, surfactant,	w/v PPK. The biochemical,	M., &
(PPK) with the aim	and co-surfactant,	hematological, and	Yadav, A.
of achieving oral	respectively, as independent	histological findings from	K. 2017,
delivery.	variables. The influence of	streptozotocin-induced	[125]
	changes in their composition	diabetic rats indicated	
	was observed on the mean	outstanding antidiabetic	
	droplet size (y ₁),	efficacy of PPK	
	polydispersity index (PDI)	incorporated in SNEDDS at	
	(y ₂), % drug loading (y ₃),	both dosages (i.e., 400	
	and zeta potential (y ₄).	mg/kg and 800 mg/kg) as	
		compared to its pure form	
		in both doses.	
To create a self-	The optimized Lovastatin	Formulation F8 was found	Bhikshapa
nanoemulsifying	SNEDDS formulation (F8)	to be the best formulation	thi, D. V.
drug delivery	consists of a combination of	on the basis of assessment	R. N., &
system (SNEDDS)	Acrysol EL 135 as the oil	factors. The particle size of	Priya, K.
for Lovastatin to	phase, Lauro glycol 90, and	the optimized formulation	2018,
enhance its	Capmul MCM as the	had been found to be 4.9	[126]
solubility and	surfactant and co-surfactant,	nm, and the Z-average was	
bioavailability.	respectively.	71.5 nm, indicating all the	

		particles were in the	
		nanometer range.	
		Pharmacokinetic study in	
		rats demonstrated that, in	
		contrast to the pure drugs,	
		the optimized SMEDDS	
		composition considerably	
		improved the oral	
		bioavailability of	
		Lovastatin.	
The research	Based on solubility tests of	The in vitro drug release	Alghanani
endeavor was	DFX in different parts,	studies showed that the	m, Alaa,
aimed at producing	peceol TM , kolliphor [®] EL,	DFX release (Q5%) from S-	Yıldız
a solid self-	and transcutol were chosen	SNEDDS stabilized with	Ozalp,
nanoemulsifying	as excipients. Pseudo-	Neusilin UFL2 was much	Burcu
drug delivery	ternary phase diagrams were	greater (93.6 \pm 0.7% within	Mesut,
system (S-	generated, and the selected	5 min) compared with the	Nedime
SNEDDS) for	DFX-SNEDDS formulation	marketed product (81.65 ±	Serakinci
deferasirox (DFX).	was transformed into S-	2.10%). The results in	and Sevgi
	SNEDDS by adsorbing into	general suggested that the	Gungor
	porous carriers.	S-SNEDDS formulation of	2020,
		DFX might perhaps have	[127]
		the power to boost the	
		solubility of DFX,that	
		could in turn have the	
		capacity to improve its oral	
		bioavailability.	
The purpose of the	Cotton seed oil, tween 80,	The optimized formulation	Yadav, V.
current research	and transcutol have been	offers globule sizes of	K.,

was to design,	selected as important	141.20±0.69 nm, pdi	Balamural
develop, and	components in the	0.29±0.04, zeta potential	idhara, V.,
evaluate a solid	development of a self-	11.2±0.69 mV, and is fast	&
form of liquid self-	nanoemulsifying drug	dissolving within 30 min	Hemanth
nanoemulsifying	delivery system (SNEDDS).	with over 90 percent of the	Kumar, S.
formulation for	These formulations were	drug released. Employing	2020,
increasing the oral	evaluated by	Neusilin US2 as a solid	[128]
bioavailability and	thermodynamic stability,	adsorbent approach for	
dissolution of	emulsifying rates,	altering the optimal	
itraconazole.	robustness to dilution and	formulations into powder	
	pH effects, globule size, zeta	form. In vitro drug releases	
	potential, in vitro	of solid SNEDDS and	
	investigation, etc.	liquid SNEDDS are nearly	
		the same.	
This work aims to	Nineteen liquid SNEDDS	Eight S-SNEDDS were	Rehab
create a solid self-	were created (R1-R19)	constructed (S1-S8) using	Abdelmone
nanoemulsified	utilizing D-optimal design	2^3 factorial designs. The	m, Marian
drug delivery	with varied ratios of oil,	optimized S-SNEDDS was	Sobhy Azer
system (S-	surfactant (S), and	S2, adsorbed on Aeroperl®	, Amna
SNEDDS) for	cosurfactant (Cos). The	300 in a ratio of 1:1, with	Makky,
lamotrigine (LMG)	formulations were assessed	the highest results with	Abdelazim
to increase its	for robustness to dilution,	regard to in-vitro drug	Zaghloul,
solubility and oral	droplet size, thermodynamic	released in 0.1 N HCl at 15	Mohamed
bioavailability	stability tests, self-	min (100%) in comparison	El-
(BA).	emulsification time, in-vitro	to pure LMG (73.40%) and	Nabarawia
	releases in 0.1 N HCl, and	Lamictal [®] (79.43%), and	2020,
	phosphate buffer (PB; pH	in-vitro drug released at PB	[129]
	6.8).	at 45 min (100%)	
		contrasting to pure LMG	

