

AKCE International Journal of Graphs and Combinatorics

ISSN: 0972-8600 (Print) 2543-3474 (Online) Journal homepage: https://www.tandfonline.com/loi/uakc20

Construction of L-equienergetic graphs using some graph operations

S. K. Vaidya & Kalpesh M. Popat

To cite this article: S. K. Vaidya & Kalpesh M. Popat (2020) Construction of L-equienergetic graphs using some graph operations, AKCE International Journal of Graphs and Combinatorics, 17:3, 877-882, DOI: 10.1016/j.akcej.2019.06.012

To link to this article: https://doi.org/10.1016/j.akcej.2019.06.012

9	© 2020 The Author(s). Published with license by Taylor & Francis Group, LLC.
	Published online: 22 Apr 2020.
	Submit your article to this journal 🗗
ılıl	Article views: 393
Q [\]	View related articles 🗗
CrossMark	View Crossmark data 🗷



Construction of L-equienergetic graphs using some graph operations

S. K. Vaidya^a and Kalpesh M. Popat^b

^aDepartment of Mathematics, Saurashtra University, Rajkot, Gujarat, India; ^bDepartment of MCA, Atmiya University, Rajkot, Gujarat, India

ABSTRACT

For a graph G with n vertices and m edges, the eigenvalues of its adjacency matrix A(G) are known as eigenvalues of G. The sum of absolute values of eigenvalues of G is called the energy of G. The Laplacian matrix of G is defined as L(G) = D(G) - A(G) where D(G) is the diagonal matrix with $(i,j)^{th}$ entry is the degree of vertex v_i . The collection of eigenvalues of L(G) with their multiplicities is called spectra of L(G). If $\mu_1, \mu_2, \cdots, \mu_n$ are the eigenvalues of L(G) then the Laplacian energy LE(G) of G is defined as $LE(G) = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right|$. It is always interesting and challenging as well to investigate the graphs which are L-equienergetic but L-noncopectral as L-cospectral graphs are obviously L-equienergetic. We have devised a method to construct L-equienergetic graphs which are L-noncospectral.

KEYWORDS

Eigenvalue; graph energy; spectrum; equienergetic

2010 MSC 05C50; 05C76

1. Introduction

All the graphs considered here are simple, finite, connected and with n vertices and m edges denoted as G(n, m). We denote the complement of graph G by \overline{G} , the complete graph on p vertices by K_p , the null graph by $\overline{K_p}$. The average vertex degree denoted by \overline{d} , defined as $\overline{d} = \frac{2m}{n}$. For any undefined term in graph theory we rely upon Balakrishnan and Ranganathan [2] while for terminology related to matrix theory we refer to Horn and Johnson [11].

The adjacency matrix A(G) of a graph G with vertices v_1, v_2, \dots, v_n is an $n \times n$ matrix $[a_{ii}]$ such that,

$$a_{ij} = 1$$
, if v_i is adjacent with v_j
= 0, otherwise

The spectra of adjacency matrix of graph G is called spectra of G. If $\lambda_1, \lambda_2, \dots, \lambda_n$ be eigenvalues of graph G then the energy of graph G is $E(G) = \sum_{i=1}^{n} |\lambda_i|$, The concept of graph energy was introduced by Gutman [9] in 1978. A brief account of graph energy can be found in Cvetković [6] and Li [12].

Let D(G) be the diagonal matrix of whose $(i, i)^{th}$ entry is the degree of a vertex v_i . The matrix L(G) = D(G) - A(G) and $L^+(G) = D(G) + A(G)$ are called the Laplacian and Signless Laplacian matrices of G and their spectra are called Laplacian spectra (L- spectra) and signless Laplacian spectra (Q-spectra) of G. Let $0 = \mu_n \le \mu_n - 1 \le \cdots \mu_1$ be L-spectra of G. Fiedler [7] have prove that $\mu_n = 0$ with multiplicity equal to the number of connected components of G. It is easy to see that

$$tr(L(G)) = \sum_{i=1}^{n} \mu_i = 2m \quad tr(L^+(G)) = \sum_{i=1}^{n} \mu_i^+ = 2m$$

with tr is the trace of the matrix.

All Laplacian eigenvalues are nonnegative, and therefore their sum is non-zero. On the other hand,

$$\sum_{i=1}^{n} \left(\mu_i - \frac{2m}{n} \right) = 0$$

Gutman and Zhou [10] have pointed out that the equality LE(G) = E(G) holds, if G is regular.

