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Abstract
Ten hexahydropyrimido[4,5-d]pyrimidine derivatives have been synthesized by using a green and time-efficient microwave 
method. The synthesized motifs were evaluated for their anticancer activity, antimicrobial activity, molecular docking, drug 
likeliness and ADMET studies. Comparatively, the hetero-aromatic pyrazole substituted compound 4a exhibited the high-
est anticancer activity [Mean growth percent: 35.57], while EDG [–N(CH3)2] substituted compound 4i indicated very good 
activity [Mean growth percent: 60.92] against various cell lines. From the computational studies, Compound 4a passed the 
drug-likeness and ADME properties, fewer toxic properties, and potent inhibitory potential against the RIPK2 with significant 
binding affinity. In-silico molecular docking revealed that the compound 4a has significant binding energy (− 9.8 kcal/mol) 
and dissociation constant (0.54 µM) properties. Additionally, synthesized motifs were evaluated for antimicrobial activity 
by MIC referencing the standards. According to the SAR evaluations, the compounds 4f (4-NO2), 4g (3-NO2), and 4h (2-Cl) 
that include EWGs substituted aldehydes performed well as antimicrobials against selected bacterial and fungal strains. Thus, 
the synthesized pyrimido[4,5-d]pyrimidine with the heterocyclic and EWGs substituents could act as a potential candidate 
after further structural optimization for anticancer and antimicrobial drug discovery, respectively.
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Abbreviations
ADME  Absorption, distribution, metabolism and 

excretion
EWG  Electron withdrawing group
EDG  Electron donating group
WHO  World Health Organization
R&D  Research and development
NMR  Nuclear magnetic resonance
FT-IR  Fourier transform infrared spectroscopy
LC–MS  Liquid chromatography–mass spectrometry
NCI  National Cancer Institute

Introduction

Cancer is one of the leading reasons of death worldwide 
and is anticipated to remain the chief mortality aspect in 
the future [1]. Negative lifestyle, food habits and environ-
mental factors cause up to 90% of cancer cases, so cancer 
can also be termed a lifestyle disease [2]. As per the world 
cancer report released by WHO, the mortality rates due to 
cancer disease will be higher, approximately twice its cur-
rent percentage in the forthcoming years [3]. It has been a 
huge challenge for the scientists who deal with medicinal 
chemistry in the upcoming with the identification of novel 
lead analogues which can be utilized to design less toxic 
and highly active anticancer agents. Despite the consider-
able advancements made in the R&D of various cancer static 
medicines over the last decades, there are still two major 
drawbacks of modern antitumor chemotherapy including, 
the selectivity of conventional chemotherapeutic agents for 
cancer tissues with their unwanted side effects and multiple 
drug resistance properties of cancer cells. [4] Unwanted side 
effects of antitumor drugs could be overcome with capable 
agents who can discriminate tumor cells from normal pro-
liferative cells and the resistance could be minimized using 
a combined modality approach with various complementary 
mechanisms of action [5]. In recent years, microbial resist-
ance and the emergence of new pathogens are also being a 
critical global problem that demands a critical necessity to 
design and develop new antimicrobial agents which are more 
potent compared to marketed drugs [6–9]. N-Heterocycles 
having versatile bio-applications can be the optimum solu-
tion to tackle this type of vast issues [10–19]. Designing 
hybrid entities by uniting two or more bio-active heterocy-
cles in a sole structural skeleton can up-bring potency so 
it could be the best approach to tackle this type of gigantic 
problem [20–22]. Pyrimidines are essential components of 
DNA and RNA, making them of the greatest significance in 
chemical and pharmaceutical chemistry [23]. Pyrimido[4,5-
d]pyrimidines is the combination of two fused pyrimidine 
rings exhibit vivid pharmacological activities [24, 25].

The application of microwave-assisted organic reactions 
has benefited significantly in organic chemistry [26]. The 
timeless ease of workability and the eco-friendly condition 
is the reason that microwaves deliver an alternative to eco-
hazardous and objectionable procedures. The microwave 
irradiation method expands multiple conveniences to carry 
out synthesis including greener chemistries, lesser reaction 
time and yield amplifications. Because of the higher selec-
tivity, swift transport of energy, sterling products, practical 
simplicity, and microwave irradiation-assisted syntheses 
have a greater advantage compared to conventional synthe-
ses [27, 28]. Multicomponent reactions (MCRs) are one-pot 
processes that, play an important role in medicinal chemis-
try as they are inexpensive, less time-consuming and eco-
friendly in comparison to conventional multistep synthesis 
and also furnish products with a high degree of chemical 
and structural variability [29, 30]. Alongside, the utilization 
of water as a solvent in a reaction has also received con-
siderable attention as a green solvent due to its advantages 
such as being nontoxic, readily available, inexpensive and 
harmless [31]. We as a research group targeted synthesiz-
ing pyrimido[4,5-d]pyrimidines by green, simple and time-
saving reaction to utilize them as potential lead compounds 
for anticancer and antimicrobial drug discovery.

Results and discussion

Chemistry

This study aimed to synthesize fused pyrimido[4,5-d]pyrim-
idine derivatives with the help of a green procedure. Ten 
pyrimido[4,5-d]pyrimidine derivatives were synthesized 
by simple one-step green synthesis using water solvent 
and microwave irradiation method (Fig. 1). The mixture of 
2-thiobarbituric acid, guanidine and various aldehyde deriv-
atives in the presence of 8 mol%  I2 catalyst were placed in a 
microwave for 5 min. Then, the solid product was separated 
and washed thoroughly with sodium thiosulphate solution 
followed by sodium bicarbonate and water. All ten synthe-
sized derivatives were obtained in a very good amount of 
yield proportions (82–93%).

