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Abstract— A dominating set        is said to be a congruent dominating set of a graph   if ∑                    ∑          . 

The minimum cardinality of a minimal congruent dominating set of   is called the congruent domination number of   which is 

denoted by       . In this paper, we investigate congruent domination number of some graphs obtained by means of some graph 

operation. 
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I. INTRODUCTION 

Domination in graphs is one of the concepts in graph theory that has piqued the interest of many researchers due to its 

potential to solve real-world problems involving communication network design and analysis, as well as defence surveillance. 

There are numerous domination models available in the literature. [1, 4, 6, 7, 8, 9] provide a concise explanation of dominating 

sets and related concepts. For standard notations and graph theoretic terminology, we follow West [17] while the terms related 

to number theory are used in the sense of Burton [2]. 

We begin with finite, undirected and simple graph               of order  . A set        of vertices in a 

graph   is called a dominating set if each vertex in        is adjacent to at least one vertex of  . A dominating set   is a 

minimal dominating set if no proper subset    of   is a dominating set of graph  . The domination number      is the 

minimum cardinality of a minimal dominating set. 

The following new concept is recently introduced and further explored by Vaidya and Vadhel [13, 14, 15, 16]. 

 

 A dominating set        is said to be a congruent dominating set of   if 

 

 ∑                    ∑           (1) 

 

 A congruent dominating set        is said to be a minimal congruent dominating set if no proper subset    of   is 

congruent dominating set. The minimum cardinality of a minimal congruent dominating set of   is called the congruent 

domination number of   which is denoted by       . 
In the present paper we have investigated the congruent domination number of some graph obtained by means of some 

graph operation like Corona product, square graph of a graph, complement graph of a graph and extended double cover of a 

graph. The domination number of the Cartesian product of paths and cycles have been investigated in [5, 10, 11]. We have also 

investigated the exact value of congruent domination number for Cartesian product of cycles and paths. 

The complement  ̅ of a graph   is the graph with vertex set      and two vertices are adjacent in  ̅ if and only if they 

are not adjacent in  . 

The square graph    of a graph   with vertex set      is the graph obtained by joining every pair of vertices which 

are at distance two in  . 

The corona     of two graphs   and   (with order   and   respectively) is defined as a graph obtained by taking 

one copy of   and   copies of   and joining the     vertex of   with an edge to every vertex in the     copy of  . 

The Cartesian product of two graphs          and         , denoted by    , is the graph with vertex set is 

      and edge set                                 and            or        and             . 
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Definition 1.1 The extended double cover of a graph   with the vertex set                   is a bipartite graph    with 

bipartition                        and               , where two vertices    and    are adjacent if and only if     or 

   is adjacent to    in  .  

 

We state the following results as our ready references: 

 

Theorem 1.2 [11] For    ,          {
⌈
 

 
⌉                   

⌈
 

 
⌉            

  

 

Theorem 1.3 [3] Let   be a connected graph of order   and let   be any graph of order  . Then         .  

 

II. MAIN RESULTS 

Theorem 2.1 Let            , then                         
 

Proof. Let   be a graph with   vertices and   edges. 

Let            , then              and                
This implies that  ∑                             ∑                                                                             (2) 

Now, consider the graphs      with                                       , where                         
           and      with                                                           , where                
         and                     
Moreover, ∑                ∑                        ∑                ∑                                                       (3) 

Let                    , then   is a dominating set for both      and      with        Moreover,   is a minimal 

domination set with minimum cardinality as                    
Moreover, ∑                ∑   

           
     and ∑                ∑   

                                                        (4) 

Thus, from (1), (2) and (3), we get,   is a minimal congruent dominating set with minimum cardinality. 

Hence,                         
 

Theorem 2.2 Let   be an  -regular graph, then               
 

Proof. Let   be an  -regular graph with                    . 
Now, consider the graph      with                                       , where for each i,     is the corresponding 

vertex of   . Then  

 ∑             ∑   
         ∑   

                                                                                (5) 

Let                    , then   is a minimal domination set with minimum cardinality as             
Moreover, ∑          ∑   

                                                                                                                                          (6) 

Thus, from (5) and (6),   satisfies Condition (1) to be a congruent dominating set. Hence,               
 

Theorem 2.3 For the square of path   ,  

       
   

{
 
 

 
 
 

 
              

   

 
                 

 

 
           

 

  

Proof. Let                  be the set of vertices of path   
  with      .  