The multiplicity of μ_i is denoted by $m(\mu_i)$. The collection of all eigenvalues μ_i together their multiplicity is known as Laplacian spectra of G denoted by $spec_L(G)$. Hence,

$$spec_L(G) = \begin{pmatrix} \mu_i & \mu_2 & \cdots & \mu_n \\ m(\mu_1) & m(\mu_2) & \cdots & m(\mu_n) \end{pmatrix}$$

The Laplacian energy of a graph G is defined by

$$LE(G) = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right|$$

Basic properties and other results on Laplacian energy can be found in Andriantiana [1]. Two graphs G_1 and G_2 of same order are said to be L-equienergetic if $LE(G_1) =$ $LE(G_2)$. Two graphs are said to be *L-cospectral* if they have same Laplacian eignevalues. Since L-cospectral graphs are always L-equienergetic, the problem of constructing L-equienergetic graphs is challenging for L-noncospectral graphs.

The *join* of G_1 and G_2 is the graph $G = G_1 \vee G_2$ with vertex set $V(G_1) \cup V(G_2)$ and an edge set consisting of all the edges of G_1 and G_2 together with the edges joining each vertex of G_1 with every vertex of G_2 . The L-spectra of join of graphs is given by the following result.

Proposition 1.1. [5] If $G_1(n_1, m_1)$ and $G_2(n_2, m_2)$ are two graphs having L-spectra $\mu_1, \mu_2, \cdots, \mu_{n_1-1}, \mu_{n_1} = 0$ and σ_1, σ_2 , \cdots , σ_{n_2-1} , $\sigma_{n_2}=0$ respectively then,

 $spec_L(G_1 \vee G_2)$

$$= \begin{pmatrix} n_1 + n_2 & n_1 + \sigma_1 & \cdots & n_1 + \sigma_{n_2 - 1} & n_2 + \mu_1 & \cdots & n_2 + \mu_{n_1 - 1} & 0 \\ 1 & 1 & \cdots & 1 & 1 & \cdots & 1 & 1 \end{pmatrix}$$

The Kronecker product of G_1 and G_2 is the graph $G = G_1 \otimes G_2$ with vertex set $V(G_1) \times V(G_2)$ and two vertices (u_1, v_1) and (u_2, v_2) are adjacent if u_1 is adjacent to u_2 and v_1 is adjacent to v_2 in G_1 and G_2 respectively. The following result gives the L-spectra of the Kronecker product of graphs of $G \otimes K_2$.

Proposition 1.2. [3] Let G(n, m) be a graph having L-spectra and Q-spectra respectively as $\mu_1, \mu_2, \dots, \mu_n$ and $\mu_1^+, \mu_2^+, \dots, \mu_n^+$ then,

$$spec_L(G \otimes K_2) = \begin{pmatrix} \mu_1 & \mu_2 & \cdots & \mu_n & \mu_1^+ & \mu_2^+ & \cdots & \mu_n^+ \\ 1 & 1 & \cdots & 1 & 1 & 1 & \cdots & 1 \end{pmatrix}$$

The *m-shadow graph* $D_m(G)$ of a connected graph G is graph obtained by taking m copies of G, say G_1, G_2, \dots, G_m , then join each vertex u in G_i to the neighbors of the corresponding vertex v in G_j , $1 \le i, j \le m$. For m = 2, the graph is known as shadow (double) graph.

Proposition 1.3. [13] Let G be a graph with n vertices having degrees d_1, d_2, \dots, d_n and let $\mu_1, \mu_2, \dots, \mu_n$ be its Laplacian spectra. Then the Laplacian spectra of $D_m(G)$ is $m\mu_i, md_i$ for $1 \le i \le n$.

