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Abstract
A novel series of hybrid indole–thiazolidinedione–triazole derivatives (6a-l) were synthesized and assessed for their in vitro inhibitory activity 
against porcine pancreatic α-amylase. The synthetic procedure consists of 3 steps. A crucial step in this process involves the generation of 
novel target molecules using a Cu(I)-catalyzed azide–alkyne cycloaddition reaction. The α-amylase inhibition IC50 value of the targeted 
compounds ranged from 0.51 ± 0.02 to 7.99 ± 0.28 μM as compared with 0.68 ± 0.02 μM with acarbose as the standard drug. Using the 
Autodock technique, all the derivatives 6a-l were subjected to molecular docking investigations against porcine pancreatic α-amylase (PDB ID: 
1OSE). Moreover, it was discovered that the docked compounds had excellent binding affinities that ranged from −10.1 to −10.8 kcal/mol as 
compared with the standard −7.9 kcal/mol. Additionally, a comprehensive analysis of the physicochemical and pharmacokinetic properties 
associated with absorption, distribution, metabolism and excretion (ADME) was conducted for all the synthesized compounds.
Keywords: 1,2,3-Triazole, α-amylase, antidiabetic activity, indole, molecular docking, thiazolidinedione.
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Diabetes mellitus (DM), which is commonly known as hypergly-
cemia, refers to a group of metabolic disorders that are associ-
ated with the reduced function of the pancreas gland, which is 
responsible for producing the digestive hormone insulin.1,2

Prolonged high blood sugar can damage tissues such as eyes, 
heart, blood vessels, kidneys, and nerves.3,4 DM is categorized 
by insulin production levels or blood sugar regulation.5 Type 2 
diabetes (DM2) results from insufficient insulin secretion or insu-
lin resistance, often due to a high carbohydrate intake and obes-
ity.6,7 In 2022, the International Diabetes Federation reported 
464 million people with diabetes globally, with over 90% having 
DM2.8 Current α-amylase inhibitors such as acarbose, miglitol, 
and metformin cause side effects including diarrhea and liver 

disorders, highlighting the need for new drug discovery ap-
proaches to improve efficacy and reduce side effects.9–11

In medicinal chemistry, thiazolidine-2,4-dione is a unique 
novel class of heterocyclic moiety that demonstrates note-
worthy biological properties such as antibacterial,12,13 anti-
cancer,14–16 antithyroid,17 antimycobacterial,18 and antidiabetic 
activities,19 and serves as a versatile scaffold with multi-targeted 
properties.

Drugs such as pioglitazone, rosiglitazone, lobeglitazone, 
and epalrestat treat DM2, while ponesimod is approved for 
multiple sclerosis and psoriasis. Indole, an aromatic hetero-
cyclic compound, is notable for its diverse pharmacological 
effects, including anticancer,20,21 anti-inflammatory,22,23
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analgesic,24,25 anticonvulsant,26,27 antitubercular,28 anti-
diabetic,29–31 and antimicrobial32 properties. Similarly, 
1,2,3-triazole is a stable moiety with various biological 
properties and industrial applications such as antitubercu-
lar,33,34 anticancer,35,36 antidiabetic,37,38 antimalarial,39

anti-inflammatory,40,41 anti-HIV,42 and antimicrobial43

activities. Figure 1 presents compounds with thiazolidine- 
2,4-dione, triazole, and indole moieties, emphasizing their 
significance in medicinal chemistry. Moreover, hybrids con-
taining indole, thiazolidinedione, and triazole moieties have 
shown promising potential as anticancer,44 antimalarial, 
and antibacterial agents.45 However, their potential as 
α-amylase inhibitors has not yet been explored.

Therefore, to further our research interest in develop-
ing potent α-amylase inhibitors,46–48 we synthesized 
indole–thiazolidinedione–triazole hybrids using a hybrid 
drug design strategy to evaluate their α-amylase inhibition 
activities (Fig. 2).

We discovered a novel antidiabetic compound and synthe-
sized 12 heterocyclic molecules featuring thiazolidine-2,4-dione 

and indole-linked 1,2,3-triazole, as depicted in Scheme 1. 
N-propargylation of the indole ring using propargyl bromide 
and K2CO3 in Dimethylformamide (DMF) at ambient tempera-
ture yielded terminal alkyne 2 in 92% yield. Compounds 2 and 3 
underwent Knoevenagel condensation using piperidine as the 
base and ethanol as the solvent at reflux.49 After synthesizing al-
kyne 4, organic azides 5a-l were prepared.50 Compounds 6a-l 
were then formed by reacting alkyne 4 with azides 5a-l in 
DMF at 70 °C using CuSO4·5H2O and sodium ascorbate, in 
yields of 82% to 88%. Final purification was done by recrystal-
lization in DMF.

