Kragujevac Journal of Mathematics Volume 45(6) (2021), Pages 873–880.

CONSTRUCTION OF *L***-BORDERENERGETIC GRAPHS**

SAMIR K. VAIDYA¹ AND KALPESH M. POPAT²

ABSTRACT. If a graph *G* of order *n* has the Laplacian energy same as that of complete graph K_n then *G* is said to be *L*-borderenergeic graph. It is interesting and challenging as well to identify the graphs which are *L*-borderenergetic as only few graphs are known to be *L*-borderenergetic. In the present work we have investigated a sequence of *L*-borderenergetic graphs and also devise a procedure to find sequence of *L*-borderenergetic graphs from the known *L*-borderenergetic graph.

1. INTRODUCTION

Throughout this paper, we begin with finite, undirected and simple graph *G*. For a standard terminology and notations in graph theory we follow Balakrishnan and Ranganathan [\[1\]](#page-6-0), while the terms related to algebra are used in the sense of Lang [\[8\]](#page-6-1). Throughout this paper \overline{G} , K_p and $\overline{K_p}$, respectively, denote complement of *G*, complete graph on *p* vertices and null graph with *p* vertices. The average vertex degree of *G* is denoted by \overline{d} and defined as $\overline{d} = \frac{\sum d_i}{n}$ $\frac{u_i}{n}$, where d_i is degree of vertex v_i .

Let *G* be an undirected simple graph with vertices v_1, v_2, \ldots, v_n . The *adjacency matrix* denoted by $A(G)$ of *G* is defined to be $A(G) = [a_{ij}]$, such that, $a_{ij} = 1$ if v_i is adjacent, with v_j and 0 otherwise. The eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ of $A(G)$ are known as eigenvalues of graph G . The energy $E(G)$ of graph G is defined by

$$
E(G) = \sum_{i=1}^{n} |\lambda_i|.
$$

The concept of graph energy was introduced by Gutman [\[6\]](#page-6-2) in 1978. It is well known that the energy of complete graph is $2(n-1)$. In 1978 Gutman [\[6\]](#page-6-2) conjectured that among all the graph with *n* vertices, the complete graph K_n has the maximum

Key words and phrases. Borderenergetic, *L*-borderenergetic, energy.

²⁰¹⁰ *Mathematics Subject Classification*. Primary: 05C50, 05C76.

Received: March 12, 2019.

Accepted: June 10, 2019.

energy. This conjecture was disproved by Walikar et al. [\[12\]](#page-6-3) by showing existence of graphs whose energy is greater than that of complete graphs. The graphs whose energy is $2(n-1)$ are termed as Borderenergetic according to Gong et al. [\[5\]](#page-6-4).

Let $D(G)$ be the diagonal matrix of whose (i, i) th entry is the degree of a vertex v_i . The matrix $L(G) = D(G) - A(G)$ is called the *Laplacian* matrix of *G*. The eigenvalues of $L(G)$ are denoted by $\mu_1, \mu_2, \ldots, \mu_{n-1}, \mu_n$. It is well known that $L(G)$ is a positive semi definite and singular matrix. So, for $i = 1, 2, \ldots, n - 1, \mu_i \geq 0$ and $\mu_n = 0$. The collection of all Laplacian eigenvalues together with their multiplicities is known as *Laplacian spectra* (*L*-spectra). Hence,

$$
spec_L(G) = \begin{pmatrix} \mu_1 & \mu_2 & \cdots & \mu_{n-1} & \mu_n = 0 \\ m(\mu_1) & m(\mu_2) & \cdots & m(\mu_{n-1}) & m(\mu_n) \end{pmatrix}.
$$

The concept of Laplacian energy of *G* was introduced by Gutman and Zhou [\[7\]](#page-6-5), is defined by $LE(G) = \left| \mu_i - \overline{d} \right|$, where μ_i are the Laplacian eigenvalues of *G* and \overline{d} is the average vertex degree of *G*.

Recently, a concept analogous to borderenergetic graphs in the context of Laplacian energy has been introduced by Tura [\[10\]](#page-6-6) which is teremed as *L*-borderenergetic graphs. According to him, a graph *G* of order *n* is said to be *L*-borderenergetic if $LE(G)$ = $LE(K_n) = 2(n-1)$. Let S_n^1 be the graph obtained from an *n*-order star S_n by adding an edge between any two pendant vertices. Obviously, S_n^1 is an unicyclic and threshold graph. Deng et al. [\[3\]](#page-6-7) have shown that S_n^1 is *L*-borderenergetic graph. Same authors [\[3\]](#page-6-7) have established several characterizations on *L*-borderenergetic graphs with maximum degree at most 4.