Proposition 1.4. [8] Let $D_2(G)$ be the shadow graph of the graph G(n, m). Then, for $p \ge 2n + k$ and $m \le \frac{k^2 + 2nk}{8}$, $k \ge 4$ we have

$$LE(D_2(G) \vee \overline{K_p}) = 4n + (p - 2n)\frac{2m'}{n'} + 8m$$

with $\frac{2m'}{n'} = \frac{4m+2np}{n+2p}$

The extended double cover [4] of the graph G(n, m) with vertex set $V(G) = \{v_1, v_2, \cdots, v_n\}$ is a bipartite graph G^* with bipartition $(X, Y), X = \{x_1, x_2, \cdots, x_n\}$ and $Y = \{y_1, y_2, \cdots, y_n\}$ where two vertices x_i and y_j are adjacent if and only if i = j or v_i adjacent v_j in G. It is easy to see that G^* is connected if and only if G is connected and a vertex v_i is of degree d_i in G if and only if it is of degree $d_i + 1$ in G^* . Following are some results associated with G^*

Proposition 1.5. [8] Let G(n, m) be a graph with L-spectra and Q-spectra as $\mu_1, \mu_2, \dots, \mu_n$ and $\mu_1^+, \mu_2^+, \dots, \mu_n^+$ respectively, then $spec_L(G^*) = \begin{pmatrix} \mu_1 & \mu_2 & \cdots & \mu_n & \mu_1^+ + 2 & \mu_2^+ + 2 & \cdots & \mu_n^+ + 2 \\ 1 & 1 & \cdots & 1 & 1 & 1 & \cdots & 1 \end{pmatrix}$

Proposition 1.6. [8] Let G(n, m) be the graph then for $p \ge 2n + k$ and $m \le \frac{(k-1)n}{2} + \frac{k^2}{4}$, $k \ge 3$, we have

$$LE(G^* \vee \overline{K_p}) = 6n + (p - 2n)\frac{2m'}{n'} + 4m$$

with $\frac{2m'}{n'} = \frac{4m+2np+2n}{p+2n}$

Proposition 1.7. [11] Let

$$A = \begin{bmatrix} A_0 & A_1 \\ A_1 & A_0 \end{bmatrix}$$

be a symmetric block matrix. Then the spectra of A is the union of $A_0 + A_1$ and $A_0 - A_1$.

2. Laplacian energy of extended shadow graph

Definition 2.1. The extended shadow graph $D_2^*(G)$ of a connected graph G is constructed by taking two copies of G say G' and G''. Join each vertex u' in G' to the neighbours of the corresponding vertex u'' and with u'' in G''.

Theorem 2.2. Let G be a graph with Laplacian eigenvalues $\mu_1, \mu_2, \dots, \mu_n$ and degrees d_1, d_2, \dots, d_n then the Laplacian spectra of $D_2^*(G)$ is

 $spec_L(D_2^*(G))$

$$= \begin{pmatrix} 2\mu_1 & 2\mu_2 & \cdots & 2\mu_n & 2(d_1+1) & 2(d_2+1) & \cdots & 2(d_n+1) \\ 1 & 1 & \cdots & 1 & 1 & 1 & \cdots & 1 \end{pmatrix}$$

Proof. Let v_1, v_2, \dots, v_n be the vertices of the graph G and A(G), D(G) be the adjacency matrix and degree matrix of the graph G respectively. Then,

$$L(G) = D(G) - A(G)$$

Consider second a copy graph G with vertices $u_1, u_2, u_3, \dots, u_n$ to obtain $D_2^*(G)$, such that, $N(u_i) = N(v_i) \cup \{u_i\}, i = 1, 2, \dots n$. Let $G_1 = D_2^*(G)$.

The adjacency matrix and degree matrix of G_1 are respectively given as

$$A(G_1) = \begin{bmatrix} A(G) & A(G) + I \\ A(G) + I & A(G) \end{bmatrix}$$
$$D(G_1) = \begin{bmatrix} 2D(G) + I & 0 \\ 0 & 2D(G) + I \end{bmatrix}$$

Then,

$$L(G_1) = D(G_1) - A(G_1)$$

$$= \begin{bmatrix} 2D(G) - A(G) + I & -A(G) - I \\ -A(G) - I & 2D(G) - A(G) + I \end{bmatrix}$$

$$= \begin{bmatrix} L(G) + D(G) + I & L(G) - D(G) - I \\ L(G) - D(G) - I & L(G) + D(G) + I \end{bmatrix}$$

Hence, by Proposition 1.7, spectra of $L(G_1)$ is union of spectra of 2L(G) and 2(D(G) + I). Hence,

 $spec_L(D_2^*(G))$

$$= \begin{pmatrix} 2\mu_1 & 2\mu_2 & \cdots & 2\mu_n & 2(d_1+1) & 2(d_2+1) & \cdots & 2(d_n+1) \\ 1 & 1 & \cdots & 1 & 1 & 1 & \cdots & 1 \end{pmatrix}$$

