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A B S T R A C T

Paraneoplastic Ma Family (PNMA) comprises a growing number of family members which share relatively
conserved protein sequences encoded by the human genome and is localized to several human chromosomes,
including the X-chromosome. Based on sequence analysis, PNMA family members share sequence homology to
the Gag protein of LTR retrotransposon, and several family members with aberrant protein expressions have
been reported to be closely associated with the human Paraneoplastic Disorder (PND). In addition, gene mu-
tations of specific members of PNMA family are known to be associated with human mental retardation or 3-M
syndrome consisting of restrictive post-natal growth or dwarfism, and development of skeletal abnormalities.
Other than sequence homology, the physiological function of many members in this family remains unclear.
However, several members of this family have been characterized, including cell signalling events mediated by
these proteins that are associated with apoptosis, and cancer in different cell types. Furthermore, while certain
PNMA family members show restricted gene expression in the human brain and testis, other PNMA family
members exhibit broader gene expression or preferential and selective protein interaction profiles, suggesting
functional divergence within the family. Functional analysis of some members of this family have identified
protein domains that are required for subcellular localization, protein-protein interactions, and cell signalling
events which are the focus of this review paper.

1. Introduction

Paraneoplastic Ma Antigen (PNMA) family is represented by at least
fifteen family members, and three of the family members, PNMA1–3,
are known to be associated with the Paraneoplastic Disorder (PND)
[1–8]. Recent human genome sequence analysis has identified addi-
tional members that belong to this family and a total of nineteen family
members are currently known to be encoded by the human genome
[9,10]. The patients of PND associated with PNMA1–3 were reported to
exhibit syndrome consisting of paraneoplastic limbic and brain stem
encephalitis, production of auto-antibodies specific to PNMA 1, 2 or 3
as well as cancer [1,3,11–16]. Molecular diagnostic methodologies are
often used to diagnose PND, including detection of auto- antibodies
against PNMA proteins as well as identification of aberrantly expressed
PNMA 1, 2 or 3 in the tumor tissues [5,17,18]. Although the mechanism
that contributes to development of PND is unclear, its likely to be as-
sociated with aberrant expressions of PNMA1, 2 or 3 in tumor cells
originated from non-neuronal tissues, including lung, breast and testi-
cular tumors, leading to the development of tumor immunity against

PNMA1, 2, or 3 [19–24]. In normal individuals, PNMA family members
are predominantly expressed in the human brain, and testis, except for
MOAP-1 (PNMA4), and CCDC8 which are ubiquitously expressed in
many human tissues and higher MOAP-1 expression is detected in the
human brain and heart [5,8,25–27]. Among the PNMA family mem-
bers, MOAP-1 is the most extensively studied protein in the family.
MOAP-1 was reported to mediate apoptotic signalling by interacting
with Bax, a pro-apoptotic member of Bcl-2 family [8,28–35]. Further-
more, MOAP-1 was shown to interact with RASSF1A tumor suppressor
through TNF receptor mediated signalling upon activation of the TNF
receptor by TNF ligand [28–31,36–39]. Other than PND, genetic mu-
tations of two other PNMA family members are known to be associated
with restrictive human growth and mental retardation [25,40]. This
paper describes current information on some members of the PNMA
family members that are relatively well characterized, including their
roles in cancer and apoptotic signalling.
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2. Chromosomal localization and gene structure

PNMA family members are encoded by at least 15 genes localized to
human chromosome 14 (PNMA1 and MOAP-1), chromosome 19
(PNMA8A-C, and CCDC8), chromosome 8 (PNMA2), and X chromo-
some (PNMA3, PNMA5, and PNMA6A, PNMA6B, PNMA6E, PNMA6F,
PNMA7A, and PNMA7B, Table 1). In addition, three additional PNMA
family members, PNMA6E, 6F, and 8C which are likely to be generated
through gene duplication events, were identified after analysis of the
human genome databases (GRCh37.p5, GRCh38.p10 [41]). In addition,
extensive annotations of the human genome database (GRCh38.p10)
has resulted in reclassification of some of the PNMA members,
PNMA6C, and PNMA6D, as existing members of the PNMA family,
PNMA6A, and PNMA6B, respectively (Table 1 [42,43]), as well as
identification of pseudogenes that do not belong to the PNMA family
(Table 2). Furthermore, among the PNMA gene family, PNMA6B is
classified as unprocessed pseudogene without protein coding function

[43]. It is interesting to know that although most PNMA family mem-
bers are expressed from multiple exons, the coding sequences of PNMA
family members are mostly encoded by a single exon (Table 1), raising
the possibility that the expression of PNMA family members may be
regulated through other cellular mechanisms. Indeed, MOAP-1 is
known to be regulated by miRNAs as well as proteasome pathway
[30,44,45].