		(30.46%) and Lamictal®	
		(92.08%). The BA of S2	
		has increased by 2.03 and	
		1.605 folds in comparison	
		with pure LMG and	
		Lamictal®, respectively.	
This work is	The primary components of	The generated SNEDDS	Duygu
intended to design	the formulation have been	were thermodynamically	Yilmaz
and improve a self-	selected as glyceryl	stable, with a droplet size of	Usta.,
nanoemulsifying	monolinoleate (lipid),	17.11 nm, a poly-dispersity	Zeynep
drug delivery	polyoxyl 40 hydrogenated	index of 0.180, and an	Safak
system (SNEDDS)	castor oil (surfactant), and	emulsification time of <1	Teksin
for bosentan	caprylocaproyl polyoXyl-8	min. The BOS-loaded	2022, ,
(BOS) to address	glycerides (co-surfactant).	SNEDDS demonstrated	[130]
its poor oral	The composition of BOS-	3.0, 7.97, 4.23, and 4.94-	
bioavailability	SNEDDS was developed	fold rises in the % of	
owing to low water	utilizing the BoX-Behnken	cumulative dissolution	
solubility.	design (BBD).	compared to the reference	
		tablets. SNEDDS increased	
		the Cmax and AUC 1.67	
		and 2.12-fold and 5.15 and	
		1.84-fold in fasting and fed	
		conditions, respectively, in	
		comparison to the	
		reference.	
The goal of the	The self-nanoemulsifying	The droplet size,	Pavan Ram
current research	drug delivery system was	polydispersity index, self-	Kamble,
was to explore the	created from Capmul MCM	emulsification duration,	Karimunni
potential of the	(oil), Tween 20 (surfactant),	and equilibrium solubility	

self-	and propylene glycol	of the optimized	Sameer
nanoemulsifying	(cosurfactant). The central	formulation were 58.500 ±	Shaikh
drug delivery	composite design was	$1.170 \text{ nm}, 0.228 \pm 0.012,$	2022,
system (SNEDDS)	applied as a statistical	17.660 ± 1.520 s, and	[131]
for improving the	method to optimize the	$34.180 \pm 1.380 \text{ mg/mL},$	
solubility and oral	composition variables X ₁	respectively. Drug release	
bioavailability of	(oil) and X ₂ (surfactant: co-	had been estimated to be	
plumbagin.	surfactant mixture ratio) of	93.320% ± 1.090. In vivo	
	the SNEDDS. The responses	anti-inflammatory	
	that were evaluated were	investigations have shown	
	droplet size, self-	higher effectiveness from	
	emulsification time, % of	the SNEDDS than with	
	drug release at 15 min, and	pure plumbagin.	
	equilibrium solubility. Best	Pharmacokinetic studies in	
	liquid SNEDDS was	rats demonstrated that a	
	adsorbed on Neusilin US2.	solid SNEDDS exhibited	
		4.49-fold higher	
		bioavailability compared to	
		pure plumbagin.	