Each compound was characterized by 1H NMR, 13C 
NMR, FTIR and LCMS techniques to confirm the pro-
posed structure. The IR spectrum of compounds 4a–j 
showed strong absorption band at 1502–1705  cm−1 due 
to carbonyl group. Moreover, strong absorption band at 
1101–1504   cm−1 indicated the C–N linkage present in 
rings. In 1H NMR spectra, the appearance of singlet peaks 
in compounds 4a–j at δ = 10.41–11.81 ppm was due to the 
proton of –NH located near carbonyl group. While singlet 
peaks at δ = 1.71–2.33 ppm was because of proton of –NH 
located next to –R group. The appearance of singlet peaks of 
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proton of =NH is at δ = 3.51–4.13. Singlet of OH peak was 
at 3.51, 5.98, 4.12 and 3.62 ppm of compounds 4c, 4d, 4e 
and 4j respectively. Similarly, signals due to protons of CH3 
of compounds 4b, 4c, 4d and 4i appeared at 3.89, 3.81, 4.13 
and 2.92 respectively. The 13C NMR spectrum of compounds 
showed characteristic signal at δ = 152.22–155.74 ppm 
was due to C=NH carbon. Signal of 13C NMR due to 
carbon of C=S was appeared at under the influence of a 
strong electronegative environment appeared downfield at 
δ = 174.24–174.33 ppm. The signal of carbonyl carbon of all 
compounds appeared at δ = 153.04–153.34. The mass spec-
trums of compounds 4a–j displayed respective molecular 
ion peaks in agreement with its proposed structure. Also, the 
spectral values for all the compounds and C, H, N analysis 
are presented in the experimental part.

Green metrics evaluation

The assemblage of green metrics was obtained i.e., the lower 
values of mass intensity and higher values of atom economy 
and reaction mass efficiency. The lower mass intensity val-
ues (1.32–1.43) and higher atom economy as well as mass 
productivity values of all synthesized compounds recog-
nized the proposed protocol as an ideal green and sustain-
able approach (Table 1).

Biology

Anticancer evaluation

All the synthesized compounds (4a–j) were submitted to 
NCI, USA for single dose  (10−5 M) evaluation. The growth 
percentage of the treated cells at  10−5 M concentration of 
all compounds is displayed in Table 2. The in-vitro antican-
cer primary screening studies indicated that compound 4a 

Fig. 1  Synthetic pathway for the 
preparation of 4a–j derivatives

Table 1  Green metrics evaluation data

Compounds Atom economy 
(%)

Mass intensity Mass pro-
ductivity

4a 91.98 1.43 69.93
4b 89.31 1.42 70.42
4c 89.79 1.32 75.75
4d 89.79 1.32 75.75
4e 88.85 1.32 75.75
4f 89.50 1.37 74.62
4g 89.50 1.40 71.42
4h 89.44 1.34 74.62
4i 89.70 1.32 75.75
4j 88.85 1.43 69.93
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was found to be an effective anticancer agent against almost 
every tested cancer cell line i.e., CCRF-CEM (L), RPMI-
8226 (L), NCI-H522 (NSCLC), HCT-15 (CC), SF-539 

(CNSC), LOX IMVI (M), IGROV1 (OC), RXF 393 (RC), 
MDA-MB-468 (BC) with 35.57 mean growth. Moreover, 
compound 4i exhibited good activity against HCT-15 (CC), 
LOX IMVI (M), and RXF 393 (RC) cancer cell lines. Syn-
thesized compounds except 4a and 4i had displayed moder-
ate to poor growth percentages toward the various cancer 
cell lines. The mean graph plots of growth percent values 
(one-dose graphs) are given in the supplementary material 
(Figs. 41–50). The graphical representation of the anticancer 
data is depicted in Fig. 2.

Antimicrobial evaluation

Data obtained from the antimicrobial screening result sug-
gested that the synthesized compounds exhibited high to 
low activity against all the tested microbial strains com-
pared to standard drugs (Table 3). Among the tested bacte-
rial strains, compounds 4f and 4h displayed good activity 
against Escherichia coli and Staphylococcus epidermidis. 
Compound 4g exhibited good activity against Streptococcus 
pyogenes. On the other hand, within tested fungal strains, 
compound 4f indicated good activity against Fusarium 
solani while compounds 4g and 4h displayed good activ-
ity against Aspergillus niger. Other synthesized compounds 
revealed moderate to weak activity against tested microbial 
strains.

Computational study

In‑silico molecular docking analysis

The binding energies (kcal/mol), dissociation constant 
Ki (µM) of the reference and synthesized compounds and 
the interacting residues of RIPK2 with these compounds 

Table 2  Anticancer screening data

L leukemia, NSCLC non-small cell lung cancer, CC colon cancer, 
CNSC central nervous system cancer, OC ovarian cancer, RC renal 
cancer, BC breast cancer, M melanoma
Negative Growth percent and Mean growth percent <100 were 
selected as a significance for good activity

Entry Cancer type Active cell lines Growth percent Mean 
growth 
percent

4a L CCRF-CEM − 18.55 35.57
RPMI-8226 − 13.96

NSCLC NCI-H522 − 26.52
CC HCT-15 − 46.37
CNSC SF-539 − 7.75
M LOX IMVI − 86.28
OC IGROV1 − 18.33
RC RXF 393 − 42.16
BC MDA-MB-468 − 48.92

4b NSCLC NCI-H522 80.45 104.21
4c NSCLC HOP-62 89.39 105.54
4d BC MCF7 92.02 105.52
4e NSCLC HOP-62 89.85 107.01
4f RC CAKI-1 90.20 104.87
4g CNSC SNB-75 84.08 103.18
4h M LOX IMVI 56.53 106.44
4i CC HCT-15 − 43.69 60.92