Obviously there does not exist *L*-borderenergetic graph on two vertices. Hou and Tao [\[9\]](#page-6-8) have proved that a *L*-borderenergetic graph on *n* vertices has at least *n* edges. As the only graph with three vertices are the paths P_3 or K_3 , there does not exist a borderenergetic graphs on three vertices. By applying computer search, Hou and Tou [\[9\]](#page-6-8) have obtained total 185 non isomorphic, non complete *L*-borderenergetic graphs of order upto 10. Elumalai and Rostami [\[4\]](#page-6-9) corrected this number to 307 (see Table 1).

Table 1.

∩rd∙ αr				
number			\sim \sim ບບ	ാറ.

It is very interesting to investigate a graph or graph families which are *L*-borderenergetic because very few graphs are known to be *L*-borderenergetic. Here we have devised a procedure to construct a sequence of *L* borderenergetic graphs. We begin the next section with a definition and some existing results for the advancement of the discussion.

2. Main Result

Definition 2.1. The *join* of G_1 and G_2 is a graph $G = G_1 \vee G_2$ with vertex set $V(G_1) \cup V(G_2)$ and an edge set consisting of all the edges of G_1 and G_2 together with the edges joining each vertex of G_1 with every vertex of G_2 .

Proposition 2.1 ([\[2\]](#page-6-10)). Let G_1 and G_2 be graphs of n_1 and n_2 vertices, respectively. If $\alpha_1, \alpha_2, \ldots, \alpha_{n_1-1}, \alpha_{n_1} = 0$ and $\beta_1, \beta_2, \ldots, \beta_{n_2-1}, \beta_{n_2} = 0$ be L-spectra of G_1 and G_2 , *respectively. Then the L-spectra of* $G_1 \vee G_2$ *are*

$$
n_2+\alpha_1, n_2+\alpha_2, \ldots, n_2+\alpha_{n_1-1}, n_1+\beta_1, n_1+\beta_2, \ldots, n_1+\beta_{n_2-1}, n_1+n_2, 0.
$$

Theorem 2.1. *Let G be a L-borderenergetic graph of order n with average vertex degree* $\bar{d} \in \mathbb{Z}$ *. Then for* $p \neq 0$ *,* $G \vee \overline{K_p}$ *is L*-borderenergetic if $p = n - \bar{d}$ *.*

Proof. Let $\mu_1, \mu_2, \ldots, \mu_{n-1}, \mu_n = 0$ be *L*-spectra of *G*. As *G* is *L*-borderenergetic of order *n*, $LE(G) = 2n - 2$, which implies that

$$
\sum_{i=1}^{n} |\mu_i - \bar{d}| = 2n - 2.
$$

Hence,

(2.1)
$$
\sum_{i=1}^{n-1} |\mu_i - \bar{d}| = 2n - 2 - \bar{d}.
$$

By Proposition [2.1,](#page-2-0) *L*-spectra of $G \vee \overline{K_p}$ is

$$
spec_L(G) = \begin{pmatrix} \mu_1 + p & \mu_2 + p & \cdots & \mu_{n-1} + p & n & n+p & 0 \\ 1 & 1 & \cdots & 1 & p-1 & 1 & 1 \end{pmatrix}.
$$

If \bar{d}' is average vertex degree of newly constructed graph $G \vee \overline{K_p}$, then

$$
\bar{d'} = \frac{n\bar{d} + 2np}{n+p}.
$$

Note that for each $1 \leq i \leq n-1$

$$
\mu_i + p - \bar{d'} = \mu_i + p - \frac{n\bar{d} + 2np}{p+n}
$$

$$
= \mu_i - \bar{d} + \left(p + \bar{d} - \frac{n\bar{d} + 2np}{p+n}\right)
$$

$$
= \mu_i - \bar{d} - \frac{p(n-p-\bar{d})}{p+n}.
$$

Now,

$$
LE(G \vee \overline{K_p}) = \sum_{i=1}^{n-1} \left| \mu_i + p - \bar{d}' \right| + (p-1) \left| n - \bar{d}' \right| + \left| n + p - \bar{d}' \right| + \left| \bar{d}' \right|
$$

$$
=\sum_{i=1}^{n-1} \left| \mu_i - \bar{d} - \frac{p(n-p-\bar{d})}{p+n} \right| + (p-1) \left| n - \frac{n\bar{d} + 2np}{n+p} \right|
$$