Lemma 2.3. Let G(n, m) be a graph then for $p \ge (2n + k)$ and $m \leq \frac{k^2+2nk}{4}$, we have

$$LE((G \otimes K_2) \vee \overline{K_p}) = 4n + (p-2n)\frac{2m'}{n'} + 4m$$

Proof. Let G(n, m) be an n-vertex graph having L-spectra and Q-spectra, as $\mu_1, \mu_2, \dots, \mu_n$ and $\mu_1^+, \mu_2^+, \dots, \mu_n^+$ respectively, then by Proposition 1.2

$$spec_L(G \otimes K_2) = \begin{pmatrix} \mu_1 & \mu_2 & \cdots & \mu_n & \mu_1^+ & \mu_2^+ & \cdots & \mu_n^+ \\ 1 & 1 & \cdots & 1 & 1 & 1 & \cdots & 1 \end{pmatrix}$$

and so by Proposition 1.1

$$spec_{L}((G \otimes K_{2}) \vee \overline{K_{p}})$$

$$= \begin{pmatrix} p + 2n & p + \mu_{1} & \cdots & p + \mu_{n-1} & p + \mu_{1}^{+} & \cdots & p + \mu_{n}^{+} & 2n & 0 \\ 1 & 1 & \cdots & 1 & 1 & \cdots & 1 & p - 1 & 1 \end{pmatrix}$$

Average vertex degree of $(G \otimes K_2) \vee \overline{K_p}$ is

$$\frac{2m'}{n'} = \frac{4m + 4np}{p + 2n}$$

Therefore,

$$LE((G \otimes K_2) \vee \overline{K_p}) = \left| p + 2n - \frac{2m'}{n'} \right| + \sum_{i=1}^{n-1} \left| p + \mu_i - \frac{2m'}{n'} \right|$$

$$+ \sum_{i=1}^{n} \left| p + \mu_i^+ - \frac{2m'}{n'} \right|$$

$$+ (p-1) \left| 2n - \frac{2m'}{n'} \right| + \left| \frac{2m'}{n'} \right|$$

Now if, $p \ge 2n + k$ and $m \le \frac{k^2 + 2nk}{4}$, we have for i = 1, $2, \cdots, n$

$$p + \mu_i - \frac{2m'}{n'} = p + \mu_i - \frac{4m + 4np}{p + 2n}$$

$$= \frac{p(p - 2n) + (p + 2n)\mu_i - 4m}{p + 2n}$$

$$\geq \frac{k(2n + k) - k(2n + k)}{p + 2n} = 0$$

Similarly,

$$p + \mu_i^+ - \frac{2m'}{n'} > 0$$

Therefore,

$$LE((G \otimes K_2) \vee \overline{K_p}) = \left| p + 2n - \frac{2m'}{n'} \right| + \sum_{i=1}^{n-1} \left| p + \mu_i - \frac{2m'}{n'} \right| + \sum_{i=1}^{n} \left| p + \mu_i^+ - \frac{2m'}{n'} \right|$$

$$\begin{split} &+ (p-1) \left| 2n - \frac{2m'}{n'} \right| + \left| \frac{2m'}{n'} \right| \\ &= \left(p + 2n - \frac{2m'}{n'} \right) + \left(\sum_{i=1}^{n-1} \mu_i + 0 \right) \\ &+ \sum_{i=1}^{n} \mu_i^+ + (n-1) \left(p - \frac{2m'}{n'} \right) \\ &+ n \left(p - \frac{2m'}{n'} \right) + (p-1) \left(\frac{2m'}{n'} - 2n \right) \\ &+ \frac{2m'}{n'} \\ &= 4n + (p-2n) \frac{2m'}{n'} + 4m \end{split}$$

Remark 2.4. We have considered the only case when $p \ge$ 2n + k and $m \le \frac{k^2 + 2nk}{4}$. We discard the remaining possibilities for p and m due to following reasons.