M LOX IMVI − 81.63
RC RXF 393 − 19.45

4j M LOX IMVI 85.37 104.36

Fig. 2  Graphical depiction of 
anticancer evaluation data
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were provided in Table 4. Generally, the compounds show-
ing higher negative binding energies and low Ki values 
are highly preferred because of their potential binding 
energies toward the target protein [32, 33]. The reference 
(CSLP18) and synthesized compounds showed significant 
binding energies (− 9.8 to − 6.65 kcal/mol) with low Ki 
towards RIPK2. The docking results revealed that com-
pound 4a was shown similar binding energy (− 9.8 kcal/

mol) and Ki (0.54 µM) as the reference compound which 
showed − 9.83 kcal/mol binding energy and 1.23 µM Ki 
respectively. It was also clearly evident that compound 4a 
has nearly twofold decreased activity (Ki = 0.54 µM) as 
of the reference compound (Ki = 1.23 µM). The surface 
view & cartoon view of protein–ligand binding patterns 
of 4a in comparison with the reference compound was 
shown in Fig. 3, and the protein–ligand interactions of 4a 

Table 3  Antimicrobial 
screening data

n = 3; values are given in mean ± SD

Code Minimum inhibitory concentration (μg/mL)

Bacterial strains Fungal strains

E. coli S. marcescens S. epidermidis S. pyogenes A. niger F. solani

4a 1500 ± 4.5 1500 ± 5.5 1500 ± 5 1500 ± 4.5 1500 ± 5 1500 ± 5.5
4b 700 ± 4 600 ± 3.5 600 ± 3 600 ± 4.5 800 ± 5 800 ± 4.5
4c 1000 ± 5.5 1000 ± 5 1000 ± 5.5 1200 ± 4.5 800 ± 3.5 800 ± 3.5
4d 1500 ± 3.5 1500 ± 4.5 1500 ± 4 1500 ± 3.5 1600 ± 3 1200 ± 4.5
4e 1200 ± 5.5 1200 ± 6 1200 ± 4.5 1200 ± 6.5 2000 ± 6 1600 ± 4
4f 25 ± 0.5 50 ± 0.5 12.5 ± 0.5 100 ± 1.5 500 ± 3.5 50 ± 1.5
4g 100 ± 3.5 250 ± 3.5 100 ± 2 25 ± 1.5 25 ± 1.5 250 ± 4
4h 12.5 ± 0.5 100 ± 2.5 50 ± 1.5 100 ± 3.5 50 ± 1 500 ± 4.5
4i 1500 ± 4.5 1500 ± 4.5 1500 ± 5 1500 ± 5.5 1500 ± 3.5 1600 ± 4
4j 900 ± 4.5 900 ± 3.5 900 ± 5 900 ± 3.5 2000 ± 5.5 1600 ± 5.5
Chloramphenicol 20 ± 1 20 ± 2 20 ± 1.5 20 ± 1 – –
Ciprofloxacin 1 ± 0.5 0.5 ± 0.25 1.5 ± 0.5 1 ± 0.5 – –
Nystatin – – – – 50 ± 3 100 ± 5

Table 4  Binding energies of the synthesized compounds

Compound Binding 
energy (kcal/
mol)

Ki (µM) Interacting residues

Reference − 9.83 1.23 LEU24, SER25, VAL32, ALA45, LYS47, LEU70, LEU79, ILE93, THR95, GLU96, TYR97, MET98, 
GLY101, GLU105, GLN150, ASN151, LEU153, ALA163, ASP164

4a − 9.8 0.54 LEU24, SER25, GLY27, VAL32, ALA45, LYS47, GLU66, LEU70, LEU79, ILE93, THR95, GLU96, 
TYR97, MET98, SER102, GLN150, ASN151, ILE152, LEU153, ALA163, ASP164

4b − 7.79 1.95 ALA45, VAL46, LYS47, GLU66, LEU70, LEU79, ILE93, VAL94, THR95, GLU96, TYR97, MET98, 
GLY101, LEU153, ALA163, ASP164

4c − 7.12 6.09 LEU24, VAL32, ALA45, VAL46, LYS47, GLU66, LEU70, LEU79, ILE93, VAL94, THR95, GLU96, 
TYR97, MET98, GLY101, LEU153, ALA163, ASP164

4d − 7.51 3.14 VAL42, GLN43, VAL44, LEU82, GLU96, TYR97, MET98, PRO99, ASP155, ASN156
4e − 8.1 1.35 VAL42, GLN43, VAL44, LEU82, THR95, GLU96, TYR97, MET98, PRO99, ASP155, ASN156, LYS161
4f − 7.31 4.42 VAL32, ALA45, VAL46, LYS47, GLU66, LEU70, LEU79, ILE93, VAL94, THR95, GLU96, TYR97, 

MET98, GLY101, LEU153, ALA163, ASP164
4g − 7.15 5.73 TYR97, PRO99, ASN100, GLY101, GLU105, ARG109, GLU112, TYR113, PHE158, LYS310, LYS313
4h − 7.37 3.96 SER25, VAL32, LYS47, GLU66, LEU79, THR95, SER102, GLN150, ASN151, ILE152, LEU153, 

ALA163, ASP164,
4i − 6.65 13.36 LEU24, SER52, ALA45, TYR97, MET98, PRO99, ASN100, GLY101, GLU105, TYR113, LEU153, 

LYS313
4j − 6.78 10.63 VAL32, ALA45, VAL46, LYS47, GLU66, LEU70, LEU79, ILE93, VAL94, THR95, GLU96, TYR97, 

MET98, GLY101, LEU153, ALA163, ASP164
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in comparison with the reference compound were shown 
in Fig. 4A and B. The reference compound showed four 
hydrogen bonds (LYS47, GLU96, MET98, GLU105), seven 

van der Waals interactions and eight hydrophobic interac-
tions in binding model analysis. The most active compound 
4a noticed four hydrogen bonds between residue GLN150, 

Fig. 3  Surface view of reference 
(A) and 4a (B) and cartoon 
view of reference (C) and 4a 
(D) interactions with the RIPK2

Fig. 4  A Protein–ligand interaction patterns of reference with RIPK2. B Protein–ligand interaction patterns of compound 4a with RIPK2
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ASN151 and ASP164 with NH groups of pyrimido[4,5-d]
pyrimidine nucleus. Moreover, eleven van der Waals inter-
actions and six hydrophobic interactions were noticed with 
the RIPK2 as shown Fig. 4B. Results of anticancer screening 
and of molecular docking comply with each other, confer-
ring to which, compound 4a was found to be the most potent 
ligand.