2.5. Review of work done on preparation of Self Emulsifying Drug delivery system using QBD Approch

Objective	Description	Conclusion	Reference
The present	Preformulation studies in	The optimized formulation	Sarwar
research	combination with the initial risk	displayed excellent globule	Beg,
comprises	assessment assisted in the	size in the nanosize range, a	Premjeet
systematic	selection of lipid (i.e., Capmul	significant increase in the	Singh
development,	MCM), surfactant (i.e., Nikkol	dissolving rate and	Sandhu,
optimization, and	HCO-50), and co-surfactant	penetration of the drug, and	Rattandee
assessment (in	(i.e., Lutrol F127) preferred	numerous enhancements in	p Singh
vitro, in situ, and	critical material attributes	the absorption and	Batra,
in vivo) of the	(CMAs) for the formulation of	permeability parameters	Rajneet
solid formulations	S-SNEDDS. A face-centered	during in situ SPIP and in	Kaur
of SNEDDS	cubic design (FCCD) was	vivo pharmacodynamics	Khurana
lovastatin,	applied for optimization	investigations.	&
applying a	utilizing Nikkol-HCO50 (X ₁)		Bhupinder
rational quality by	and Lutrol-F127 (X ₂),		Singh
design (QbD)-	examining CQAs such as		2014,
based approach to	globule size, liquefaction time,		[132]
formulation by	emulsification time, mean		
design (FbD).	dissolution time, dissolving		
	efficiency, and permeation		
	parameter.		
The aims of the	The quality profile target	In situ SPIP experiments	Bandyopa
current	product (QTPP) was	indicated considerable	dhyay,
investigations	established, and key quality	improvement in the	Shantanu,
were to construct	characteristics were identified.	absorptivity and	Beg,
the systematic	Preformulation investigations	permeability characteristics	Sarwar,
optimized self-	comprising equilibrium	of SNEDDS attributable to	Prakash,

nanoemulsifying	solubility and pseudoternary	the suppression of P-	Om
drug delivery	phase titration examinations	gp/MRP2 efflux vis-à-vis	Sharma,
systems	enabled the identification of	the traditional marketed	Gajanand
(SNEDDS) of	appropriate lipids and	formulation and pure drug.	& Singh,
valsartan using	emulgents for the formulation	In vivo pharmacokinetic	Bhupinder
the	of SNEDDS. Risk evaluations	investigations substantiated	. 2015,
comprehensive	and factor screening studies	a considerable elevation in	[133]
QbD technique.	permitted the selection of	the oral bioavailability of	
	Lauroglycol FCC and Capmul	drugs from SNEDDS	
	MCM L8 (i.e., lipid), Tween	compared to the marketed	
	40, and Tween 80 (i.e.,	formulation. The	
	emulgent) as the critical	establishment of varying	
	material attributes (CMAs) for	levels of in vitro and in vivo	
	SNEDDS. A central composite	correlations (IVIVC)	
	design (CCD) was utilized for	displayed excellent	
	systematic optimization of	goodness of fit between the	
	SNEDDS, using globule size	in vitro drug release data	
	(Dnm), drug release in 10 min	and the in vivo absorption	
	(Q10min), and the amount	parameters.	
	permeated in 45 min		
	(%Perm45min) as the CQAs.		
The purpose of	The principal component of the	The improved formulation	Kahnu
this work was to	formulation, compared to lipid	demonstrated 98.5% drug	Charan
construct a self-	(Capmul MCM), surfactant	release in 15 minutes, a	Panigrahi,
nanoemulsifying	(LABRASOL), and co-	globule size of 62.5 nm, an	Jayashree
drug delivery	surfactant (PEG 600), has been	emulsification time of 12	Jena,
system	selected on the basis of	seconds, and a PDI of	Goutam
(SNEDDS) for	saturation solubility. The most	0.146. The TEM	Kumar
bosentan utilizing	suitable blend of Capmul	investigation indicated drug	Jena, Ch.