Case(I) If, p < 2n + k and $m \le \frac{k^2 + 2nk}{4}$

$$p + \mu_{i} - \frac{2m'}{n'} = p + \mu_{i} - \frac{4m + 4np}{p + 2n}$$

$$= \frac{p(p - 2n) + (p + 2n)\mu_{i} - 4m}{p + 2n}$$

$$\geq \frac{p(p - 2n) - 4m}{p + 2n}$$

$$\geq \frac{p(p - 2n) - k^{2} - 2nk}{p + 2n}$$

$$= \frac{(p - k)(p + k) - 2n(p + k)}{p + 2n}$$

$$= \frac{(p + k)(p - k - 2n)}{p + 2n}$$

$$\geq \frac{(p - k - 2n)}{p + 2n}$$

As, p < 2n + k and p + 2n > 0, we have

$$\frac{(p-k-2n)}{p+2n}<0$$

Hence, in this case we are not able to determine the sign of $p + \mu_i - \frac{2m'}{n'}$. In this situation the term on L.H.S. might be either positive or negative.

Case(II) If, $p \ge 2n + k$ and $m > \frac{k^2 + 2nk}{4}$,

$$\begin{aligned} p + \mu_i - \frac{2m'}{n'} &= p + \mu_i - \frac{4m + 4np}{p + 2n} \\ &= \frac{p(p - 2n) + (p + 2n)\mu_i - 4m}{p + 2n} \\ &\geq \frac{p(p - 2n) - 4m}{p + 2n} \\ &\geq \frac{k(2n + k) - 4m}{p + 2n} \\ &= \frac{k^2 + 2nk - 4m}{p + 2n} \end{aligned}$$

Here, $m > \frac{k^2 + 2nk}{4}$ and p + 2n > 0, we have

$$\frac{k^2 + 2nk - 4m}{p + 2n} < 0$$

Again, in this case we are not able to determine the sign of $p + \mu_i - \frac{2m'}{n'}$.

Case(III) If, p < 2n + k and $m > \frac{k^2 + 2nk}{4}$,

$$\begin{split} p + \mu_i - \frac{2m'}{n'} &= p + \mu_i - \frac{4m + 4np}{p + 2n} \\ &= \frac{p(p - 2n) + (p + 2n)\mu_i - 4m}{p + 2n} \\ &< \frac{k(2n + k) + (p + 2n)\mu_i - 4m}{p + 2n} \\ &< \frac{k(2n + k) + (p + 2n)\mu_i - k^2 - 2nk}{p + 2n} \\ &= \frac{(p + 2n)\mu_i}{p + 2n} \end{split}$$

In this case also we are not able to decide the sign of $p + \mu_i - \frac{2m'}{r'}$ as $\mu_i \ge 0$.

Thus, in all the cases discussed above, it is not possible to determine the sign of the term $p + \mu_i - \frac{2m'}{n'}$ definitely.

3. Construction of L-equienergetic graphs

Theorem 3.1. Let $G_1(n,m)$ and $G_2(n,m)$ be two graphs having L-spectra as $\mu_1, \mu_2, \dots, \mu_n$ and $\gamma_1, \gamma_2, \dots, \gamma_n$ respectively, then for $p \ge 2n + k$ and $m \le \frac{k^2 + 2n(k-1)}{8}$, $k \ge 4$ we have

$$LE(D_2^*(G_1) \vee \overline{K_p}) = LE(D_2^*(G_2) \vee \overline{K_p})$$

Proof. Let $D_2^*(G_1)$ be the extended shadow graph of G_1 . Then by Theorem 2.2,

$$spec_L(D_2^*(G_1))$$

$$= \begin{pmatrix} 2\mu_1 & 2\mu_2 & \cdots & 2\mu_n & 2(d_1+1) & 2(d_2+1) & \cdots & 2(d_n+1) \\ 1 & 1 & \cdots & 1 & 1 & 1 & \cdots & 1 \end{pmatrix}$$

and so by Proposition 1.1,

$$LE(D_2^*(G_1) \vee \overline{K_p}) = \left| p + 2n - \frac{2m'}{n'} \right|$$

$$+ \sum_{i=1}^{n-1} \left| p + 2\mu_i - \frac{2m'}{n'} \right|$$

$$+ \sum_{i=1}^{n} \left| p + 2(d_i + 1) - \frac{2m'}{n'} \right|$$

$$+ (p-1) \left| 2n - \frac{2m'}{n'} \right| + \left| \frac{2m'}{n'} \right|$$

Now if, $p \ge 2n + k$ and $m \le \frac{k^2 + 2n(k-1)}{8}$, $k \ge 4$, we have for $i = 1, 2, \dots, n$

