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1  |   INTRODUCTION

The complex phenomenon of cancer is categorized under the 
same hallmark observation of aberrant cell growth, division, 
and metastasis. In fact, cancer has become one of the most 
ubiquitous non-communicable life-threatening diseases over 
the periods of human history. With the age-standardized in-
cidence rates varying more than three- to four-fold across the 
different world regions, the spread of this devastating disease 
has become a major concern. Importantly, it has been posing 
as the one barrier to increased overall life expectancy with 
an estimated 18.1 million new cases and 9.6 million deaths 
worldwide, alone in 2018 (Bray et al., 2018).

Among the 97 different types, lung cancer prevails 
as the most diagnosed cancer, leading in cancer lethality 
with 1.76  million deaths, followed by breast cancer with 
over 620,000 deaths (Bray et al., 2018). Colon cancer has 
1,096,601 new records making up 6.1% of cancer cases with 
551,269 deaths, whereas the numbers for ovarian cancer are 
295,414, 1.6% and 184,799, respectively (Bray et al., 2018). 
The heterogeneity in each of the different types, including 
the aforementioned ones, remains as its biggest challenge to 
overcome, as the variety ranges from anatomical sites and 
initial cell types to molecular subtypes and morphology. The 
underlying mechanisms for tumor heterogeneity are covered 
by Sutherland and Visvader (Sutherland & Visvader, 2015), 
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Abstract
Biomarkers can offer great promise for improving prevention and treatment of com-
plex diseases such as cancer, cardiovascular diseases, and diabetes. These can be 
used as either diagnostic or predictive or as prognostic biomarkers. The revolution 
brought about in biological big data analytics by artificial intelligence (AI) has the 
potential to identify a broader range of genetic differences and support the genera-
tion of more robust biomarkers in medicine. AI is invigorating biomarker research 
on various fronts, right from the cataloguing of key mutations driving the complex 
diseases like cancer to the elucidation of molecular networks underlying diseases. 
In this study, we have explored the potential of AI through machine learning ap-
proaches to propose that these methods can act as recommendation systems to sort 
and prioritize important genes and finally predict the presence of specific biomark-
ers. Essentially, we have utilized microarray datasets from open-source databases, 
like GEO, for breast, lung, colon, and ovarian cancer. In this context, different clus-
tering analyses like hierarchical and k-means along with random forest algorithm 
have been utilized to classify important genes from a pool of several thousand genes. 
To this end, network centrality and pathway analysis have been implemented to iden-
tify the most potential target as CREB1.
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in which intrinsic and extrinsic factors have been noted to 
contribute to its subtyping. An example of this is seen in 
breast cancer where the five subtypes, Luminal A, Luminal 
B, HER2, triple-negative, and normal-like, have different 
molecular signatures which conclude in three different treat-
ment options (Feng et al., 2018). This makes specific diag-
nosis difficult due to which the efficacy of treatment remains 
low even with the advent of personalized medicine.

Despite continuous efforts of drug development by scien-
tists, the deadly phenomenon of cancer had been proliferating 
at the mercy of unimpressive efficacy of earlier developed 
chemotherapies, mainly due to its heterogeneous causes. 
Besides increasing death tolls, globally alarming cases of 
cancer multidrug resistance have intrigued new studies on 
personalized or precision cancer medicine (PCM). Briefly, 
this encompasses a description of healthcare delivery model 
emanating from information on cancer data analytics. Among 
one such strategies toward developing PCM, a side-effect-
free method for identifying cancer drug target proteins has 
been proposed (Ashraf et al., 2018). This research work 
enabled to theoretically identify genes/proteins, which, if 
targeted with drugs, inevitably gives rise to side-effects, re-
sulting in the drug conferring illicit responses and getting fi-
nally withdrawn (Ashraf et al., 2018). Essentially, the work is 
focused upon the techniques adopted for the analyses of the 
drug status of the cancer biomarkers through network central-
ity and functional module connectivity measures. Thus, PCM 
development research hinges on cancer biomarker identifi-
cation to help in the process of diagnosis and medical deci-
sion-making. These objectively measured biomolecules can 
help inform one's clinical outcome as prognostic biomarkers, 
predict responses to specific therapies as predictive biomark-
ers, or identify a patient's specific cancer type as diagnostic 
biomarkers (Goossens, Nakagawa, Sun, & Hoshida, 2015).