the quality by	MCM, LABRASOL, and PEG	entrapment inside the oil	Niranjan
design (QBD)	600 was determined by	globules in the nanosize	Patra,
technique with	applying the response surface	range. The pharmacokinetic	M.E.
higher	method (RSM) with a central	investigation of the	Bhanoji
bioavailability.	composite design (CCD). A	enhanced formulation	Rao 2018,
	pharmacokinetic investigation	demonstrated quicker	[134]
	was undertaken to establish	dissolution and absorption,	
	several key parameters.	which was confirmed by a	
		significantly higher Cmax,	
		greater AUC, and smaller	
		Tmax than the pure drug	
		bosentan.	
The purpose of	Initially, the Plakett-Burman	PB design has been	Narendra
the study was to	design (PB) was utilized as a	demonstrated to be	Chikkanna
create SNEDDS	screening design to identify the	particularly useful for	,Ramesh
containing the	significant effect of six	identifying likely critical	Chandrash
poorly water-	independent variables on the	material characteristics	ekar 2018,
soluble drug	parameters (globule size (nm),	(CMAs) impacting the	[135]
ritonavir by	self-emulsification time (sec),	production of SNEDDS and	
implementing	and percent dissolving	CCD, which aided in	
QbD principles.	efficiency at 15 min) of	selecting the optimal design	
	SNEDDS. Then, central	space. The ideal	
	composite design (CCD) is	formulations have been	
	employed to find the best	created according to the	
	layout space between the	displayed model,	
	amount of oleic acid (X ₁),	investigated for responses,	
	surfactant (X_2) , and co-	and selected to be	
	surfactant (X ₃).	equivalent to 118nm for	
		globule size and 135	

		seconds for self-	
		emulsification time.	
The research	Mixture design was applied for	The optimized liquid	Jagdish
attempts to	systematic adjustments of the	SNEDDS demonstrated	Kumar
provide a	composition of nanolipidic	globule size <100 nm,	Arun,
systematic	formulations, which were	emulsification efficiency	Rajeshwar
methodology for	subsequently assessed for	<5 minutes, and in vitro	Vodeti,
building the	reduced globule size, stable	drug release >85% over 30	Birendra
lipidic self-	zeta potential, and lower values	minutes. Additionally, the	Shrivastav
nanoemulsifying	of polydispersity index. The	solid SNEDDS formulation	aVasudha
formulation of	process of solidification of the	was successfully developed	Bakshi
olmesartan	self-nanoemulsifying drug	using Neusilin US2, which	2020,
medoxomil,	delivery system (SNEDDS)	has the highest oil	[136]
utilizing the	was carried out utilizing porous	adsorption capacity and	
concepts of	carriers and then transformed	outstanding micromeritic	
quality by design	on the basis of oil adsorption	properties. The	
(QbD).	potential, powder flow	pharmacokinetic study	
	characteristics, and drug release	displayed a 4- to 5-fold	
	performance. A	increase (P<0.05) in the	
	pharmacokinetic investigation	values of Cmax, AUC, and	
	was done in male Wistar rats to	Tmax obtained from the	
	find the drug's absorption	nanoformulations	
	properties.	compared to the marketed	
		formulation.	
The goal of this	The preparatory preformulation	The developed ideal	Gowthami
work was to	studies and the risk assessment	Ritonavir-SNEDDS by	K, Kavitha
create a self-nano-	carried out allowed the proper	QbD approach produced a	A,
emulsifying drug	selection of independent factors	robust and sustainable	Samatha
delivery system	for the optimization of	approach to increasing the	P,