3. Sequence homology

PNMA family members share high protein sequence homology with
the highest sequence homology of 84% between PNMA7A and PNMA7B
(Fig. 1). The lowest protein sequence homology of 9.5% is between
PNMA7A and CCDC8 (Fig. 1). PNMA family members share high se-
quence homology at the N-terminal conserved domain (NCD), except
PNMA7A, and PNMA7B (Fig. 2). The other conserved domain of the
PNMA family members is the central conserved domain (CCD), except

Table 1
Chromosomal localization and gene structure of PNMA family members.a

Protein Protein name Chromosome location
(GRCh38.p10) and name of
transcript

Exon Intron Number of amino acids Protein coding in
single exon

Homologues in other species, Chimpanzee
(C) and Mouse (M), % amino acid identity

P1 PNMA1 14: 73711783-73714372;
PNMA1-201

1 0 353 Yes C (99%)
M (76%)

P2 PNMA2 8: 26504686-26514092;
PNMA2-204

3 2 364 Yes C (100%)
M (92%)

P3 PNMA3 X: 153057036-153058467;
PNMA3-202

1 0 463 Yes C (99%)
M (72%)

P4 PNMA4 (MOAP1) 14: 93,182,199-93,184,923
MOAP1-202

2 1 351 Yes C (99%)
M (76%)

P5 PNMA5 X: 152988824-152992214;
PNMA5-201

2 1 448 Yes C (98%)
M (56%)

P6 PNMA6A/PNMA6C X: 153072482-153075018;
PNMA6A-201

2 1 399 Yes C (99%)

P7 PNMA 6B/
PNMA6D

X: 153075769-153076968;
PNMA6B-201

1 0 No protein; unprocessed
pseudogene

N/A N/A

P8 PNMA6E X: 153,396,906-153,401,420
PNMA6E-201

2 1 647 Yes M (64%)

P9 PNMA6F X: 153317681-153321822;
PNMA6F-201

2 1 578 Yes C (99%)
M (65%)

P10 PNMA7A/
ZCCHC12/SIZN1

X: 118823790-118826968;
ZCCHC12-201

4 3 402 Yes C (99%)
M (75%)

P11 PNMA7B/
ZCCHC18

X: 104,112,511-104,115,604
ZCCHC18-203

2 1 403 Yes C (92%)
M (68%)

P12 PNMA8A/PNMAL1 19: 46,466,498-46,471,563
PNMA8A-201

3 2 439 No (2 exons) C (99%)

P13 PNMA8B/PNMAL2 19: 46,491,191-46,496,498;
PNMA8B-202

1 0 635 Yes C (98%)

P14 PNMA8C 19: 46,424,697-46,428,951;
PNMA8C-201

1 0 204 Yes C (99%)
M (74%)

P15 CCDC8 19: 46410372-46413584;
CCDC8-201

1 0 538 Yes C (99%)
M (62%)

a Information derived from HGNC (HUGO Gene Nomenclature Committee), Uniprot, and Ensembl. Transcript name is based on information provided by Ensembl genome browser
based on human genome assembly, GRCh38.p10.

Table 2
The genomic repositioning of earlier reported PNMAs.