Here,    and    are the vertices of degree 2,    and      are the vertices of degree 3 and                are the vertices of 

degree 4. 

Therefore, ∑                                            

 

Case-1:           

Define              
 

 
    with     

 

 
. Then   is a minimal dominating set as        doesn’t dominate vertex   , 

for each        

Moreover, there is 1 vertex of degree 2 and all other vertices of degree 4 and so ∑             (
 

 
  )  
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Then,   satisfies Condition (1) to be a congruent dominating set. Therefore,   is a congruent dominating set. 

Since,   is a minimal dominating set, it is a minimal congruent dominating set. 

Let        be the set of vertices with         and ∑            
 

 
        

Then, there does not exist any     with   
 

 
       such that        and          . 

Hence,   is a minimal congruent dominating set with minimum cardinality. 

 

Case 2:   is prime. 

Define   {             
   

 
} with     

   

 
. Then   is a dominating set. 

Moreover, there is one vertex of degree 3 and all other vertex of degree 4 in set   and so, ∑             (
   

 
)      

    Then,   satisfies Condition (1) to be a congruent dominating set. Therefore,   is a congruent dominating set. 

Moreover,   is a minimal congruent dominating set as                   is not a congruent dominating set. 

Let        be the set of vertices with ∑                    
Then, there does not exist any     such that        and          . 
Hence,   is a minimal congruent dominating set with minimum cardinality. 

Case-3: Define   {          
 

 
  } with     

 

 
. Then   is a dominating set. 

Moreover, there is one vertex of degree 2, one vertex of degree 3 and (
 

 
  ) vertices of degree 4 in   and so, 

 ∑               (
 

 
  )          

Then, ∑                    ∑            Therefore,   is a congruent dominating set. 

Moreover,   is a minimal congruent dominating set as               is not a congruent dominating set. 

Let        be the set of vertices with ∑                    
Then, there does not exist any     such that        and          . 
This implies that   is a minimal congruent dominating set with minimum cardinality. 

Hence,  

        

{
 
 

 
 
 

 
              

   

 
                 

 

 
           

 

 

 

Theorem 2.4 For the book graph   ,  

         {
                            
   

 
          

 

 

Proof. Let                                      be the set of vertices of   , where   and   are the apex vertices of degree 

    and all other vertices are of degree 2. 

Then, ∑                                        

 

Case-1:     or   is even. 

Consider a set        as follows:  

                   with           
Then,   is a minimal dominating set as for any    ,       will not dominate  . 

Here, ∑                           
Therefore,   satisfies Condition (1) to be a congruent dominating set. Hence,   is a congruent dominating set.  

Moreover,   is a minimal congruent dominating set as it is a minimal dominating set. 

Select     such that       . 

Now consider the set of vertices   of      such that         with ∑          
    

 
  

Then, (
    

 
)        

But for each    ,       and          
Therefore, no such congruent dominating set   exists such that          
This implies that   is a minimal congruent dominating set with minimum cardinality. 
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Case-2:     is odd. 

Consider a set        as follows: 

  {            
   

 
} with     

   

 
  Then   is a dominating set. 

Here, ∑                  (
   

 
)        Therefore,   satisfies Condition (1) to be a congruent dominating set. 

Hence,   is a congruent dominating set. 

Select     such that       . 

Now consider the set of vertices   of      such that         with ∑          
    

 
  

Then, (
    

 
)        

But for each    ,       and          

Therefore, no such congruent dominating set   exists such that     
   

 
  

This implies that   is a minimal congruent dominating set with minimum cardinality. 

Hence,          {
                            
   

 
           

 

 

Theorem 2.5 Let   be the complement of path    with    , then 

        {
                
 

 
                 

 

 

Proof. Let                       be the set of vertices of graph  . 

Then,                 and                        and so, 

 ∑                                           

 

Case-1:   is odd. 

Consider a subset        of vertices as follows: 

          with        Then   is a minimal dominating set with minimum cardinality as            
Now, ∑                           ∑                         

Here,                   this implies that       as   is odd and so,   satisfies Condition (1) to be a congruent 

dominating set. 

Since   is a minimal dominating set with minimum cardinality it is also a minimal congruent dominating set with minimum 

cardinality. 

 

Case-2:   is even. 