Current state-of-the-art technologies have allowed us to 
obtain measurements of over thousands of therapeutic cancer 
target proteins from an entire set as reviewed by Lahiri Pawar, 
and Mishra (2019). However, the assessment of each of such 
biomolecules as diagnostic and/or prognostic biomarkers is 
quite tedious. Thus, the need for the accurate identification of 
these markers has called for the use of machine learning, uti-
lizing the power of artificial intelligence algorithms to build 
models that more accurately predict the cancer's characteris-
tics, based on the many dimensions generated by molecular 
research and categorization. The learning process that occurs 
when the algorithm is given datasets consists of two phases: 
(a) assessment of unknown dependencies in a system from 
the dataset and (b) using these estimated dependencies to pre-
dict new outputs for the system (Kourou, Exarchos, Exarchos, 
Karamouzis, & Fotiadis, 2015). A variety of these algorithms 
including Bayesian networks and support vector machine 
have been used to predict cancer recurrence and survival in 
breast cancer (Kim et al., 2012; Xu, Zhang, Zou, Wang, & 

Li, 2012), oral cancer (Chang, Abdul-Kareem, Merican, & 
Zain, 2013; Exarchos, Goletsis, & Fotiadis, 2012), and many 
others. However, to the extent of our observations, these have 
not been used to identify biomarkers common between can-
cers of different anatomical sites. Thus, in this study, we aim 
to find common cancer biomarkers using random forest and 
multiple clustering, of which we then identify targets with 
highest potential using network centrality and pathway anal-
ysis as well as informed network extension.

2  |   METHODS AND MATERIALS

2.1  |  Data collection and preprocessing

Four cancer datasets were retrieved for breast, ovarian, colon, 
and lung cancers from Gene Expression Omnibus. These are 
GSE2034 (Wang et al., 2005), GSE9899 (Tothill et al., 2008), 
GSE39582 (Marisa et al., 2013), and GSE30219 (Rousseaux 
et al., 2013). The number of patients is 286, 585, 307, and 
139 for the breast, colon, lung, and ovarian cancer types, re-
spectively, with each patient of specific cancer types having 
54,675 genes. Libraries GEOquery (Davis & Meltzer, 2007), 
Biobase (Huber et al., 2015), preprocessCore (Bolstad, 2017), 
and multiClust (Lawlor, Fabbri, Guan, George, & Karuturi, 
2016) were used for Mas5.0 normalization.

2.2  |  Clustering analysis

Hierarchical and K-means clustering analyses were per-
formed on patients with gene expression values. Gap sta-
tistic technique (Mohajer, Englmeier, & Schmid, 2011) was 
implemented to identify optimum number of clusters for 
feeding into hierarchical (Zepeda-Mendoza & Resendis-
Antonio, 2013) and k-means clustering (Jin & Han, 2017). 
With gap statistic technique, 5 clusters were found to be op-
timal for clustering all the patient samples. Bootstrapping, 
b, was performed till 100. Libraries ctc, gplots (Warnes 
et al., 2015), dendextend, graphics, grDevices, and amap 
were used for implementing clustering. For hierarchical and 
k-means clustering, parameters like distance="euclidean", 
linkage_type="ward.D2", gene_distance="correlation", 
probe_rank="SD_Rank", probe_num_selection="Fixed_
Probe_Num", and cluster_num_selection="Fixed_Clust_
Num" were applied.

2.3  |  Random forest and variable 
importance application

Random forest analysis with variable importance function 
was implemented on the selected cancer types for identifying 
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unique genes (Ram, Najafi, & Shakeri, 2017). Library ran-
domForest was implemented for its application. A total of 
286 breast and 139 ovarian patient samples were utilized for 
the analysis with ntree = 10,000 to produce a stable model. 
Variable importance with top 25 genes were identified using 
function randomForest() on absolute numbers. Library 
RColorBrewer (Warnes et al., 2015) was used to generate 
heat maps and bar plots.

2.4  |  K-fold cross-validation

To ensure that our model fits, random sub-sampling was per-
formed 3-, 5-, and 10-fold for training datasets and random 
forest with consistent parameters was done as described in 
method section. A variable importance function was then ap-
plied on absolute values to find the top 100 genes. From this 
pool, the previous top 25 genes and their importance status 
were compared to (Table 1).