(SNEDDS) for a	dependent variables. Droplet	oral bioavailability of	Chandram
poorly water-	size (nm), emulsification time	Ritonavir and was	ouli R
soluble anti-	(seconds), polydispersity index	examined by the	2020,
retroviral drug,	(PDI), and % transmittance	characteristics investigated:	[137]
Ritonavir, through	comprised the different	droplet size (264.7 nm),	
Quality by Design	responses considered for the	emulsification time (46.1	
(QbD).	investigation. Labrafil® M	sec), PDI (0.415), and %	
	1944 CS (oil), Tween 80	transmittance (94.8).	
	(surfactant), and PEG 6000		
	(cosurfactant) are the		
	independent variables assessed		
	in the design.		
To overcome the	Various oils, surfactants, and	The optimized SNEDDS	Buya,
restrictions of	cosurfactants were evaluated	formulation showed self-	A.B.,
voxelotor (an	for their solubilization ability	emulsifying time (32 s),	Terrasi,
antisickling drug),	for the drugs. The region of	droplet size (35 nm), and	Mbinze,
low water	nanoemulsification has been	zeta potential (-8 mV). In	J.K.,
solubility and low	identified employing a ternary	vitro dissolution	Muccioli,
oral	phase diagram. An	investigations	G.G.,
bioavailability, a	experimental mixture design	demonstrated a 3.1-fold	Beloqui,A
self-	and a desirability function had	increase in drug solubility	2021,
nanoemulsifying	been applied to select	from the optimized	[138]
drug delivery	SNEDDSs that contain the	SNEDDS versus pure drug	
device was	greatest amount of lipids and	powder. In comparison with	
designed.	the least amount of surfactant	the drug Additionally, the	
	and that possess the most	generated SNEDDS raised	
	effective emulsification	the oral bioavailability (1.7-	
	properties.	fold) of voxelotor in rats.	

2.6. Review of work done on Pharmacology study

Objective	Description	Conclusion	Reference
The current study	The rats were administered	Administration with 10%	Soter Dai
examined the best	with 5%, 10%, or 20%	fructose in drinking water	and John
acceptable	fructose in drinking water. The	(equal to a diet containing	H.
concentration and	most significant changes,	48–57% fructose) over	McNeil,
duration of fructose	including increases in blood	one week or longer is	1995,
administration for	pressure, fluid consumption,	suitable for the rapid	[139]
creating hypertension	and plasma levels of insulin,	production of fructose-	
in Wistar rats. The	glucose, and triglycerides, and	induced hypertension in	
link between fructose-	a reduction in food intake after	Wistar rats, which is	
induced hypertension	fructose therapy, were found	related to higher levels of	
and hyper insulinemia	with the 10% solution.	plasma insulin, glucose,	
was also investigated.		and triglycerides.	
This research	Two groups of 24 healthy	Benidipine achieved	Yun MS,
studied the link	individuals received either a 4-	mean peak plasma	МН.
between the plasma	or 8-mg benidipine	concentrations of 1.04	Yun MS,
concentration of	hydrochloride tablet; 11 extra	and 3.85 ng/mL at 0.5 and	W. Kang
benidipine and its	participants received a	0.75 h following 4 and 8	and KI.
cardiovascular	placebo. Serial blood samples	mg doses, respectively.	Kwon,
effects in order to	and PD evaluations were done	Peak cardiovascular	2005,
examine the	for 8 hours. Plasma	effects were observed	[140]
effectiveness of	concentrations of benidipine	approximately 2 hours	
pharmacokinetic-	were evaluated employing	after the administration of	
pharmacodynamic	validated LC/MS/MS	each dose. Maximum	
(PK-PD) models in	equipment, and the effects on	decreases in diastolic	
defining this	blood pressure and heart rate	blood pressure with 4 and	
relationship.	were studied throughout the	8 mg of benidipine were	
	same period of time.		

		7.79 and 14.75 mmHg,
		respectively.
To examine the	The SH rats were given a	The PK characteristics Kun HAO,
pharmacokinetic (PK)	single oral dosage of 2, 4, and	indicated dose Yuan-
and	8 mg/kg of telmisartan. The	proportionality, with an cheng
pharmacodynamic	plasma concentrations of	extended half-life of 16 h, Chen,
(PD) characteristics	telmisartan were measured by	a clearance of 0.15 L•kg Yan-
of telmisartan in	the liquid chromatography-	1-h-1, and a volume of guang
spontaneously	mass spectrum technique. The	distribution of 5.36 L•kg ⁻¹ Cao, Dan
hypertensive (SH)	mean arterial blood pressure	in the research. The Yu, Xiao-
rats employing	has been determined in order	hypotensive response to quan Liu,
indirect response and	to explain the	telmisartan may be Guang-Ji
effect-compartment	pharmacodynamics of	expected more effectively Wang
link models and	telmisartan using tail-cuff	by utilizing the indirect .2007,
comparing two PK-	manometer. The relationship	response model than the [141]
PD models fitting	between telmisartan	effect-compartment link
quality.	concentration and	model. The modeling
	hypertension in the SH rats	technique utilized here
	was evaluated using an	may be effective in
	indirect response model.	enhancing the therapeutic
		treatment of telmisartan.
Moringa stenopetala	Rats were randomly assigned	The investigation Geleta, B.,
is an herb that has	into control and treatment	indicated that aqueous Makonnen
been utilized in	groups (n = 6). Treatment	and 70% ethanol extracts, E.,
Ethiopian traditional	groups were administered	considerably inhibited Debella,
medicine as a therapy	daily extracts (250, 500, and	blood pressure in a dose- A., &
for the treatment of	1000 mg/kg) orally with	dependent manner Tadele, A.
hypertension and	fructose. In contrast, positive,	equivalent to that of the 2016,
diabetes. The purpose	negative, and normal control	standard drugs. Similarly, [142]