Various solvents (Tetrahydrofuran [THF], tert-butanol, 
DMF) and catalysts (CuI, CuSO4, Cu(OAc)2 with sodium as-
corbate) were tested for synthesizing compounds 6a-l. 
Microwave irradiation significantly improved yields com-
pared with conventional methods. According to Table 1, 
microwave irradiation increased yields to 50% (THF, 
CuSO4, H2O) from 24%, to 69% (tert-butanol, Cu(OAc)2, 
H2O) from 28%, and to 73% (DMF, Cu(OAc)2, H2O) from 
62%. The optimal condition was DMF/H2O (2:1) with 
CuSO4 and sodium ascorbate, yielding up to 88% in 12 min.

Compounds 6a-l were evaluated for in vitro α-amylase ac-
tivity using acarbose as a positive control at concentrations 
of 25, 50, 100, 200, and 400 μg/mL, and the results are shown 
in Table 2. Compounds 6a-l showed promising α-amylase in-
hibition, with effectiveness increasing linearly with concentra-
tion, suggesting potential for antidiabetic drug development.

The comparative study of percentage inhibition exhibited that 
the targeted drugs 6a-l effectively and dose-dependently inhib-
ited α-amylase. Among all the synthesized compounds, particu-
larly halogen containing compounds 4-chloro substituted 6d and 
4-bromo substituted 6e, were identified to be potent inhibitors 
with 83.22 ± 0.33 and 82.12 ± 0.62% inhibition having 
IC50 = 0.53 ± 0.02 and 0.51 ± 0.02 μM, respectively. However, 
4-flouro substituted 6i led to a significant decrease in potency 
with IC50 of 6.43 ± 0.26 μM. Furthermore, when comparing 
the acarbose with an IC50 value of 0.55 ± 0.04 μM, derivatives 
6d and 6e show excellent inhibitory activity, while 4-methyl sub-
stituted 6c (IC50 = 0.9 ± 0.05 μM) and 2,6 dichloro substituted 
6l (IC50 = 0.68 ± 0.02 μM) showed good inhibitory activity, 
and derivatives 6a, 6b, 6f, 6g, 6h, 6j, and 6k showed moderate 
activity with IC50 values ranging from 1.28 to 7.99 μM.

We used Autodock Vina 1.5.7 for docking α-amylase (PDB 
ID: 1OSE).51–53 Potent compounds are tabulated in Table 3
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Fig. 1. Commercially available drugs containing indole, thiazolidinedione, 
triazole motif, and acarbose.
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Fig. 2. Design of indole–thiazolidinedione–triazole hybrids.
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Scheme 1. Synthesis of Indole clubbed 2,4-thiazolidinedione linked 
1,2,3-triazole 6a-l via click chemistry. Reaction conditions: (a) propargyl 
bromide, K2CO3, DMF; (b) piperidine, MeOH, reflux; (c) CuSO4, sodium 
ascorbate, DMF:H2O, microwave irradiation.
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and additional compounds are presented in the supplementary 
information. Molecular docking shows that all compounds 
bind efficiently to α-amylase with scores of more than 
−7.9 kcal/mol. Compounds 6d and 6e, with binding energies 
of −10.6 and −10.3 kcal/mol, respectively, both form similar 
hydrogen bonds with Asp197, His299, and Gly306 (Figs. 3
and 4). Thiazolidinedione protonation in docking is influ-
enced by the MMFF94 force field, which may not reflect 
the deprotonated state expected under physiological condi-
tions. Docking studies showed that 2,4–thiazolidinedione– 
indole-1,2,3–triazole derivatives bind effectively to α-amylase, 
with favorable interactions. Re-docking and superimposing 
the co-crystallized ligand with the extracted ligand yielded an 
root mean square deviation (RMSD) of 0.963 Å, confirming 
the docking procedure (Fig. 5).

The structural activity relationship analysis of the inhibitors, 
based on their molecular docking studies and antidiabetic ac-
tivity assays, reveals significant insights into their efficacy. 
Compound 6a with aniline substitution exhibited a moderate 
IC50 value of 1.76 ± 0.08 μM and a binding energy of 
−10.2 kcal/mol, forming 4 hydrogen bonds. Electron-donat-
ing groups, such as methoxy (6b, 4-OCH3) and methyl (6c, 

Table 3. The docking scores for the potent compounds and acarbose with porcine pancreatic α-amylase (PDB: 1OSE).