$$p + 2\mu_i - \frac{2m'}{n'} = p + 2\mu_i - \frac{8m + 2n + 4np}{p + 2n}$$

$$= \frac{p(p - 2n) + 2\mu_i(p + 2n) - 8m - 2n}{p + 2n}$$

$$\geq \frac{k(2n + k) - k(2n + k) + 2n - 2n}{p + 2n} = 0$$

Similarly we see that,

$$p+2(d_i+1)-\frac{2m'}{n'}\geq 2>0$$

Therefore,

$$LE(D_2^*(G) \vee \overline{K_p}) = \left| p + 2n - \frac{2m'}{n'} \right| + \sum_{i=1}^{n-1} \left| p + 2\mu_i - \frac{2m'}{n'} \right|$$

$$+ \sum_{i=1}^{n} \left| p + 2(d_i + 1) - \frac{2m'}{n'} \right|$$

$$+ (p-1) \left| 2n - \frac{2m'}{n'} \right| + \left| \frac{2m'}{n'} \right|$$

$$= \left(p + 2n - \frac{2m'}{n'} \right) + 2 \left(\sum_{i=1}^{n-1} \mu_i + 0 \right)$$

$$+ (n-1) \left(p - \frac{2m'}{n'} \right)$$

$$+ 2 \sum_{i=1}^{n} d_i + n \left(p + 2 - \frac{2m'}{n'} \right)$$

$$+ (p-1) \left(\frac{2m'}{n'} - 2n \right) + \frac{2m'}{n'}$$

$$= 6n + (p-2n) \frac{2m'}{n'} + 8m$$

$$spec_L(D_2^*(G_1) \vee \overline{K_p}) = \begin{pmatrix} p+2n & p+2\mu_1 & \cdots & p+2\mu_{n-1} & p+2(d_1+1) & \cdots & p+2(d_n+1) & 2n & 0 \\ 1 & 1 & \cdots & 1 & 1 & \cdots & 1 & p-1 & 1 \end{pmatrix}$$

Average vertex degree of $D_2^*(G_1) \vee \overline{K_p}$ is

$$\frac{2m_1'}{n'} = \frac{8m+2n+4np}{p+2n}$$

Remark 3.2. We can prove the remaining cases by similar arguments as discussed in Remark 2.4.

Corollary 3.3. Let $G_1(n, m_1)$, $G_2(n, m_2)$, $G_3(n, m_3)$ and $G_4(n, m_4)$ be four graphs of order $n \equiv 0 \pmod{4}$ with $m_2 = 0$

 $LE((G \otimes K_2) \vee \overline{K_p}) = 6n + (p - 2n) \frac{2m'_1}{m'} + 8m_1$ (4)

Therefore, from (1)–(4) it is clear that

$$LE(D_2^*(G_1) \vee \overline{K_p}) = LE(D_2(G_2) \vee \overline{K_p}) = LE(G_3^* \vee \overline{K_p})$$
$$= LE((G \otimes K_2) \vee \overline{K_p})$$

Theorem 3.4. Let $G_1(n, m_1)$ and $G_2(n, m_2)$ be two graphs having L-spectra respectively as $\mu_1, \mu_2, \dots, \mu_n$ and $\gamma_1, \gamma_2, \dots, \gamma_n$. Then with $n \equiv 0 \pmod{8}$ and $m_2 = m_1 + \frac{n}{4}$ for $p \ge 4n + k$ and $m_2 \le \frac{k^2 + 4nk - 4n}{32}$ we have

$$\mathit{LE}(D_2(D_2^*(G_1)) \vee \overline{K_p}) = \mathit{LE}(D_2^*(D_2(G_2)) \vee \overline{K_p})$$

Proof. Let $D_2^*(G)$ and $D_2(G)$ be the shadow and extended shadow graphs of G, respectively. $D_2(D_2^*(G_1)) \vee \overline{K_p}$ and $D_2^*(D_2(G_2)) \vee \overline{K_p}$ are graphs with p+4n vertices and average degrees respectively as

$$\frac{2m_1'}{n'} = \frac{32m + 8n + 8np}{p + 4n}, \quad \frac{2m_2'}{n'} = \frac{32m + 4n + 8np}{p + 4n}.$$