2.5  |  Survival analysis

The above analyses for breast cancer patients had accompa-
nied relapse status information. An index, with a sum of all 
the selected 25 biomarker genes, was created and patients 

were separated into high and low expression groups on a 
mean threshold. Library survival was used for perform-
ing Kaplan–Meier (KM) analysis (Therneau & Grambsch, 
2015). Survival object was created using function Surv() 
and survfit() function was implemented for survival analy-
sis. Similar analyses for ovarian cancer patients had ac-
companied stage and grade status information for which a 
two-tailed t-test was applied between the two patient groups 
to analyze significant difference in expression levels of these 
two groups of patients. All the codes for analyses this far 
have been deposited into the first author's GitHub account 
at https://github.com/spawa​r2/Rando​m-Fores​t-on-Ovari​an-
Breas​t-Cance​r-Patie​nts/blob/maste​r/Clust​ering.R

2.6  |  Protein interactome construction and 
centrality analysis

Protein interactomes were generated on cytoscape v3.5 
(Shannon et al., 2003) using interaction data above 0.4 
confidence level from string v11 database (Szklarczyk 
et al., 2019), mapped to the 22 gene products from the 25 
obtained. The core network (CN) was first obtained using 
only interactions between the 22 proteins, followed by in-
teractomes comprising interactions between the 22 proteins 
with their immediate neighbors named as direct-interacting 
network (DIN), and another also comprising interactions be-
tween neighboring proteins themselves to create the cross-
interacting network (CIN). We then utilized Cytoscape's 
in-built plugin networkanalyzer (Schelhorn, Albrecht, 
Assenov, Lengauer, & Ramirez, 2007) along with others 
like Cytohubba (Chin et al., 2014) and CytoNCA (Tang, Li, 
Wang, Pan, & Wu, 2015) to measure the centrality of the 
nodes in all three networks using a panel of nine measures, 
namely degree centrality (DC), closeness centrality (CC), be-
tweenness centrality (BC), eigenvector centrality (EC), edge 
percolated component (EPC), maximum neighborhood com-
ponent (MNC), density of maximum neighborhood compo-
nent (DMNC), maximal clique centrality (MCC), and local 
average connectivity (LAC).

2.7  |  Pathway analysis and 
network extension

The 22 genes were queried through ConsensusPathDB 
(CPDB) Release 34 to check for overrepresented pathways, 
complexes, and GO terms (levels 4 and 5) with a p-value 
cutoff of 0.01, having all databases in CPDB being kept as 
default. Meanwhile, gene regulation data is extracted from 
RegNetwork to be mapped to the core network to identify po-
tential perturbators (Liu, Wu, Miao, & Wu, 2015). The whole 
pipeline utilized in this study is depicted in Figure 1.

T A B L E  1   Selected biomarkers falling within top 100 genes of 
the sub-sampling cross-validation variable importance analysis

Variable importance gene ids after N-fold validation

1-fold 3-fold 5-fold 10-fold

204369_at
208766_at
212245_at
213619_at
201083_at
217724_at
200902_at
207791_at
222103_at
204313_at
207108_at
212628_at
204516_at
209678_at
216449_at
213048_at
206989_at
200653_at
204216_at
212984_at
208975_at
204069_at

207791_at
222103_at
204313_at
207108_at
212628_at
204516_at
209678_at
216449_at

204313_at
207108_at
212628_at

212628_at

https://github.com/spawar2/Random-Forest-on-Ovarian-Breast-Cancer-Patients/blob/master/Clustering.R
https://github.com/spawar2/Random-Forest-on-Ovarian-Breast-Cancer-Patients/blob/master/Clustering.R
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3  |   RESULTS

3.1  |  Ovarian and breast cancer patients 
cluster together

A gap statistic technique was applied to get the optimal 
number of 5 clusters (Figure  S1), which was utilized with 
hierarchical clustering to be applied on patients with four 
cancer types. An intriguing pattern is seen where most of the 
breast and ovarian cancer patients overlapped in one cluster 
(Figure 2a) and a similar pattern was observed with K-means 
clustering for validating the hierarchical clusters (Figure 2b). 
Lung and colon cancer patients were classified separately in 
different clusters without any overlaps. These results suggest 
similarities between overlapping breast and ovarian patients 
compared to other cancer types.

3.2  |  Identification of biomarker genes

Since breast and ovarian cancer patients overlapped in a sin-
gle cluster, a random forest analysis was performed on breast 
and ovarian cancer patients and a variable importance func-
tion was applied on random forest analysis to select top 25 
important genes. Figure 3a shows expression levels of these 
top selected genes. Interestingly, the expression of most of 
these genes seems to be high in breast cancer patients while 
low in ovarian cancer patients. Out of these 25 genes, the 
gene expression levels of the three probes, corresponding 
to 28S ribosomal RNA (rRNA) controls, are depleted in the 
breast cancer datasets. Gene ranks and its associated impor-
tance and the mean decrease gini values prior to the construc-
tion of the heatmap are shown in Figure 3b,c, respectively.