Ligand  
name

Binding energy  
(kcal/mol)

No. of  
H-bonds Key residues interacted with ligand

6d −10.6 3 His299, Asp300, Asp197, Gly306, His201, Tyr62, Trp59, Val163, Lys200, Leu162, Ile235, Leu165
6e −10.3 3 Asp197, His299, Gly306, Asp300, His201, Tyr62, Trp59, Val163, Lys200, Leu165, Leu162, Ile235
Acarbose −7.9 5 His299, Arg195, Gly306, Lys200, Trp69, Tyr151, Asp300

Table 1. Optimization of the reaction conditions for (E)-2-(4-((3-((2,4-dioxothiazolidin-5-ylidene)methyl)-1H-indol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)-N-(p-tolyl) 
acetamide.

Sr no. Solvent Catalyst

Conventional method Microwave method

Time (h) Yield (%)a Time (min) Yield (%)a

1 THF:H2O (2:1) CuSO4, sodium ascorbate 28 24 45 50
2 t-BuOH:H2O (2:1) Cu(OAc)2, sodium ascorbate 13 28 29 69
3 DMF:H2O (2:1) Cu(OAc)2, sodium ascorbate 10 62 22 73
4 t-BuOH:H2O (2:1) CuI 11 57 20 71
5 DMF:H2O (2:1) CuI 9 66 17 79
6 t-BuOH:H2O (2:1) CuSO4, sodium ascorbate 8 64 14 78
7 DMF:H2O (2:1) CuSO4, sodium ascorbate 7 73 12 88

aIsolated yield after crystallization from DMF.

Table 2. In vitro α-amylase inhibitory activity of the synthesized compounds (6a-l).

Compound no.

Sample concentration (μg/mL) ± SD 
Inhibition of α-amylase (%)a

IC50 (μM)25 50 100 200 400

6a 38.08 ± 1.04 45.59 ± 0.52 51.65 ± 1.00 55.74 ± 0.65 59.49 ± 0.10 1.76 ± 0.08
6b 42.50 ± 1.07 48.24 ± 0.94 54.08 ± 0.84 57.62 ± 0.75 61.48 ± 0.71 1.28 ± 0.05
6c 45.92 ± 0.57 52.98 ± 0.51 58.72 ± 0.43 66.44 ± 0.59 68.88 ± 0.49 0.9 ± 0.05
6d 48.24 ± 0.53 60.82 ± 0.60 66.89 ± 0.40 72.29 ± 0.92 83.22 ± 0.33 0.53 ± 0.02
6e 48.01 ± 0.44 59.38 ± 0.27 64.90 ± 0.45 71.41 ± 0.47 82.12 ± 0.62 0.51 ± 0.02
6f 36.20 ± 1.10 40.95 ± 0.76 51.21 ± 0.81 54.08 ± 0.59 58.83 ± 0.88 1.95 ± 0.10
6g 27.37 ± 0.69 29.25 ± 0.77 35.21 ± 0.67 43.38 ± 0.77 51.43 ± 1.13 6.83 ± 0.81
6h 27.04 ± 0.39 31.35 ± 0.59 37.97 ± 0.71 45.25 ± 0.10 51.54 ± 0.99 6.70 ± 0.44
6i 30.91 ± 0.77 35.87 ± 0.49 41.06 ± 0.86 46.14 ± 0.54 53.53 ± 0.10 6.43 ± 0.26
6j 20.64 ± 0.49 28.26 ± 0.41 38.41 ± 0.78 44.48 ± 0.59 51.10 ± 0.85 6.98 ± 0.47
6k 22.18 ± 1.38 27.81 ± 0.90 35.32 ± 0.90 42.83 ± 0.24 50.33 ± 0.44 7.99 ± 0.28
6l 45.36 ± 0.51 56.07 ± 0.27 63.13 ± 0.59 69.65 ± 0.45 79.47 ± 0.30 0.68 ± 0.02
Acarbose 46.69 ± 0.71 55.30 ± 0.60 60.60 ± 0.41 68.21 ± 0.72 76.05 ± 1.79 0.55 ± 0.04

aEach value is the mean ± SD, standard deviation.