Table 2 shows the new locations of 5 PNMA family members reported by Iwasaki et al. [41]. From sequence analysis, it was unearthed that hsPNMAs 7, 8 and 16, reported by the earlier
group, are indeed, PNMAs. However, as can be seen from the table, they are already known by other aliases, namely 6F, 6E and 8C, respectively. The query length of the PNMAs covered
while doing a BLAT analyses of the sequences located in GRCh37.p5 showed 100% match (identity) with those of the repositioned PNMAs, thereby validating that the genes encode
additional PNMA family members which are likely to be generated through gene duplication events. However, the earlier reported hsPNMA 9 and 16, are found to be not belonging to the
PNMA family. In fact, the earlier hsPNMA9 has been now found to be an unprocessed pseudogene AC243591.1. Similarly, hsPNMA16 reported earlier has now been mapped onto
AC011551.1, an unprocessed pseudogene.

hsPNMA No. Genomic location in GRCh37.p5 Genomic location in GRCh38.p10 Overlapping genes Orientation Length % ID

7 X: 152584221 – 152587591 X: 153318763 – 153322133 PNMA6F Forward 3371 100
8 X: 152662364 – 152663269 X: 153396906 – 153397811 PNMA6E Forward 906 100
9 X: 152197130 – 152200901 X: 153028785 – 153032555 AC243591.1 Forward 3772 99.68
15 19: 47036933 – 47037357 19: 46427925 – 46428338 PNMA8C Forward 414 100
16 19: 46931182 – 46931595 19: 46533676 – 46534100 AC011551.1 Forward 425 100
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PNMA8A-C, which show significant sequence divergence within this
region (Fig. 2). Situated between NCD and CCD domains are unique
protein sequence or domain (UPD) found in some members of PNMA
including the BH3-like (BH3-L) domain of MOAP-1 and PNMA1
(Figs. 2–3). In addition, a region rich in Lysine and Arginine basic re-
sidues, and designated as KRs is found in the protein sequences of all
the members of PNMA family, except PNMA8B, and PNMA8C. Fur-
thermore, it is interesting to know that PNMA family members share
sequence homology at a poly-glutamic acid rich region (PolyE) near the
C-terminus, except PNMA6F, 8A, and 8C (Fig. 3A–B). Beyond the poly-
glutamic acid rich region is the C-terminus with varying length and low
sequence homology (variable C-terminal sequence, VCS) that can be
identified in the protein sequences among the PNMA family members.
Nuclear localization sequence (NLS) was identified in the VCS region of
PNMA5, PNMA7A and PNMA7B (Fig. 3A–B). From the sequence ana-
lysis, PNMA family members are conserved in quite a number of spe-
cies, including rat, mouse, monkey, and chimpanzee [4,41]. Further
sequence analysis has shown that PNMA family members are conserved
in chimpanzee and mouse with the lowest and highest amino acid se-
quence identity between 56% and 99% (Table 1), with the exception of
PNMA6A, PNMA8A and PNMA8B which are found only in human and
chimpanzee, but not in mouse, based on sequence analysis using the
Blast tool of Ensembl [43]. Similarly, human PNMA6E shares sig-
nificant amino acid sequence homology (64%) to mouse PNMA6E
(Gm18336) and 77% of the sequence homology with chimpanzee
PNMA6F. Although sharing high sequence homology, functional di-
versifications of PNMA family members have been reported [46,47]. It
is likely that the functional diversifications stem from variation in
amino acid sequences of the PNMA family members, particularly from
the UPD and VCS regions, as evidenced by the presence of BH3-like
domain of MOAP-1 in the UPD region, and nuclear localization signal of
PNMA5, PNMA7A, and PNMA7B in the VCS region, respectively. In
addition, based on sequence alignment, PNMA family members exhibit
significant homology to Gypsy12_DR Gag protein of LTR retro-
transposon, suggesting PNMA family members are derived from LTR
retrotransposon with common origins in Eutherians and Marsupials
[9,10,41].

4. Protein-protein interactions

4.1. Interaction with Bcl-2 family members

MOAP-1, also known as MAP-1, is the most extensively studied
protein in the family. MOAP-1 is a 39.5 kDa novel molecule identified
through interaction with Bax, a pro-apoptotic member of Bcl-2 family
[8,32]. Deletion mapping and mutagenesis studies showed that MOAP-