The cross-validation step with similar parameters has 
8, 3, and 1 gene(s) present in the pool of top 100 genes ob-
tained from 3-, 5-, and 10-fold sub-sampling cross-valida-
tion, respectively, showing some overfitting bias in the initial 

clustering model. Three genes 212628_at (protein kinase N2), 
204313_at (CREB1), and 207108_at (Nipped-B-like protein) 
are validated after 5-fold sub-sampling, of which protein ki-
nase N2 remains after 10-fold sub-sampling (Table 1).

3.3  |  Significant difference in gene 
expression levels among different 
stages and grades is seen in patients with high 
expression of selected cancer marker genes

Ovarian cancer patient information was accompanied with 
stage and grade status. An index was formed with addition of 
expression levels of selected biomarker genes, and a compari-
son was made between patients with high and low expression of 
this index. Among different stages and grades, a significant dif-
ference (p < .05) was seen between patients with high and low 
expression of this index except for Stage II (Figure 4a,b). The 
breast cancer patients had accompanied relapse status informa-
tion, so a KM analysis was performed among patients with high 
and low expression groups, but no significant difference in sur-
vival rates was observed (Figure S2).

3.4  |  Pathway analysis points toward high 
involvement of CREB1/ATF2 complex

As three of these probe IDs (AFFX-r2-Hs28SrRNA-5_at, 
AFFX-r2-Hs28SrRNA-M_at, AFFX-r2-Hs28SrRNA-3_at) 
correspond to the rRNA controls, the 22 remaining genes are 
utilized for pathway, complex and GO overrepresentation 
analysis via ConsensusPathDB. Pathway analysis shows that 
the most significant signaling pathways, distinct in both cancer 
types, are those for EGFR (Erbb1), PI3K-Akt, and estrogen 
signaling (p < 0.001). In fact, the majority of these pathways 
belong to signaling, with exceptions including aldosterone 
synthesis and secretion as well as myometrial relaxation and 

F I G U R E  1   The computational 
analysis pipeline used in this article. 
PPI = Protein–protein interactions. α and Ω 
represents proteins neighboring the query 
proteins
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F I G U R E  2   Breast, ovarian, lung and colon cancer gene expression normalized datasets grouped into five clusters using (a) hierarchical 
clustering and (b) K-means clustering

F I G U R E  3   Identification of 
biomarker genes. (a) Heat map showing 
expression levels of top 25 cancer biomarker 
genes in ovarian and breast cancer types, (b) 
variable importance with gene ranks for all 
the genes, (c) mean decrease gini value for 
top 25 biomarker genes
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contraction. Despite the pathway overlaps between differ-
ent databases, CREB1 is found in 63 out of 68 pathway IDs, 
significantly overrepresented by these 22 genes, followed by 
ATF2 (212984_at) in 54 pathways IDs (Table S1). These sup-
port the CREB1/ATF2 complex as the most significant one in 
the analysis for identifying protein complexes (Table S2). GO 
analysis implicates gene regulation to be the main dysregu-
lated component as over 10 genes are found in the nucleus, 
involved in regulation of nucleobase-containing compounds, 
gene expression, and the RNA metabolic process. Other GO 
terms, found significant, also include Golgi vesicle budding 
and organization as well as establishment of protein localiza-
tion (Table S3).

3.5  |  Centrality analysis and network 
extension reinforces importance of CREB1

The centrality analysis, using 9 different centrality measures 
for DIN, notably shows CREB1 ranking above PIK3CA 
(204369_at) in all other measures despite the latter obtaining 
first rank in our degree and betweenness measures (Table 2). 
CREB1 has consistently ranked first or second in all 9 meas-
ures for DIN, and this pattern is also reflected in 6 of these 
measures in CN (Figure S3a). Instead, HNRNPR (208766_s_
at) is shown among these 6 ranks, even overtaking CREB1 
in most measures in CN. HNRNPH is in first ranking with 
HNRNPH1 (213619_at) in two of these centralities, DMNC 
and MNC. The ranking positions of these 22 proteins in re-
lation to each other are mostly conserved when interactions 
between their neighbors are introduced in CIN. However, the 
rankings for most of these genes in DIN have dropped in CIN 

as there is a bias toward superhub proteins in the traditional 
measures (DC, CC, BC, and EC) and the rankings in relation 
to each other are also lost in other measures (Tables S4–S6). 
Network extension via RegNetwork also shows CREB1 to 
have the most involvement in the gene regulatory system. It 
is affected by more genes than the other 21, while it affects 
201 genes as a regulator as compared to 88 and 37 for ATF1 
(222103_at) and ATF2, respectively (Figure S3b).