In‑silico toxicity study

The toxicity parameters of the reference and the synthesized 
compounds were predicted using ADMETLAB 2.0. The 
human hepatotoxicity (H-HT), Drug-Induced Liver Injury 
(DIL1), AMES test, Rat Oral Acute Toxicity (ROAT), FDA 
Maximum recommended Daily Dose (FDAMDD), Agonis-
tic effect against the Androgen receptor (NR-AR), Agonis-
tic effect against the Estrogen receptor (NR-ER), activity 
towards peroxisome proliferator-activated receptor gamma 
(NR-PPAR-γ), antioxidant response element (SR-ARE), 
Carcinogenicity (CG), and Toxicophores (TX) of the refer-
ence as well as the synthesized compounds were predicted 

and tabulated in Table 5. It was evidence that compound 
4a showed less toxicity when compared to the reference 
compound and other compounds confirmed by H-HT, 
DILI, AMES, ROAT, and FDAMMD value ranges [32, 33]. 
The carcinogenicity and toxicophores values indicated that 
4a was less carcinogenic and had only two toxicophores 
which was less when compared to other derivatives. The 
NR-AR and NR-ER agonist values and the activities against 
the NR-PPAR-γ and SR-ARE also support that compound 
4a may become a potent ligand of choice with less toxic 
properties.

In‑silico ADME study

The drug-likeness properties by Lipinski’s rule and the 
ADME properties of the synthesized compounds as well as 
reference were evaluated. The molecular weight (MW) in g/
mol, H-bond donor (HBD), H-bond acceptor (HBA), lipo-
philicity (log P), topological polar surface area (TPSA) in 
Å, Lipinski’s evaluation, gastro-intestinal absorption (GIA), 
bioavailability (BA), and Pan-assay interference compounds 

Table 5  Toxicity parameters of synthesized compounds

0–0.3 (poor activity); 0.3–0.7 (medium activity); and 0.7–1.0 (high activity)

Compound H-HT DILI AMES ROAT FDAMMD NR-AR NR-ER NR-PPAR-γ SR-ARE CG TX

Reference 0.981 0.998 0.546 0.506 0.98 0.013 0.040 0.567 0.894 0.78 3
4a 0.812 0.898 0.092 0.853 0.89 0.012 0.032 0.704 0.93 0.222 2
4b 0.932 0.993 0.365 0.772 0.941 0.025 0.004 0.011 0.555 0.609 3
4c 0.908 0.992 0.27 0.57 0.934 0.058 0.006 0.055 0.661 0.67 3
4d 0.906 0.991 0.249 0.57 0.937 0.013 0.01 0.357 0.731 0.638 3
4e 0.797 0.993 0.288 0.65 0.926 0.009 0.006 0.052 0.698 0.69 3
4f 0.935 0.993 0.932 0.725 0.917 0.008 0.012 0.028 0.85 0.905 2
4g 0.929 0.992 0.901 0.768 0.936 0.01 0.009 0.037 0.806 0.894 3
4h 0.862 0.993 0.155 0.864 0.951 0.008 0.006 0.019 0.629 0.74 3
4i 0.902 0.993 0.658 0.804 0.93 0.032 0.027 0.069 0.78 0.907 3
4j 0.819 0.993 0.204 0.51 0.924 0.013 0.006 0.017 0.733 0.775 3

Table 6  Drug likeness 
and ADME properties of 
synthesized compounds

Compound MW HBD HBA Log P TPSA Lipinski GIA BA PAINS

Reference 477.58 3 4 2.58 147.12 Yes Low 0.55 No
4a 415.47 5 3 2.38 146.47 Yes Low 0.55 No
4b 303.34 5 3 1.1 137.88 Yes High 0.55 No
4c 319.34 6 4 0.72 158.11 No Low 0.55 No
4d 319.34 6 4 0.75 158.11 No Low 0.55 Yes
4e 289.31 6 3 0.72 148.88 No Low 0.55 Yes
4f 318.31 5 4 0.52 174.47 Yes Low 0.55 No
4g 318.31 5 4 0.53 174.47 Yes Low 0.55 No
4h 307.76 5 2 1.62 128.65 Yes High 0.55 No
4i 316.38 5 2 1.11 131.89 Yes High 0.55 Yes
4j 289.31 6 3 0.71 148.88 No Low 0.55 No
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(PAINS) of the reference and synthesized compounds were 
depicted in Table 6. Out of ten evaluated synthesized com-
pounds, only compounds 4a, 4b, 4f, 4g, 4h, and 4i have 
passed Lipinski’s drug-likeness criteria. In further evalua-
tion, compound 4i was removed from the study due to the 
PAINS alert, which may lead to false positives [34], while 
all compounds and references showed similar bioavailability 
inside the body, the GI absorption varies depending on the 
peripheral functional group of compounds.

Structural activity relationship

Structure–activity relationship (SAR) studies describe that 
the alteration in the bio-activities of synthesized compounds 
purely depends upon the attached substituents (–R) and the 
nature of peripheral functional groups attached to them.