1 interacts with Bax through its BH3-like domain, which shows sig-
nificant sequence homology to BH3 domains of pro-apoptotic molecules
of the Bcl-2 family. The BH3-domain of Bcl-2 family plays a critical role
in mediating apoptotic signalling as highlighted by the presence of
BH3-only pro-apoptotic molecules which are involved in apoptosis
signalling through interactions with multi-domain pro-apoptotic as well
as pro-life molecules of the Bcl-2 family [48–57]. Structural information
derived from X-ray crystallography and NMR studies of Bax in complex
with the BH3 domain of pro-apoptotic molecules such as Bim and Bid
have been determined and the data show the important role of BH3-
domain of Bim and Bid in promoting activation of Bax through binding
to Bax by inducing change in conformation of Bax, leading to exposures
of the BH3 domain as well as C-terminal domain (α6–α8) of Bax
[54,58–62]. Once exposed, Bax BH3 and the C-terminal domains en-
gage neighbouring Bax monomer to generate Bax dimers, and oligomers
[49,58,59,62]. Furthermore, change in the Bax conformation enables C-
terminus of Bax (α9) to be associated with mitochondrial membrane,
effectively anchoring Bax oligomers to mitochondria, leading to mi-
tochondrial dysfunction and release of mitochondrial cytochrome C
[58,59]. Although required for binding to Bax, deletion mapping stu-
dies have shown that the BH3-like domain of MOAP-1 is not required
for MOAP-1 to interact with Bcl-XL, which interacts with the N- and C-
terminal regions of MOAP-1 [8,32,34]. Due to its pro-apoptotic activity,
Bax is known to be frequently mutated in cancer cells [63–66].

4.2. Interaction with transcription factors and growth factors

Other than MOAP-1, PNMA7A (ZCCHC12, SIZN1) which shares
32% amino acid sequence identity with MOAP-1 was reported to
function as transcriptional co-activator and participate in Bone
Morphogenic Protein (BMP) signalling by interacting with Smad1 and
CBP [67]. Other than BMP cell signalling, PNMA7A was identified as
transcriptional co-activator that interacts with c-Jun and activates AP-1
and CREB signalling [68]. Like many members of PNMA family,
PNMA7A was found to be predominantly expressed in mouse brain,
including cholinergic neurons as well as testis, pointing to the possi-
bility that PNMA7A could play an important role in the developmental
regulation or maintenance of neuronal cells [67,68]. In addition, mu-
tations of PNMA7A were found to be associated with human mental
retardation [40,69]. Currently, it's not clear whether PNMA7A plays a
role in neuronal survival or apoptosis; however, recent studies showed
that PNMA7A functions as an oncogene and the expression is elevated
in thyroid cancer cells [70,71], suggesting that PNMA7A could function
to promote neuronal and cancer cell growths. The coiled coil domain
containing molecule, CCDC8, was one of the candidate genes identified
to play a crucial role in human growth. Mutations of CCDC8 gene were

Fig. 1. Sequence comparisons. Sequence comparisons were carried out using MUSCLE sequence alignment software to identify sequence homology based on percent identity of amino
acid sequences between members of PNMA family. Percent sequence homology greater than 40% are highlighted in bold.
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associated with post-natal growth restriction, one of the well described
features of 3M-syndrome [25,72]. Other than CCDC8 mutations in two
other human genes, CUL7 and OBSL1, were also reported to be the
important contributing factors of 3M-syndrome [72]. Interestingly,
OBSL1 was found to be the common protein interacting partner of both

CCDC8 and CUL7, suggesting that the molecules might participate in
common cell signalling pathway that regulate human growth [25]. In
fact, patients with 3-M syndrome were found to exhibit growth hor-
mone deficiency or disordered growth factor signalling [73,74]. Fur-
thermore, protein expression studies showed that CCDC8 protein level

Fig. 2. Sequence Alignment of PNMA family members. Unitprot amino acid sequences of PNMA family members were aligned using T-Coffee and Clustal W sequence alignment programs,
and conserved sequences were high-lighted in black using Box Shade software. Identity of unitprot protein sequences, Q96BY2 (MOAP1), Q8ND90 (PNMA1), Q9UL42 (PNMA2), Q9UL41
(PNMA3), Q96PV4 (PNMA5), P0CW24 (PNM6A), A0A0J9YXQ4 (PMA6E), A0A0J9YX94 (PMA6F), Q6PEW1 (ZCH12), P0CG32 (ZCC18), Q86V59 (PNM8A), Q9ULN7–5 (PNM8B),
A0A1B0GUJ8 (PNM8C), Q9H0W5 (CCDC8).
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is relative low in tumor cells, and over-expression of CCDC8 in cancer
cells inhibits invasiveness and metastasis of cancer cells [75].