+
$$
\left| n + p - \frac{n\bar{d} + 2np}{n+p} \right| + \left| \frac{n\bar{d} + 2np}{n+p} \right|
$$

=
$$
\sum_{i=1}^{n-1} \left| \mu_i - \bar{d} - \frac{p(n-p-\bar{d})}{p+n} \right| + (p-1) \left| \frac{n(n-p-\bar{d})}{n+p} \right|
$$

+
$$
\left| p + \frac{n(n-p-\bar{d})}{n+p} \right| + \left| n - \frac{n(n-p-\bar{d})}{n+p} \right|.
$$

If $p = n - \overline{d}$, then

$$
LE(G \vee \overline{K_p}) = \sum_{i=1}^{n-1} |\mu_i - \bar{d}| + |p| + |n|.
$$

Therefore, by [\(2.1\)](#page-2-1), $LE(G \vee \overline{K_p}) = 2n - 2 - \overline{d} + p + n = 2n + 2p - 2 = 2(n + p - 1)$. Hence, $G \vee \overline{K_p}$ is *L*-borderenergetic.

3. Sequence of *L*-Borderenergetic Graphs

In this section we construct an infinite sequence of *L*-borderenergetic graphs. We term the graph under consideration as underlying graph. To construct the sequence we take any *L*-borderenergetic graphs of order *n* with average vertex degree $\bar{d} \in \mathbb{Z}$ as underlying graph and then the sequence is obtained by joining $n - d$ vertices at each iteration.

Let $G^{(0)}$ is any *L*-borderenergetic graph of order *n* with average vertex degree $\bar{d} \in \mathbb{Z}$. Consider an infinite sequence of graphs $\mathcal{H} = \{G^{(0)}, G^{(1)}, \ldots, G^{(k)}, \ldots\}$ such that

$$
G^{(1)} = G^{(0)} \vee \overline{K_{n-\bar{d}}}, \ G^{(2)} = G^{(1)} \vee \overline{K_{n-\bar{d}}}, \dots, G^{(k)} = G^{(k-1)} \vee \overline{K_{n-\bar{d}}}, \dots
$$

Note that each $G^{(k)}$ is of order $n+k(n-\bar{d})$ with average vertex degree $d_k = \bar{d}+k(n-\bar{d})$.

Lemma 3.1. *Let* $G^{(0)}$ *be a graph of order n with average vertex degree* $\bar{d} \in \mathbb{Z}$ *with Laplacian eigenvalues* $\mu_1, \mu_2, \ldots, \mu_{n-1}, \mu_n = 0$ *. Then for any* $G^{(k)} \in \mathcal{H}$, $k \geq 1$ *, the Laplacian spectrum of* $G^{(k)}$ *is*

$$
= \begin{pmatrix} \mu_1 + k(n - \bar{d}) & \cdots & \mu_{n-1} + k(n - \bar{d}) & n + (k-1)(n - \bar{d}) & n + k(n - \bar{d}) & 0 \\ 1 & \cdots & 1 & k(n - \bar{d} - 1) & k & 1 \end{pmatrix}.
$$

Proof. We prove this result by taking induction on *k*. From Theorem [2.1,](#page-2-2) it is clear that result is true for $k = 1$. Assume that the result is true for $k = s - 1$. Then by induction hypothesis

$$
= \begin{pmatrix} \mu_1 + (s-1)(n-\bar{d}) & \cdots & \mu_{n-1} + (s-1)(n-\bar{d}) & n + (s-2)(n-\bar{d}) & n + (s-1)(n-\bar{d}) & 0 \\ 1 & \cdots & 1 & (s-1)(n-\bar{d}-1) & (s-1) & 1 \end{pmatrix}.
$$

For $k = s$, $G^{(s)} = G^{(s-1)} \vee \overline{K_{n-\bar{d}}}$, from Proposition [2.1,](#page-2-0)

$$
= \begin{pmatrix} \mu_1 + s(n - \bar{d}) & \cdots & \mu_{n-1} + s(n - \bar{d}) & n + (s - 1)(n - \bar{d}) & n + s(n - \bar{d}) & 0 \\ 1 & \cdots & 1 & s(n - \bar{d} - 1) & s & 1 \end{pmatrix}.
$$

Thus, the result is true for all $s \in \mathbb{N}$. Hence, by induction the result follows. \square

Theorem 3.1. *For each* $r ≥ 1$, $G^{(k)} ∈ \mathcal{H}$ *is L*-borderenergetic with $K_{n+k(n-d)}$ for each $k \geq 1$ *.*