Anticancer SAR It was seen that the hetero-aromatic 
(pyrazole) aldehyde as a substitution compared to other 
aromatic aldehyde vastly elevated the anticancer activity 
against all the cancer types. It shows a good growth percent 
on active cancer cell lines. Moreover, the para substituted 
EDGs compound [–N(CH3)2, 4i] displayed good anticancer 
activity against selected Colon, Renal and Melanoma cancer 
cell lines. Other EDGs and all EWGs substitutions on vari-
ous positions of core nucleus were the possible reason for 
the diminution of the cancer activity.

Antimicrobial SAR The substitution of EWGs (–NO2, 
–Cl) on ortho, meta and para positions were responsible 
for the elevation of antimicrobial activity, while pyrazole 
and EDGs substituted aldehyde were reason for the lower 
microbial potency (Fig. 5).

Conclusion

The present research aimed to evaluate synthesized 
pyrimido[4,5-d]pyrimidine motifs as anticancer and antimi-
crobial agents for drug discovery via green synthesis. Green 
metrics evaluation of the reaction was clearly evident that 
the reaction approach is ideal, green and sustainable. Addi-
tionally, the method was also simple and time efficient as 
the reaction time was only 5 min. Synthesized compounds 
(4a–j) were investigated for in-vitro anticancer primary 
screening for one dose against different cell lines of nine 
cancer types. The results displayed that the hetero-aromatic 
pyrazole substituted compound 4a performed well as an 
anticancer agent with good mean growth percentage against 
active cancer cell lines. Compound 4i exhibited good anti-
cancer activity against Colon, Renal and Melanoma cancer 
cell lines. In-silico studies i.e., Molecular docking predic-
tions suggested that compound 4a has noteworthy binding 
energy (− 9.8 kcal/mol) and dissociation constant (0.54 µM). 
Drug-likeness and ADME properties also revealed the fewer 

Fig. 5  SAR for anticancer and antimicrobial activity
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toxic properties and potent inhibitory potential against the 
RIPK2 for compound 4a in comparison with the reference. 
This result of in-vitro and in-silico studies concludes that 
compound 4a can be potential candidate for future antican-
cer drug discovery. Moreover, antimicrobial screening data 
suggested that EWGs substituted derivatives 4f (-4-NO2), 
4g (-3-NO2) and 4h (-4-Cl) displayed good antimicrobial 
activity. Thus, synthesizing pyrimido[4,5-d]pyrimidine with 
the EWGs may act as a potential candidate after detailed 
optimization for antimicrobial agents.

Experimental section

Materials and physical measurements

The chemicals used were of AnalaR grade. 1H-NMR and 
13C-NMR spectra were recorded on Bruker spectrometer 
[500 MHz (1H) and 125 MHz (13C)] using  CDCl3 as solvent 
and tetramethylsilane (TMS) as an internal standard. Meas-
urements are displayed in parts per million (ppm). The IR 
spectra (ν,  cm−1) of all the motifs were recorded on a Perkin-
Elmer FT-IR spectrophotometer using KBr. Mass spectra 
were recorded by SHIMADZU LC–MS spectrometer. Ele-
mental analyses were performed on an ECS 4010 Elemental 
Combustion System and the resulting data were within the 
accepted range (± 0.40) of the calculated values. M.P. were 
checked on an electro thermal melting point apparatus and 
were reported uncorrected. The completion of reaction and 
purity of compounds were checked on aluminum coated 
TLC plates 60 F245 (E. Merck) using methanol:chloroform 
(0.5:9.5 V/V) as mobile phase and visualized under ultra-
violet (UV) light or in an iodine chamber.

General procedure for the synthesis of (5/7)‑(aryl/
heteroaryl)‑7‑imino‑2‑thioxo‑2,3,5,6,7,8‑hexahydro
pyrimido[4,5‑d]pyrimidin‑4(1H)‑ones (4a–j)

A mixture of 2-thiobarbituric acid (0.01 mol) (1), guani-
dine (0.01 mol) (2) was taken in the flask. Then aldehyde 
derivatives (3) were added to the flask and the mixture was 
stirred for 2 min at room temperature. The iodine solution 
of 8 mol% was developed by dissolving iodine in potassium 
iodide solution made in water. Prepared iodine solution 
was dropwise added to the flask with continues stirring at 
room temperature. The flask was then placed in microwave 
(640 W) for 5 min at room temperature. The completion 
of the synthesis was monitored by TLC. The solid product 
was separated and washed thoroughly with sodium thiosul-
phate solution followed by sodium bicarbonate and water, 
dried and recrystallized from ethanol to afford the desired 

compound. The characterization data (FTIR, 1H NMR, 13C 
NMR, LCMS) of synthesized compounds (4a–j) are avail-
able in the supplementary [35].

5‑(1,3‑Diphenyl‑1H‑pyrazol‑4‑yl)‑7‑imino‑2‑thi‑
oxo‑2,3,5,6,7,8‑hexahydropyrimido[4,5‑d]pyrimi‑
din‑4(1H)‑one (4a)

Brown solid; Optimized %Yield: 84%; m.p. 253–254 °C; FTIR 
(KBr,  cm−1): 1110.97 (s, C–N), 1504.63 (w, C–H), 1597.13 
(m, C=C), 1671.83 (m, C=N), 1705.18 (s, C=O), 3047.47 (m, 
2° N–H); 1H NMR (500 MHz, Chloroform) δ 11.81 (s, 1H), 
8.51 (s, 1H), 7.85–7.75 (m, 2H), 7.63–7.41 (m, 8H), 7.41–7.32 
(m, 1H), 6.05 (s, 1H), 4.08 (s, 1H), 2.34 (d, J = 12.2 Hz, 2H); 
13C NMR  (CDCl3, 125 MHz): δ 174.29, 165.17, 160.79, 
154.30, 153.04, 139.97, 135.76, 131.08, 129.70, 128.62, 
128.19, 128.03, 119.95, 118.21, 110.93, 38.47; LCMS: m/z 
415.12  [M+]; Anal. Calcd. for:  C21H17N7OS: C, 60.71; H, 
4.12; N, 23.60; Found: C, 60.73; H, 4.15; N, 23.58%.