4.3. Interaction with death receptors associated signalling molecules and
RASSF family members

Other than interacting with Bcl-2 family members, MOAP-1 was
reported to be associated with RASSF1A, and RASS6 [29,76–78].
RASSF1A is a tumor suppressor and its protein expression is frequently
silenced in many cancer cells through hyper-methylation of its gene
promoter [37,79–84]. Deletion and site directed mutagenesis studies
showed that MOAP-1 interacts with poly-glutamic acid residues of
RASSF1A [30,85,86]. In addition, MOAP-1 was shown to interact with
RASSF1A, and TNF-R through its RASSF1A binding domain within the
KRs region and poly-glutamic acid rich residues (polyE) of its C-ter-
minus, respectively. Other than interacting with TNF-R1, MOAP-1 was
reported to interact with TRAIL-R1 [38,86]. MOAP-1 was shown to be
present in an inactive conformation through intramolecular interaction,
and by interacting with RASSF1A, MOAP-1 is unfolded with its exposed
BH3-like domain to interact and promote Bax activation, leading to
transmigration of activated Bax to the mitochondria [38]. Other than
RASSF1A, MOAP-1 was reported as MTCH2 interacting protein and
plays an important role in Fas receptor mediated apoptosis signalling by
promoting recruitment of tBid to the mitochondria during apoptosis
[87].

4.4. Protein-protein interaction among the PNMA family members

In addition, MOAP-1 was reported to interact with its family
members, including PNMA2, and PNMA5 [46,47]. Interaction with
PNMA2 leads to inhibition of pro-apoptotic function of MOAP-1. In
contrast, interaction with PNMA5 enhances pro-apoptotic function of
MOAP-1. Furthermore, although sharing relatively high sequence

homology, interaction between MOAP-1 and PNMA1 was not detect-
able in co-immunoprecipitation studies [46]. In addition, it is likely that
PNMA family members may interact with other cellular proteins that
modulate its activity or promote activation of activity that leads to
stimulation of cell growth such as the aberrantly expressed PNMA1–3 in
cancer cells (Fig. 4).

5. Protein domains and cell signalling

5.1. Apoptosis signalling of PNMA family members

Although MOAP-1 (PNMA4) was reported to mediate apoptosis by
interacting with Bcl-2 family members, and RASSF protein isoforms,
other PNMA family members are not known to be associated with these
molecules, suggesting functional divergence among the PNMA family
members [8,32]. In the absence of non-apoptotic stimuli, MOAP-1 is
held in inactive conformation where the BH3-like domain of MOAP-1 is
buried. This ‘closed’ confirmation is mediated via electrostatic inter-
actions between the 178EEEF and 202KRRR motifs of MOAP-1 [34]. Si-
milar to MOAP-1, Bid, a pro-apoptotic member of Bcl-2 family was
reported to be held in inactive conformation through intramolecular
interaction between the BH3 and BH3-like domains of Bid [55].

Activation of MOAP-1 requires death stimuli, RASSF1A or RASSF6,
in the presence of K-RAS to promote or enhance apoptotic signalling
through change of MOAP-1 conformation, leading to exposure of
MOAP-1 BH3-like domain, which interacts with the pro-apoptotic Bax,
resulting in activation of apoptotic cell death [30,39]. The pro-apop-
totic Bid is similarly activated through cleavage of the N-terminus do-
main, leading to exposure of its BH3 domain that promotes apoptotic
signalling, including interactions with pro-life and pro-death members
of Bcl-2 family [55]. In addition, mouse xenograft experiments showed
that expression of both MOAP-1 and MOAP-1 interacting molecule,
RASSF1A, in cancer cells produce additive effect in tumor suppression