4  |   DISCUSSION

Our analysis has combined gene expression clustering, net-
work centrality, and pathway analysis to discover the most 
influential proteins among the overlapping breast and ovar-
ian cancer biomarkers. Though some of these techniques 
have been recently used in combination to identify genes and 
pathways in hepatocellular carcinoma (Liu et al., 2016), de-
pression (Le et al., 2018), and neurodevelopmental disorders 
(Yadav & Srivastava, 2018), this article marks the first usage 
of all three in consolidation. We have utilized gap statistics 
with k-means and hierarchical clustering in our pipeline and 
both methods separately showed breast and ovarian cancer in 
the same cluster, enabling us to continue with further down-
stream analysis. There are other possible improvements to 
this as Botía et al. (2017) have found that merging these al-
gorithms improves the biological features of generated mod-
ules, including its increased number of replicable clusters in 
other tissues, which may benefit this analysis. Alone, hierar-
chical clustering, which uses similarity measures, is known 
to have low efficiency despite being able to produce informa-
tive clusters. On the other hand, the performance of k-means 

F I G U R E  4   Index equivalent to 
addition of expression levels of top 25 
genes to split ovarian cancer patients into 
low and high expression groups, to find for 
significance between their differences in 
(a) stages and (b) grades. *p < .05
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clustering, which uses Euclidean distance, is highly depend-
ent on the prespecified number of clusters required. Indeed, 
Hasan & Duan (Hasan & Duan, 2015) recognized these and 
have utilized hierarchical clustering to provide the cluster 
number for k-means clustering for best performance of the 
k-means algorithm.

K-fold cross-validations are an important and delicate 
technique for tuning random forest dataset overfitting (Fox 
et al., 2017). Relative to other models, random forests are less 
likely to overfit, but we have done 10-fold cross-validation 
to confirm this, of which only one gene passed. There may 
be multiple reasons not to find most of the 25 selected genes 
in cross-validated models; some of these being high identity 
in the testing dataset, non-windowing of data, or  K-folds 
cross-validations being stringent compared to selected train–
test split approach or from different datasets distribution. The 
gene that passed 10-fold cross-validation, protein kinase N2, 
stands out to be ubiquitously and significantly expressed in 
27 human tissues including ovarian and breast cancer sam-
ples (García-Aranda & Redondo, 2017). Moreover, CREB1, 
the gene standing out among our other pruning methods, has 
passed 5-fold cross-validation, corroborating with our net-
work analysis findings. Out of the 25 genes which stood out 
in the clustering, we prepared core and direct-interacting net-
works to apply a panel of centrality measures which screened 
out CREB1 among the top rankers. Furthermore, among 
these 25 genes, three were found to be coding for rRNAs 
(AFFX-r2-Hs28SrRNA-5_at, AFFX-r2-Hs28SrRNA-M_at, 
and AFFX-r2-Hs28SrRNA-3_at) and were left out of the 
pathway analysis conducted thereafter. The pathway anal-
ysis had again shown CREB1 to be present in most of the 
pathways.

CREB1, as a transcription factor, has been well-char-
acterized for its pathophysiology in cancer (Sakamoto & 
Frank, 2009). High expression of CREB1 is correlated to 
poor prognosis and recurrence not only in breast cancer 
(Chhabra, Fernando, Watkins, Mansel, & Jiang, 2007), but 
also in gastric cancer (Wang et al., 2015) and prostate can-
cer (Sunkel et al., 2016). It is also an unfavorable prognostic 
marker for liver cancer along with HNRNPH1, according 
to data from the Cancer Genome Atlas (Uhlen et al., 2017). 
More importantly, growth inhibition of CREB1-knockdown 
models of gastric cancer (Rao, Zhu, Cong, & Li, 2017) and 
acute myeloid leukemia cells (Shankar et al., 2005) were 
observed, implicating the potential of CREB1 as a drug 
target. This has been reflected through our pipeline incrim-
inating CREB1 as a drug target with highest potential due 
to its high expression in breast cancer. However, CREB1 
poses as the crucial target for activation by dint of its low 
expression in ovarian cancer. Notably, CREB1 serves as 
a biomarker common between breast and ovarian cancer, 
thereby making it also a target with high discriminatory 
potential between these types.T
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Moreover, it is also the first to impart CREB1 in such a 
role. However, we recognize CREB1 as a double-edged sword. 
Its high centrality makes it a good protein target to take down a 
few abnormally activated cancer pathways at once, but it may 
elicit off-target effects in normal cells. This lethality is shown 
in Rudolf et al's study (Rudolph et al., 1998) where mice 
lacking the CREB1 gene die immediately after birth due to 
postnatal lung defects. However, this sensitivity in these cells 
may be overcome with the specific use of CRE-decoy oligo-
nucleotide as a CREB1 inhibitor (Park, Nesterova, Agrawal, & 
Cho-Chung, 1999). The unintended/side-effects of this drug in 
other cancer cells and in vivo studies remain to be tested.