7‑Imino‑5‑(4‑methoxyphenyl)‑2‑thioxo‑2,3,5,6,7,8‑hexahyd
ropyrimido[4,5‑d]pyrimidin‑4(1H)‑one (4b)

Yellow solid; Optimized %Yield: 87%; m.p. 271–272 °C; FTIR 
(KBr,  cm−1): 1010.25 (s, C–O), 1295.90 (s, C–N), 1631.57 (m, 
C=C), 1623.10 (w, C–H), 1519.21 (s, C=O), 3465.58 (m, 2° 
N–H); 1H NMR  (CDCl3, 500 MHz): δ 11.60 (s, 1H), 8.45 (s, 
1H), 7.26 (d, J = 7.5 Hz, 2H), 6.91 (d, J = 7.3 Hz, 2H), 5.52 (s, 
1H), 4.11 (s, 1H), 3.81 (s, 3H), 2.35 (s, 1H), 2.23 (s, 1H); 13C 
NMR  (CDCl3, 125 MHz): δ 174.29, 159.21, 158.69, 153.34, 
153.19, 131.12, 129.49, 113.50, 107.00, 56.03, 53.28; LCMS: 
m/z 303.08  [M+]; Anal. Calcd. for:  C13H13N5O2S: C, 51.47; H, 
4.32; N, 23.09; Found: C, 51.49; H, 4.35; N, 23.10%.

5‑(4‑Hydroxy‑3‑methoxyphenyl)‑7‑imino‑2‑thi‑
oxo‑2,3,5,6,7,8‑hexahydropyrimido[4,5‑d]pyrimi‑
din‑4(1H)‑one (4c)

Light yellow solid; Optimized %Yield: 85%; m.p. 
270–271 °C; FTIR (KBr,  cm−1): 1130.42 (s, C–O), 1270.41 
(s, C–N), 1492.80 (m, C=C), 1612.84 (s, C=O), 1610.64 (w, 
C–H), 3202.24 (b, O–H), 3490.70 (m, 2° N–H); 1H NMR 
 (CDCl3, 500 MHz): δ 11.64 (s, 1H), 8.49 (s, 1H), 6.95 (s, 
1H), 6.75 (d, J = 7.6 Hz, 1H), 6.67 (d, J = 7.3 Hz, 1H), 5.57 
(s, 1H), 4.13 (s, 1H), 3.89 (s, 3H), 3.51 (s, 1H), 2.38 (s, 
1H), 2.26 (s, 1H); 13C NMR  (CDCl3, 125 MHz): δ 174.29, 
158.69, 153.88, 153.34, 148.03, 147.29, 132.08, 119.87, 
115.76, 110.64, 107.00, 56.78, 53.18; LCMS: m/z 319.07 
 [M+]; Anal. Calcd. for:  C13H13N5O3S: C, 48.90; H, 4.10; N, 
21.93; Found: C, 48.93; H, 4.12; N, 24.91%.
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5‑(2‑Hydroxy‑3‑methoxyphenyl)‑7‑imino‑2‑thi‑
oxo‑2,3,5,6,7,8‑hexahydropyrimido[4,5‑d]pyrimi‑
din‑4(1H)‑one (4d)

Yellowish brown solid; Optimized %Yield: 83%; m.p. 
280–281 °C; FTIR (KBr,  cm−1): 1330.40 (s, C–O), 1370.42 
(s, C–N), 1401.76 (m, C=C), 1602.24 (s, C=O), 1589.44 (w, 
C–H), 3198.24 (b, O–H), 3475.61 (m, 2° N–H); 1H NMR 
 (CDCl3, 500 MHz): δ 10.51 (s, 1H), 6.86–6.76 (m, 1H), 
6.72–6.64 (m, 1H), 6.64–6.57 (m, 1H), 5.98 (s, 1H), 5.38 
(s, 1H), 4.13 (s, 1H), 3.86–3.77 (m, 4H), 2.05 (s, 1H), 1.91 
(s, 1H); 13C NMR  (CDCl3, 125 MHz): δ 174.29, 159.05, 
153.95, 153.34, 148.92, 147.68, 125.77, 122.41, 119.74, 
114.87, 105.73, 56.78, 48.97; LCMS: m/z 319.07  [M+]; 
Anal. Calcd. for:  C13H13N5O3S: C, 48.90; H, 4.10; N, 21.93; 
Found: C, 48.91; H, 4.08; N, 24.90%.

5‑(2‑Hydroxyphenyl)‑7‑imino‑2‑thioxo‑2,3,5,6,7,8‑hexahyd
ropyrimido[4,5‑d]pyrimidin‑4(1H)‑one (4e)

Orange solid; Optimized %Yield: 86%; m.p. 286–287 °C; 
FTIR (KBr,  cm−1): 1398.31 (s, C–O), 1402.72 (m, C=C), 
1452.73 (s, C–N), 1510.64 (s, C=O), 1640.74 (w, C–H), 
2910.54 (b, O–H), 3098.71 (m, 2° N–H); 1H NMR 
 (CDCl3, 500 MHz): δ 11.61 (s, 1H), 8.41 (s, 1H), 7.28 
(s, 1H), 7.12–7.01 (m, 2H), 6.85 (dd, J = 11.1, 4.6 Hz, 
2H), 6.04 (s, 1H), 4.12 (s, 1H), 2.33 (s, 1H), 2.23 (s, 1H); 
13C NMR  (CDCl3, 125 MHz): δ 174.29, 159.05, 156.55, 
153.34, 153.10, 130.96, 130.32, 126.91, 119.81, 117.10, 
105.73, 48.98; LCMS: m/z 289.06  [M+]; Anal. Calcd. for: 
 C12H11N5O2S: C, 49.82; H, 3.83; N, 24.21; Found: C, 49.85; 
H, 3.82; N, 24.20%.