Fig. 3. Schematic representation and conserved domains of PNMA family members. A. Conserved domains identified in the protein sequences of PNMA family members are highlighted
based on Unitprot amino acid sequences presented in Fig. 2. B. General structure of PNMA family member. NCD, N-terminal Conserved Domain; UPD, Unique Protein Domain; CCD,
Conserved Central Domain (CCD-a, CCD-b, and CCD-c); KRs, KR-rich sequence, PolyE, Poly-Glutamic Acid Sequence; VCS, Variable C-terminal Sequence, NLS, nuclear localization
sequence, *NLS, putative nuclear localization sequence.
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better than individually expressed MOAP-1 or RASSF1A [29,88]. Fur-
thermore, MOAP-1 knockout mouse model showed that MOAP-1 par-
ticipates in Fas receptor mediated apoptosis by interacting with MTCH2
to facilitate recruitment of tBid to the mitochondria through two re-
gions of MOAP-1 (aa 120–162 and 253–293), including the critical
amino acid residues (120L, and 125GHE) within the BH3-like domain of
MOAP-1, which lends further support to the important role of MOAP-1
in apoptosis signalling through mitochondria signalling pathway [87].

Similar to MOAP-1, PNMA1 was reported to mediate apoptotic cell
death of cerebellar granule neurons (CGN), which requires the N-
terminal region of PNMA1 containing a BH3-like domain [6,89].
However, the BH3-like domain of PNMA1 is not known to be associated
with pro-apoptotic Bax, and it is possible that it may interact with an
un-identified member of the Bcl-2 family as apoptosis mediated by
PNMA1 can be inhibited by over-expression of Bcl-2 in the neuronal
cells even no direct interaction between PNMA1 and Bcl2 has been
observed, suggesting that Bcl2 indirectly inhibits PNMA1 by seques-
tering the BH3-like domain-binding molecule of PNMA1 [89]. Further
evidence shows that PNMA1 expression is elevated in the striatum of
mouse model of Huntington's disease, suggesting that PNMA1 expres-
sion plays an important role in neuro-degeneration by inducing neu-
ronal cell death in Huntington's disease model [89]. The nuclear loca-
lization signal (NLS) of PNMA7A plays an important role for protein
translocation to nucleus where PNMA7A was reported to function as
transcriptional activator by interacting with Smad1 and CBP in BMP
mediated cell signalling [67]. In addition, PNMA7A was found to ac-
tivate AP-1 and CREB, and interacts with C-Jun through its nuclear
targeting function [68].

5.2. Anti-apoptosis cell signalling and cancer

PNMA2, an onconeuronal antigen, was reported to be aberrantly
expressed in a number of tumors, and its over-expression is likely to be
closely associated with tumorigenesis [5,14,15,46,90–100]. However,
other than closely associated with paraneoplastic disease, the molecular
function of PNMA2 remains unclear. In order to identify the potential

function of PNMA2, over-expression studies were conducted which
showed that unlike PNMA1 and MOAP-1, over-expressed PNMA2 failed
to promote apoptotic signalling in transfected MCF-7 cells. However,
PNMA2 was shown to interact with both PNMA1 and MOAP-1 in co-
immunoprecipitation studies, as well as functionally antagonized the
pro-apoptotic function of both MOAP-1 and PNMA1 [46]. The func-
tional domain of PNMA2 involved in interaction with PNMA1 and
MOAP-1 has not been identified. In contrast, the N-terminal domain (aa
1–315) of MOAP-1 was reported to be required to interact with PNMA5,
and transient co-expression of MOAP-1 and PNMA5 synergistically
enhanced apoptotic signalling in transfected cancer cells. The C-term-
inal domain of PNMA5 (aa 316–448) contains a NLS that is required for
nuclear localization of PNMA5. Both the N-terminal and C-terminal
domains of PNMA5 are required for apoptotic signalling in cancer cells
[47]. Other than PNMA5, functional characterization of CCDC8 showed
that over-expressed CCDC8 inhibited invasiveness of A549 cells while
CCDC8 knock-downed cells promoted invasiveness of the cancer cells in
cell migration assay [75], suggesting that CCDC8 functions as tumor
suppressor in the cancer cells. In contrast, ZCCHC12 (PNMA7A) was
found over-expressed in papillary thyroid cancer tumors and ZCCHC12
knocked downed thyroid cancer cell lines exhibited reduced number of
colonies formed in the colony formation assay [70,71], providing fur-
ther evidence to support that ZCCHC12 functioned as an oncogene in
papillary thyroid cancer [71].