HNRNPR and HNRNPH1 are found in 6 and 3, respec-
tively, of the 9 centrality measures we have considered in the 
core network. HNRNPH1 is known to contribute to aberrant 
splicing of thymidine phosphorylase mRNA, which results 
in resistance of cancer cells to capecitabine (Stark, Bram, 
Akerman, Mandel-Gutfreund, & Assaraf, 2011). This drug 
is used to treat breast cancer and metastatic forms of other 
cancers. In breast cancer, it also plays a mixed role in splicing 
HER2, whose overexpression is associated with metastatic 
phenotypes and poor prognosis. There is a positive correlation 
of HNRNPH1 with HER2 in HER2-positive breast cancer 
samples (Zhang et al., 2008), but HNRNPH1 is shown to reg-
ulate HER2 to ensure less of the oncogenic variant Δ16HER2 
(Gautrey et al., 2015). However, given that HNRNPH1 has a 
complex role in splicing over 1,000 transcript targets (Uren 
et al., 2016), its role in breast cancer is inconclusive while 
lending clues to its inefficacy as a drug target. Indeed, in 
Ashraf et al.’s computational categorization (Ashraf et al., 
2018), CREB1 is in the 20th k-core of the cancer interactome 
having an eigenvector value of >0.01 (0.042), both important 
criteria for cancer drug target candidates with less side-effects. 
Conversely, HNRNPH1 is in the 10th k-core with eigenvector 
value <0.01 (0.0073). HNRNPR, a member of the same fam-
ily with HNRNPH1 and an unfavorable prognostic marker in 
liver cancer (Uhlen et al., 2017), also has eigenvector value 
<0.01 (0.005989), while falling in the 16th k-core.

Among the four top rankers from our analysis of DIN, 
PIK3CA has been found in 7 of the 9 centrality measures 
considered. In an attempt to consolidate PIK3CA as an im-
portant biomarker in our study, we found it to be mutated 
and amplified in all four cancers we utilized (Samuels & 
Waldman, 2010). Moreover, there are several approved in-
hibitors for PIK3CA as a cancer target, which is supported 
by its high eigenvector value (0.09) and its placement in the 
20th core by Ashraf et al. (2018). Nevertheless, in the same 
study, CREB1 is classified as a kinless non-hub node (R4) 
whereas PIK3CA is a connector non-hub node (R3), bear-
ing less potential as compared to CREB1. In fact, our study 
supports the same fact having CREB1 ranked higher than 
PIK3CA, more often in our centrality measure panel as well 
as having a higher influence in the extended network shown 

in Figure S3b. This is likely due to the drug-resistant nature 
of PIK3CA amplification and some of its mutations, which 
has been seen in breast and colorectal cancer (Huw et al., 
2013; Wang et al., 2018).

We found CREB1, HNRNPH1, HNRNPR, and PIK3CA 
to be occupying the prominent topmost positions in either CN 
or DIN interactome analysis. Thus, we do not see any further 
necessity of delving deep into the ranking analysis for iden-
tifying other essential drug targets, overlapping across breast 
and ovarian cancer.

5  |   CONCLUSIONS

Our study delineates a set of methods to classify different 
cancer types to find out their commonality, if any. We found 
gene expressions of breast and ovarian cancer to be overlap-
ping, of which the top 22 were further processed through 
network centrality and pathway analysis to find potential 
targets common between them. We propose CREB1 to be of 
highest potential to be inhibited in breast and for discrimi-
nation purposes between breast and ovarian cancer.
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