7‑Imino‑5‑(4‑nitrophenyl)‑2‑thioxo‑2,3,5,6,7,8‑hexahydrop
yrimido[4,5‑d]pyrimidin‑4(1H)‑one (4f)

Yellow solid; Optimized %Yield: 90%; m.p. 273–274 °C; 
FTIR (KBr,  cm−1): 1320.19 (s, C–N), 1522.01 (m, C=C), 
1602.10 (s, C=O), 1580.20 (s, N=O), 1605.17 (w, C–H), 
3138.10 (m, 2° N–H); 1H NMR  (CDCl3, 500  MHz): δ 
10.41 (s, 1H), 8.12 (d, J = 7.5 Hz, 2H), 7.46 (d, J = 7.5 Hz, 
2H), 5.92 (s, 1H), 5.22 (s, 1H), 3.82 (s, 1H), 2.06 (s, 1H), 
1.71 (s, 1H); 13C NMR  (CDCl3, 125  MHz): δ 174.24, 
158.63, 155.24, 153.28, 149.69, 148.83, 128.04, 123.20, 
106.95, 53.23; LCMS: m/z 318.05  [M+]; Anal. Calcd. for: 
 C12H10lN6O3S: C, 45.28; H, 3.17; N, 26.40; Found: C, 
45.30; H, 3.19; N, 26.44%.

7‑Imino‑5‑(3‑nitrophenyl)‑2‑thioxo‑2,3,5,6,7,8‑hexahydrop
yrimido[4,5‑d]pyrimidin‑4(1H)‑one (4g)

Light cream solid; Optimized %Yield: 93%; m.p. 
193–194  °C; FTIR (KBr,  cm−1): 1101.27 (s, C–N), 

1440.12 (m, C=C), 1508.24 (s, C=O), 1602.25 (s, N=O), 
1608.66 (w, C–H), 3598.14 (m, 2° N–H); 1H NMR 
 (CDCl3, 500 MHz): δ 11.52 (s, 1H), 8.39 (s, 1H), 8.27 
(d, J = 1.2 Hz, 1H), 8.07 (ddd, J = 4.6, 2.7, 1.4 Hz, 1H), 
7.53–7.36 (m, 2H), 5.47 (s, 1H), 4.04 (s, 1H), 2.28 (s, 
1H), 2.21 (s, 1H); 13C NMR  (CDCl3, 125 MHz): δ 174.29, 
158.69, 155.74, 153.34, 148.57, 141.97, 135.57, 130.19, 
127.19, 126.66, 107.00, 53.18; LCMS: m/z 318.05  [M+]; 
Anal. Calcd. for:  C12H10lN6O3S: C, 45.28; H, 3.17; N, 
26.40; Found: C, 45.27; H, 3.17; N, 26.41%.

5‑(2‑Chlorophenyl)‑7‑imino‑2‑thioxo‑2,3,5,6,7,8‑hexahydro
pyrimido[4,5‑d]pyrimidin‑4(1H)‑one (4h)

Cream solid; Optimized %Yield: 89%; m.p. 188–189 °C; 
FTIR (KBr,  cm−1): 616.75 (s, C–Cl), 1401.08 (m, C=C), 
1504.36 (s, C–N), 1625.10 (s, C=O), 1627.69 (w, C–H), 
3045.82 (m, 2° N–H); 1H NMR  (CDCl3, 500 MHz): δ 
11.65 (s, 1H), 8.48 (s, 1H), 7.36 (dd, J = 7.4, 1.5 Hz, 1H), 
7.17 (dtd, J = 28.6, 7.5, 1.4 Hz, 2H), 7.02 (dd, J = 7.4, 
1.6 Hz, 1H), 6.08 (s, 1H), 4.08 (s, 1H), 2.47 (s, 1H), 2.33 
(s, 1H); 13C NMR  (CDCl3, 125 MHz): δ 174.29, 159.05, 
155.74, 153.34, 139.91, 134.11, 131.80, 130.22, 129.35, 
126.76, 105.73, 53.65; LCMS: m/z 307.03  [M+]; Anal. 
calc for:  C12H10ClN5OS: C, 46.83; H, 3.28; N, 22.76; 
Found: C, 46.81; H, 3.25; N, 22.75%

5‑(4‑(Dimethylamino)phenyl)‑7‑imino‑2‑thioxo‑2,3,5,6,7,8‑
hexahydropyrimido[4,5‑d]pyrimidin‑4(1H)‑one (4i)

Red solid; Optimized %Yield: 91%; m.p. 295–296 °C; 
FTIR (KBr,  cm−1): 1329.18 (s, C–N), 1512.49 (w, C–H), 
1517.12 (m, C=C), 1637.25 (m, C=N), 1654.17 (s, C=O), 
3456.16 (m, 2° N–H); 1H NMR  (CDCl3, 500 MHz): δ 
10.40 (s, 1H), 7.07 (d, J = 7.3 Hz, 2H), 6.61 (d, J = 7.5 Hz, 
2H), 5.95 (s, 1H), 4.98 (s, 1H), 3.85 (s, 1H), 2.92 (s, 6H), 
2.08 (s, 1H), 1.72 (s, 1H); 13C NMR  (CDCl3, 125 MHz): 
δ 174.29, 158.69, 155.24, 153.34, 151.82, 129.64, 127.85, 
112.53, 107.00, 53.28, 41.91; LCMS: m/z 316.11  [M+]; 
Anal. Calcd. for:  C14H16N6OS: C, 53.15; H, 5.10; N, 
26.56; Found: C, 53.16; H, 5.13; N, 26.57%.