6. Regulation of PNMA family members

6.1. Regulation by ubiquitination and protein degradation

MOAP-1 has a short half-life of 25min and the stability of the
protein is regulated through ubiquitin proteasome pathway in which
degradation of MOAP-1 occurred at G1, and S-G2 phases of cell cycle by
the APC/CCdh1 and the UBR5 ubiquitin ligases, respectively [101–103].
In contrast, Trim39 ubiquitin ligase interacts with MOAP-1 and pro-
motes stability of MOAP-1 by inhibiting the activity of APC/CCdh1-
mediated ubiquitination and degradation [104,105]. Due to its short

Fig. 4. Schematic representation of PNMA protein interaction network and cell signalling. Reported interactions of MOAP-1 were identified through protein-protein interaction assays,
including co-immunoprecipitation, and GST-pull down assays. Cell signalling pathways mediated by the protein-protein interactions are highlighted.
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half-life, the endogenous level of MOAP-1 in cancer cell lines was
shown to be relatively low; however, MG-132, a proteasome inhibitor,
could significantly enhance the stability and level of MOAP-1 protein in
cancer cells [103].

6.2. Regulation by miRNA

Although the exact mechanism has not been identified, MOAP-1
protein level was enhanced or stabilized in the cancer cells when
treated with chemo-drugs or apoptosis stimuli [103]. One possible ex-
planation for stabilization of MOAP-1 during drug-induced apoptosis in
cancer cells is the down-regulation of miR-1228 expression level during
drug treatment [44]. miR-1228 negatively regulates MOAP-1 expres-
sion by binding to the miRNA target sequence of the MOAP-1 mRNA,
and down-regulation of miR-1228 was shown to promote MOAP-1
stabilization [44]. Similarly, miR-25 has been reported to promote cell
proliferation by promoting down-regulation of MOAP-1 expression in
lung cancer [45].

6.3. Regulation by other mechanisms

In addition, MOAP-1 may be regulated by phosphorylation as sev-
eral phosphorylation sites have been identified in MOAP-1 protein se-
quence [29]. Analysis of MOAP-1 gene led to the identification of CpG
island located near the gene promoter of MOAP-1, pointing to the
possibility that MOAP-1 might be regulated through hyper-methylation
of its gene promoter [106]. Other than gene expression regulation, pro-
apoptotic activity of MOAP-1 was reported to be regulated by members
of PNMA family. Co-expression of MOAP-1 with PNMA2 resulted in
inhibition of pro-apoptotic activity of MOAP-1 in transiently transfected
cancer cells [46]. Interestingly, PNMA2 has been shown to antagonize
both pro-apoptotic activities of MOAP-1 and PNMA1 through hetero-
dimeric interaction with MOAP-1 and PNMA1 [46]. In contrast, co-
expression of MOAP-1 with PNMA5 significantly enhanced pro-apop-
totic activity of MOAP-1 in transfected cancer cells [47]. Similar to
MOAP-1, CCDC8 was found to be hyper-methylated or epigenetically
silenced in breast tumors that showed metastasis potential [107]. In
addition, CCDC8 knock-downed cancer cells showed increase in mi-
gration potential when tested in cell migration assay [75]. Regulation
of other PNMA family members is currently unknown.

7. Concluding remarks

PNMA family is represented by at least fifteen family members en-
coded by the human genome, and many family members share rela-
tively conserved amino acid sequences near the N-terminal domain,
whereas the C-terminal domain of some of the family members are
functionally diverse, which includes nuclear localization signal and
DNA binding domain. Although sharing relatively conserved amino
acid sequence, some members of the PNMA family exhibit functional
divergence, including members that are agonist or antagonist of
apoptosis signalling when expressed in cancer cells. It's likely that the
PNMA family represents a novel set of proteins that are involved in
regulation of cell growth, apoptosis, or cell fate determination in dif-
ferent cell types, including brain, testis, and heart where PNMA family
members have been shown to express at relatively high levels. Further
investigations are required to determine functional relationship of other
PNMA members, and their specific role in human cells which could lead
to a better understanding of the functions of PNMA family.
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