Fig. 3. 2D binding interactions of compound 6d with α-amylase.
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4-CH3), showed varying effects. Compound 6b displayed an 
improved IC50 of 1.28 ± 0.05 μM and a binding energy 
of −10.1 kcal/mol, while 6c showed an even better IC50 of 
0.9 ± 0.05 μM with a binding energy of −10.6 kcal/mol, indi-
cating enhanced activity with 4-position methyl substitution. 
However, disubstituted compound 6h (2,6-CH3) exhibited de-
creased activity (IC50 of 6.70 ± 0.44 μM), likely due to steric 

hindrance. Electron-withdrawing groups generally enhanced 
antidiabetic activity. Notably, 6d (4-Cl) and 6e (4-Br) showed 
significantly low IC50 values of 0.53 ± 0.02 and 0.51 ±  
0.02 μM, respectively, with binding energies of −10.6 and 
−10.3 kcal/mol, forming 3 hydrogen bonds. Conversely, the 
difluoro-substituted compound 6k (2,6-F) displayed the weak-
est activity (IC50 of 7.99 ± 0.28 μM), possibly due to steric ef-
fects. Compounds with multiple substituents, such as 6j (3-Cl, 
4-F), showed moderate activity (IC50 of 6.98 ± 0.47 μM), sug-
gesting steric constraints from combined substituents. 
Compounds 6d and 6e, with binding energies of −10.6 and 
−10.3 kcal/mol, showed stronger interactions than acarbose 
(−7.9 kcal/mol) and had a lower IC50 value of 0.55 ± 0.04 μM.

The drug-like characteristics of compounds 6a-l was eval-
uated using the Swiss Institute of Bioinformatics ADME 
tool54 and the results are tabulated in Table 4. The analysis 
in silico prediction of physicochemical properties is provided 
in the supplementary information.

In conclusion, a series of rationally designed indole–thiazo-
lidinedione–triazole hybrids were synthesized using a scaffold 
combination approach and evaluated for antidiabetic activity as 
potential α-amylase inhibitors through Cu(I)-catalyzed azide– 
alkyne cycloaddition under microwave irradiation. Compounds 
6d and 6e demonstrated potent α-amylase inhibition, with IC50 

values of 0.53 ± 0.02 and 0.51 ± 0.02 μM, respectively, outper-
forming the standard drug acarbose. Molecular docking studies 
further validated these findings, with binding energies of the stable 
ligand–enzyme complexes ranging from −10.1 to −10.8 kcal/mol.

Supplementary data
Supplementary material is available at Chemistry Letters online.
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Fig. 4. 2D binding interactions of compound 6e with α-amylase.

Table 4. Physicochemical, pharmacokinetic, and medicinal chemistry properties of the synthesized compounds (6a-l).

Physicochemical properties Pharmacokinetics
Medicinal 
chemistry

Compound
RB  

(range ≤10)
HBA  

(range ≤10)
HBD  

(range ≤5)
TPSA (Å2)  

(range ≤140)
Log PO/W  

(range ≤5) Log S GIA Log KP RoF (V) SA

6a 7 5 2 136.21 2.21 −4.36 High −7.19 Yes 3.78
6b 8 6 2 145.44 2.2 −4.43 Low −7.4 Yes 3.88
6c 7 5 2 136.21 2.5 −4.66 Low −7.02 Yes 3.9
6d 7 5 2 136.21 2.68 −4.95 Low −6.96 Yes 3.77
6e 7 5 2 136.21 2.77 −5.27 Low −7.19 Yes 3.8
6f 7 5 2 136.21 2.86 −4.96 Low −6.85 Yes 4
6g 7 5 2 136.21 2.72 −4.95 Low −6.96 Yes 3.77
6h 7 5 2 136.21 2.84 −4.96 Low −6.85 Yes 4
6i 7 6 2 136.21 2.46 −4.52 Low −7.23 Yes 3.76
6j 7 6 2 136.21 3.05 −5.11 Low −7 Yes 3.77
6k 7 7 2 136.21 2.82 −4.68 Low −7.27 Yes 3.78
6l 7 5 2 136.21 3.2 −5.55 Low −6.73 Yes 3.81
Acarbose 9 19 14 321.17 −6.24 2.56 Low −16.29 No 7.34

RB, rotatable bonds; HBA, hydrogen bond acceptor; HBD, hydrogen bond donor; TPSA, topological polar surface area; Log PO/W, octanol/water partition coefficient; 
Log S, aqueous solubility (log mol/L); GIA, gastrointestinal absorption; Log KP, skin permeation; RoF (V), Lipinski’s rule of five; SA, synthetic accessibility.

Fig. 5. Superimposed image of native ligand (red) and re-docked ligand 
(gray), RMSD = 0.963 Å.
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