5‑(4‑Hydroxyphenyl)‑7‑imino‑2‑thioxo‑2,3,5,6,7,8‑hexahyd
ropyrimido[4,5‑d]pyrimidin‑4(1H)‑one (4j)

Green solid; Optimized %Yield: 82%; m.p. 307–308 °C; 
FTIR (KBr,  cm−1): 1390.89 (s, C–N), 1502.08 (s, C=O), 
1602.11 (m, C=C), 1630.52 (w, C–H), 3030.98 (m, 2° 
N–H); 1H NMR  (CDCl3, 500  MHz): δ 11.57 (s, 1H), 
8.43 (s, 1H), 7.10 (d, J = 7.5 Hz, 2H), 6.77 (d, J = 7.5 Hz, 
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2H), 5.49 (s, 1H), 4.08 (s, 1H), 3.62 (s, 1H), 2.32 (s, 1H), 
2.20 (s, 1H); 13C NMR  (CDCl3, 125 MHz): δ 174.33, 
158.72, 157.67, 153.37, 152.22, 131.33, 129.84, 115.63, 
107.04, 53.32; LCMS: m/z 289.06  [M+]; Anal. Calcd. 
for:  C12H11N5O2S: C, 49.82; H, 3.83; N, 24.21; Found: C, 
49.81; H, 3.85; N, 24.22%.

Green metrics assay

Concerning the principles of green chemistry, green chem-
istry metrics like atom economy, mass intensity and mass 
productivity are significant features of chemical processes. 
The major objective of these metrics is to accomplish effi-
cient, simple, and eco-friendly synthetic protocol [36]. 
Hence, we prepared all motifs (4a–j) on a gram scale. 
With synthesizing compounds on a gram scale, we next 
estimated our chemical protocol on the “greenness” scale. 
These green chemistry metrics are calculated using the 
following formulas.

Anticancer screening assay

In-vitro anticancer screening was evaluated under Devel-
opmental Therapeutics Program (DTP) at National Cancer 
Institute, Bethesda, USA. All the synthesized compounds 
(4a–j) were initially screened at a single high dose of  10−5 M 
concentration. The whole 60 human cancer cell lines were 
arranged into nine subpanels derived from nine different 
human cancer types; Leukemia, Non-Small Cell Lung Can-
cer, Colon, CNS, Melanoma, Ovarian, Renal, Prostate and 
Breast cancer cell lines. Results obtained from the single-
dose screening were reported as a graph of the mean growth 
percent of the treated cells [37].

Molecular docking assay

The binding affinities of the synthesized compounds against 
the RIPK2 were evaluated through AutoDock Vina [38, 39]. 
The grid map points were set at 2.455 Å, − 29.315 Å, and 
20.773 Å as in X, Y, and Z directions, respectively on the 
active site which includes LEU24, SER25, VAL32, ALA45, 

%AtomEconomy =
M.W. of product

∑

M.W. of all reactants used
× 100

Mass Intensity =
Total mass used in process step

Mass of product

Mass Productivity =
1

Mass Intensity
× 100

LYS47, LEU70, LEU79, ILE93, THR95, GLU96, TYR97, 
MET98, GLU105, GLN150, ASN151, LEU153, ALA163, 
ASP164 residues of the RIPK2. The point spacing was set as 
0.375 Å with 10 runs and all the parameters were set default. 
The interaction complexes of RIPK2 with the synthesized 
compounds were visualized by Discovery studio visualizer 
and Pymol viewer.

Drug‑likeness and ADME properties determination 
assay

The drug-likeness properties by Lipinski’s rule of five and 
the Absorption, Distribution, Metabolism, and Excretion 
(ADME) properties of the synthesized compounds were pre-
dicted using the SwissADME server [40]. The molecule is 
said to be Lipinski passed when its molecular mass is below 
500 Dalton, lipophilicity log P is less than 5 and H-bond 
donors & acceptors are below 5 and 10 respectively [41].

Toxicity prediction assay

The toxicity parameters of the reference compound and the 
synthesized compounds were evaluated using ADMETLAB 
2.0 server [42]. The toxicity prediction enables the safety 
parameters and the pharmacodynamic properties of drug-
like compounds.

Antimicrobial screening assay

The antimicrobial activity was evaluated as their mini-
mum inhibitory concentration (MIC) by the Mueller Hin-
ton Broth dilution method [43]. The antimicrobial activity 
of synthesized molecules (4a–j) was tested as opposed to 
the following microorganisms: Gram (−) ve bacteria (E. 
coli [MTCC-1687] and S. marcescens [MTCC 4822]), 
Gram (+) ve bacteria (S. epidermidis [MTCC-435] and 
S. pyogenes [MTCC-442]) and Fungi (A. niger [MTCC-
282] and F. solani [MTCC-9174]). The synthesized motifs 
were screened for their antimicrobial activity in triplicate 
sets against these microbes at several concentrations of 
2500–200 μg/mL. The compounds which were found to be 
active in primary analysis were further diluted and evalu-
ated. 50, 25, 12.5 and 10 μg/mL suspensions were further 
inoculated on appropriate media and the growth was noticed 
after 1 or 2 days. In this study, Chloramphenicol, Cipro-
floxacin and Nystatin were used as the standard drugs for 
the estimation of the activity.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11030- 023- 10712-9.
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