Proof. We have already shown that the order and average vertex degree of $G^{(k)}$ are $n + k(n - \bar{d})$ and $d_k = \bar{d} + k(n - \bar{d})$, respectively, for each $k \geq 1$.

$$
LE(G^{(k)}) = \sum_{i=1}^{n-1} \left| \mu_i + k(n - \bar{d}) - \bar{d} - k(n - \bar{d}) \right|
$$

+ $k(n - \bar{d} - 1) \left| n + (k - 1)(n - \bar{d}) - \bar{d} - k(n - \bar{d}) \right|$
+ $k \left| n + k(n - \bar{d}) - \bar{d} - k(n - \bar{d}) \right| + \left| \bar{d} + k(n - \bar{d}) \right|$
= $\sum_{i=1}^{n-1} \left| \mu_i - \bar{d} \right| + k(n - \bar{d}) + \bar{d} + k(n - \bar{d})$
= $2n - 2 - \bar{d} + 2k(n - \bar{d}) + \bar{d}$
= $2(n + k(n - \bar{d}) - 1) = LE(K_{n + k(n - \bar{d})}).$

Hence, $G^{(k)}$ is *L*-borderenergetic with $K_{n+k(n-\bar{d})}$ for each $k \geq 1$.

4. Some More Sequences From Known *L*-Borderenergetic Graphs

In this section we construct two infinite sequences of *L*-borderenergetic graphs \mathcal{G}_i = $\{G_i^{(0)}$ $G_i^{(0)}, G_i^{(1)}, \ldots, G_i^{(k)}, \ldots$ } \subseteq *H* for *i* = 1, 2, by taking some known *L*-borderenergetic graphs as underlying graph.

4.1. **The sequence of** S_n^1 . Let $G_1^{(0)} = S_n^1$ be the graph obtained form *n*-order star S_n by adding a single edge. Note that S_n^1 is a graph of order *n* with average degree 2,

$$
spec_L(S_n^1) = \begin{pmatrix} 0 & 1 & 3 & n \\ 1 & n-3 & 1 & 1 \end{pmatrix}, \quad LE(G_1^{(0)}) = 2(n-1),
$$

and thus it is *L*-borderenergetic with *Kn*. Consider an infinite sequence or borderenergetic graphs $\mathcal{G}_1 = \{G_1^{(0)}\}$ $\{G_1^{(0)}, G_1^{(1)}, G_1^{(2)}, \ldots, G_1^{(k)}, \ldots\}$ such that

$$
G_1^{(1)} = G_1^{(0)} \vee \overline{K_{n-2}}, G_1^{(2)} = G_1^{(1)} \vee \overline{K_{n-2}}, G_1^{(3)} = G_1^{(2)} \vee \overline{K_{n-2}}, \dots
$$

The parameters n, \bar{d}, LE of the sequence of S_n^1 are depicted in following Table 2.

FIGURE 1. The graph S_n^1

TABLE 2.

G	n	d.	L -spectra	LE(G)	L -Borderenergetic With
$G_3^{(0)}$	η	2	0^1 , $1^{(n-3)}$, 3^1 , n^1	$2(n-1)$	K_n
$G_1^{(1)} = G_1^{(0)} \vee \overline{K_{n-2}}$	$2n-2$	\boldsymbol{n}	$0^1, n^{(n-3)}$, $(n-1)^{(n-3)}$, $(n+1)^1$, $(2n-2)^2$	$2(2n-3)$	K_{2n-2}
$G_1^{(2)} = G_1^{(1)} \vee \overline{K_{n-2}}$			$3n-4$ $\mid 2n-2 \mid 0^1, (2n-2)^{(2n-6)}, (2n-3)^{(n-3)}, (2n-1)^1, (3n-4)^3$	$2(3n-5)$	K_{3n-3}
			$G_1^{(3)} = G_1^{(2)} \vee \overline{K_{n-2}} \mid 4n-6 \mid 3n-4 \mid 0^1, (3n-4)^{(3n-9)}, (3n-5)^{(n-3)}, (3n-3)^1, (4n-6)^4 \mid$	$2(4n - 7)$	K_{4n-4}
$G_1^{(4)} = G_1^{(3)} \vee \overline{K_{n-2}}$			$\boxed{5n-8 4n-6 0^1,(4n-6)^{(4n-12)},(4n-7)^{(n-3)},(4n-5)^1,(5n-8)^5 2(5n-9)}$		K_{5n-5}
			$G_1^{(5)} = G_1^{(4)} \vee \overline{K_{n-2}} \mid 6n-10 \mid 5n-8 \mid 0^1, (4n-6)^{(5n-15)}, (4n-7)^{(n-3)}, (4n-5)^1, (5n-8)^6 \mid 2(6n-11)$		K_{6n-6}