By Theorem 2.2

$$spec_L(D_2^*(G_1)) = \begin{pmatrix} 2\mu_1 & 2\mu_2 & \cdots & 2\mu_n & 2(d_1+1) & 2(d_2+1) & \cdots & 2(d_n+1) \\ 1 & 1 & \cdots & 1 & 1 & 1 & \cdots & 1 \end{pmatrix}$$

by Lemma 1.3,

$$\cdots$$
 1 2 \cdots 2

 $m_1 + \frac{n}{4}$, $m_3 = 2m_1$ and $m_4 = 2m_1 + \frac{n}{2}$. Then for $p \ge 2n + k$ and $m_1 \le \frac{k^2 + 2n(k-1)}{8}$ we have

$$LE(D_2^*(G_1) \vee \overline{K_p}) = LE(D_2(G_2) \vee \overline{K_p}) = LE(G_3^* \vee \overline{K_p})$$
$$= LE((G \otimes K_2) \vee \overline{K_p})$$

Proof. Let $D_2^*(G_1)$, $D_2(G_2)$ and G_3^* be the extended shadow graph of $G_1(n,m_1)$, shadow graph of $G_2(n,m_2)$ and extended double cover of $G_3(n,m_3)$, respectively. Average degrees of $D_2^*(G_1)$, $D_2(G_2)$, G_3^* and $(G \otimes K_2) \vee \overline{K_p}$ are respectively as,

$$\frac{2m'_1}{n'} = \frac{8m_1 + 4np + 2n}{p + 2n}, \quad \frac{2m'_2}{n'} = \frac{8m_2 + 4np}{p + 2n},$$
$$\frac{2m'_3}{n'} = \frac{4m_3 + 4np + 2n}{p + 2n}, \quad \frac{2m'_4}{n'} = \frac{4m_4 + 4np}{p + 2n}$$

Now, for $p \ge 2n + k$ and $m_1 \le \frac{k^2 + 2n(k-1)}{8}$, we have by Theorem 3.1

$$LE(D_2^*(G) \vee \overline{K_p}) = 6n + (p - 2n)\frac{2m_1'}{n'} + 8m_1$$
 (1)

For $p \ge 2n + k$ and $m_2 \le \frac{k^2 + 2nk}{8}$ we have by Proposition 1.4

$$LE(D_2(G) \vee \overline{K_p}) = 4n + (p - 2n)\frac{2m_2'}{n'} + 8m_2$$

If $m_2 = m_1 + \frac{n}{4}$ then

$$\mathit{spec}_L(D_2(D_2^*(G_1)) = \left(\begin{array}{ccccccc} 4\mu_1 & \cdots & 4\mu_n & 4(d_1+1) & \cdots & 4(d_n+1) & 2(2d_1+1) & \cdots & 2(2d_n+1) \\ 1 & \cdots & 1 & 1 & \cdots & 1 & 2 & \cdots & 2 \end{array} \right)$$

$$LE(D_2(G) \vee \overline{K_p}) = 6n + (p - 2n)\frac{2m_1'}{n'} + 8m_1$$
 (2)

For $p \ge 2n + k$ and $m_3 \le \frac{n(k-1)}{2} + \frac{k^2}{8}$, we have by Proposition 1.6

$$LE(G_3^* \vee \overline{K_p}) = 6n + (p - 2n)\frac{2m_3'}{n'} + 4m_3$$

and if we suppose that $m_3 = 2m_1$ then

$$LE(G_3^* \vee \overline{K_p}) = 6n + (p - 2n) \frac{2m_1'}{m_1'} + 8m_1$$
 (3)

Also for, For $p \ge 2n + k$ and $m_3 \le \frac{n(k-1)}{2} + \frac{k^2}{8}$, we have by Lemma 2.3

$$LE((G \otimes K_2) \vee \overline{K_p}) = 4n + (p - 2n) \frac{2m_4'}{n'} + 4m_4$$

and if we suppose that $m_4 = 2m_1 + \frac{n}{2}$ then

and so by Proposition 1.1, *L*-spectra of $D_2(D_2^*(G)) \vee \overline{K_p}$ is $p+4n, \ p+4\mu_i \ (1 \le i \le n-1), \ p+4(d_i+1), \ p+2(2d_i+1) \ (2 \ \text{times}) \ (1 \le i \le n), \ 4n \ ((p-1) \ \text{times}), \ 0$ So if $p \ge 4n+k$ and $m_1 \le \frac{k(4n+k)-8n}{32}, \ k \le 4$, we have for $i=1,2,\cdots,n$

$$\begin{split} p + 4\mu_i - \frac{2m_1'}{n'} &= p + 4\mu_i - \frac{32m + 8n + 8np}{p + 4n} \\ &= \frac{p(p - 4n) + 4(p + 4n)\mu_i - 32m - 8n}{p + 4n} \\ &\geq \frac{k(4n + k) - k(4n + k) + 8n - 8n}{p + 4n} = 0 \end{split}$$