of this research was to	groups were given captopril	the extracts prevented	
investigate	(20 mg/kg/day with fructose)	increases in the lipid	
antihypertensive and	or alone fructose (66% w/v ad	profile (cholesterol,	
antihyperlipidemic	libitum) with distilled water ad	glucose, and	
effects in fructose-	libitum over 15 days	triglycerides) in contrast	
induced hypertensive	consecutively. The blood	to the negative control.	
rats.	pressure was reported every	The biochemical test	
	5th day employing a tail cuff	showed that extracts	
	blood pressure analyzer, and	exhibited an increase in	
	on the 16th day, the blood was	liver but no effect on renal	
	collected to examine the	function indicators as	
	antihyperlipidemic impact	compared to normal	
	utilizing a laboratory	control.	
	chemistry analyzer.		
The research	Liquid SMEDDS was	This research study	Manali D.
objective is to provide	developed employing a	comprises a systematic	Prajapat ,
the poorly water-	simplex lattice matrix design.	strategy for SMEDDS	Nilesh J.
soluble drug	The optimized liquid	development and its	Patel,
nimodipine in a solid	SMEDDS was solidified using	evaluation. Among all the	Aditi
self-emulsifying	adsorbents and transformed	adsorbents, Syliod XDP3	Bariya,
formulation. This	into a capsule dosage form.	had been selected based	Snehal S.
research study	Further, the novel formulation	on its increased flow	Patel,
comprises a	was evaluated by in-vivo	properties compared to	Shital B.
systematic strategy	pharmacodynamics	the other adsorbents. A	Butani.
for SMEDDS	investigations using a	pharmacodynamic study	2017,
development and its	Sprague-Dawley rat, and	demonstrated that an	[143]
characterization.	blood pressure was	optimized solid	
	determined using the non-	SMEDDS batch	
	invasive cuff tail technique.		

		significantly reduced	
		blood pressure in SD rats.	
The research work	Formulations have been	The optimized	Pankaj
intends to build a	developed on the basis of	formulation consists of	Kumar
DOE-optimized lipid-	DOE, where data modeling	40.4% (w/w) ethyl oleate	Sharma,
based system for	between independent factors	as oil, 48.6% (w/w)	Anoop
Clinidipine to	(% oil, oil/six ratio, and drug	cremophor EL as a	Kumar,
increase oral	loading) and dependent	surfactant, and 11%	Vikesh
bioavailability.	variables (droplet size, clarity,	(w/w) transcutol as	Kumar
	and drug solubility) under the	cosurfactant. The average	Shukla.
	Box Behnken design has been	drop size and zeta	2022,
	investigated and optimized.	potential of SNC-7 were	[144]
	The optimized formulation	72.10 nm and 1.96±0.045	
	was examined for	mv, respectively. DOE	
	pharmacodynamic	optimization confirmed	
	experiments carried out on	that SNEDDS generated	
	Wistar rats at low and high	the fast dissolution of CIL	
	doses and compared with CIL	despite its suspension.	
	oral suspension as a control.	SNC-7 formulation	
		demonstrated significant	
		antihypertensive activity	
		higher than control.	