4.2. **The sequence of** $K_{n-1} \odot K_n$. For each integer $n \geq 3$, the graph $K_{n-1} \odot K_n$ is defined by

$$
G = (K_{n-1} \cup K_{n-2}) \vee K_2.
$$

FIGURE 2. The graph $K_5 \odot K_6$

Tura [\[11\]](#page-6-11) has proved that the $K_{n-1} \odot K_n$ is a graph with avrgare vertex degree $n-1$ and it is border
energetic with K_{2n-2} ,

$$
\operatorname{spec}_L(K_{n-1}\odot K_n)=\begin{pmatrix}0&1&n-1&n&2n-2\\1&1&n-3&n-2&1\end{pmatrix}, \quad LE(K_{n-1}\odot K_n)=2(2n-3).
$$

Consider an infinite sequence or borderenergetic graphs

$$
\mathcal{G}_2 = \{G_2^{(0)}, G_2^{(1)}, G_2^{(2)}, \ldots, G_2^{(k)}, \ldots\},\
$$

such that

$$
G_2^{(1)} = G_2^{(0)} \vee \overline{K_{n-1}}, \quad G_2^{(2)} = G_2^{(1)} \vee \overline{K_{n-1}}, \quad G_2^{(3)} = G_2^{(2)} \vee \overline{K_{n-1}}, \ldots
$$

The parameters n, \bar{d}, LE of the sequence of borderenergetic graphs are depicted in following Table 3.

5. Concluding Remarks

Here we have explored the concept of *L*-borderenergetic graphs which is analogous to the concept of borderenergetic graphs. We have investigated a sequence of *L*borderenergetic graphs in the scenario when only handful graphs are known to be *L*-borderenergetic. The derived result is used for the construction of two sequences of *L*-borderenergetic graphs from the known *L*-borderenergetic graphs.

REFERENCES

- [1] R. Balakrishnan and K. Ranganathan, *A Textbook of Graph Theory*, Springer, New York, 2000.
- [2] D. M. Cvetković, M. Doob and H. Sachs, *Spectra of Graphs: Theory and Application*, Academic Press, New York, 1980.
- [3] B. Deng and X. Li, *On L-Borderenergetic Graphs with maximum degree at most* 4, MATCH Commun. Math. Comput. Chem. **79** (2018), 303–310.
- [4] S. Elumalai and M. A. Rostami, *Correcting the number of L-borderenergetic graphs of order* 9 *and* 10, MATCH Commun. Math. Comput. Chem. **79** (2018), 311–319.
- [5] S. Gong, X. Li, G. Xu, I. Gutman and B. Furtula, *Borderenergetic graphs*, MATCH Commun. Math. Comput. Chem. **74** (2015), 321–332.
- [6] I. Gutman, *The energy of a graph*, Ber. Math.-Statist. Sekt. Forschungszentrum Graz **103** (1978), 1–22.
- [7] I. Gutman and B. Zhou, *Laplacian energy of a graph*, Linear Algebra Appl. **414** (2006), 29–37.
- [8] S. Lang, *Algebra*, Springer, New York, 2002.
- [9] Q. Tao and Y. Hou, *A computer search for the L-borderenergetic graphs*, MATCH Commun. Math. Comput. Chem. **77** (2017), 595–606.
- [10] F. Tura, *L-borderenergetic graphs*, MATCH Commun. Math. Comput. Chem. **77** (2017), 37–44.
- [11] F. Tura, *L-borderenergetic graphs and normalized Laplacian energy*, MATCH Commun. Math. Comput. Chem. **77** (2017), 617–624.
- [12] H. B. Walikar, H. S. Ramane and P. Hampiholi, *On the energy of a graph*, in: R. Balakrishnan, H. M. Mulder, A. Vijayakumar (Eds.), *Graph Connections*, Allied Publishers, New Delhi, 1999, 120–123.

¹DEPARTMENT OF MATHEMATICS, Saurashtra University, Rajkot(Gujarat), India *Email address*: samirkvaidya@yahoo.co.in

²Department of MCA, ATMIYA INSTITUTE OF TECHNOLOGY & SCIENCE, Rajkot(Gujarat), India *Email address*: kalpeshmpopat@gmail.com