Similarly we can show

$$p+4(d_i+1)-\frac{2m'_1}{n'}, \geq 0, p+2(2d_i+1) \geq 0$$

Therefore,

$$LE(D_{2}(D_{2}^{*}(G)) \vee \overline{K_{p}}) = \left| p + 4n - \frac{2m'_{1}}{n'} \right|$$

$$+ \sum_{i=1}^{n-1} \left| p + 4\mu_{i} - \frac{2m'_{1}}{n'} \right|$$

$$+ \sum_{i=1}^{n} \left| p + 4(d_{i} + 1) - \frac{2m'_{1}}{n'} \right|$$

$$+ 2\sum_{i=1}^{n} \left| p + 2(2d_{i} + 1) - \frac{2m'_{1}}{n'} \right|$$

$$+ (p - 1) \left| 4n - \frac{2m'_{1}}{n'} \right| + \left| \frac{2m'_{1}}{n'} \right|$$

$$= 8n + (p - 4n) \frac{2m'_{1}}{n'} + 16m_{1}$$

Similarly,

L-spectra of $D_2^*(D_2(G)) \vee \overline{K_p}$ is p+4n, $p+4\gamma_i$ $(1 \le i \le n-1)$, $p+4d_i'$, $p+2(2d_i'+1)$ (2 times) $(1 \le i \le n)$, 4n ((p-1) times), 0 and

$$LE(D_2(D_2^*(G)) \vee \overline{K_p}) = 4n + (p - 4n) \frac{2m_2'}{n'} + 16m_2$$

Using $m_2 = m_1 + \frac{n}{4}$

$$LE(D_2^*(D_2(G_1)) \vee \overline{K_p}) = LE(D_2(D_2^*(G_2)) \vee \overline{K_p})$$

4. Concluding remarks

In most of the existing results only a pair of graphs are shown to be L-equienergetic while we have investigated four

graphs which are simultaneously *L*-equienergetic. Moreover, we have used the concept of extended shadow graph to construct *L*-equienergetic graphs from the given graphs.

References

- Andriantiana, E. O. D. (2016). Laplacian energy. In: I. Gutman, X. Li, eds. Graph Energies – Theory and Applications. Kragujevac: University of Kragujevac, pp. 49–80.
- Balakrishnan, R., Ranganathan, K. (2000). A Textbook of Graph Theory. New York: Springer.
- [3] Barik, S., Bapat, R. B., Pati, S. (2015). On the Laplacian spectra of product graphs. Appl. Anal. Discrete Math. 9(1): 39–58.
- [4] Chen, Z. (2004). Spectra of extended double cover graphs. Czech. Math. J. 54(4): 1077–1082.
- [5] Cvetkovic, D., Doob, M., Sachs, H. (1980). Spectra of Graphs: Theory and Application. New York: Academic Press.
- [6] Cvetković, D., Rowlison, P., Simić, S. (2010). An Introduction to the Theory of Graph Spectra. Cambridge: Cambridge University Press.
- [7] Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak Math. J. 23(2): 298–305.
- [8] Ganie, H. A., Pirzada, S., Ivanyi, A. (2014). Energy, Laplacian energy of double graphs and new families of equienergetic graphs. Acta Univ. Sapientiae, Informatica 6(1): 89–116.
- [9] Gutman, I. (1978). The energy of a graph. Ber. Math. Statist. Sekt. Forsch-Ungszentram Graz 103: 1-22.
- [10] Gutman, I., Zhou, B. (2006). Laplacian energy of a graph. Linear Algebra Appl. 414(1): 29–37.
- [11] Horn, R. A., Johnson, C. R. (1991). *Topics in Matrix Analysis*. Cambridge: Cambridge University Press.
- [12] Li, X., Shi, Y., Gutman, I. (2012). *Graph Energy*. New York: Springer.
- [13] Marino, M. S., Salvi, N. Z. (2007). Generalizing double graphs. Atti Dell' Accademia Peloritana Dei Pericolanti Classe di Scienze Fisiche, Matematiche e Naturali 85: 1–9.