Consider a subset        of vertices as follows: 

  {               
 

 
} with     

 

 
  Then   is a dominating set. 

Now, ∑                (
 

 
  )       

          

 
. 

Then,   satisfies Condition (1) to be a congruent dominating set. Therefore,   is a congruent dominating set. 

Now         and so            
Select     such that             . 

Now consider the set of vertices   of      such that         with ∑          
          

 
  

Then, (
          

 
)              

But for each               and          

Therefore, no such congruent dominating set   exists such that     
 

 
  

This implies that   is a minimal congruent dominating set with minimum cardinality. 

Hence,        {
                
 

 
                 

 

 

 

Theorem 2.6 Let   be the extended double cover of cycle   , then  
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        {

 

 
                

  

 
                                

            

 

 

Proof. Let             be the vertices of cycle   . Then,                                    is the set of vertices of graph  , 

where   is the extended double cover of cycle    and                 Moreover, ∑                 

 

Case-1:             

Consider   {                 
 

 
  } , then     

 

 
  Moreover,   is a minimal dominating set with minimum 

cardinality with degree sum of vertex set of dominating set   is 
  

 
. Hence,   satisfies the condition (1) for being a congruent 

dominating set. 

Since   is a minimal dominating set with minimum cardinality, it is also a minimal congruent dominating set with minimum 

cardinality. 

Thus,        
 

 
, in this case. 

 

Case-2:                             

Consider   {                 
 

 
  }, then     

  

 
 and   is a dominating set. Moreover, the degree sum of vertex 

set of a dominating set   is   . Hence,   satisfies the condition (1) for being a congruent dominating set. 

We claim that   is of minimal cardinality. 

Let     such that     . 

If possible, let            with         and degree sum of vertices of   is 
  

 
  

Then,(
  

 
)      

But for each    ,      ⌈
 

 
⌉ and       ⌈

 

 
⌉  

Therefore, no such congruent dominating set   exists such that        
This implies that   is a minimal congruent dominating set with minimum cardinality. 

Thus,        
  

 
, in this case. 

 

Case-3:               
Consider                 , then       and   is a dominating set with degree sum of vertex set of dominating set   is   . 

Hence,   satisfies the condition (1) for being a congruent dominating set. 

Since,               and                implies there does not exist any congruent dominating set   with         
and so,   is a minimal congruent dominating set with minimum cardinality. 

Thus,         , in this case. 

Hence,  

        {

 

 
                

  

 
                                

            

 

 

 

Theorem 2.7                
 

Proof. Let                                  be the set of vertices of       with          . Here             are the 

vertices of degree 2,                are the vertices of degree 3 and              are the vertices of degree 1. 

Therefore, ∑                                    

If n is even, then define                  
 

 
  with      . 

If n is odd, then define   {              
   

 
} with      . 

Then, in both the cases   is a minimal dominating set with minimum cardinality as             

Now, if   is even then there are (
 

 
  ) vertices of degree 3, one vertex of degree 2 and 

 

 
 vertices of degree 1 and so, 

∑           (
 

 
  )    
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Then,   satisfies Condition (1) to be a congruent dominating set. 

Also, if   is odd then there is (
   

 
) vertices of degree 3 and (

   

 
) vertices of degree 1 and so, ∑           (

   

 
)  

   

 
 

      
Then, in both cases,   satisfies Condition (1) to be a congruent dominating set. Therefore,   is a congruent dominating set. 

Since,   is a minimal dominating set with minimum cardinality, it is a minimal congruent dominating set with minimum 

cardinality. 

Hence,                
 

Theorem 2.8 For       

            {

 

 
              

  

 
                              

           

 

 

Proof. Let                                  be the set of vertices of       with          . 

Here,                 . Therefore, ∑                 

 

Case-1:           

Define   {                
 

 
  } with     

 

 
. Then,   is a minimal dominating set with minimum cardinality as 

for          ,          
 

 
  

Moreover, ∑          
  

 
  Then,   satisfies Condition (1) to be a congruent dominating set. Therefore,   is congruent 

dominating set. 

Since,   is a minimal dominating set with minimum cardinality, it is a minimal congruent dominating set with minimum 

cardinality. 

 

Case-2:                               

Define   {                
 

 
  } with     

  

 
. Then   is minimal dominating set with as for any    ,       

doesn’t dominate     . 

Moreover, ∑           (
  

 
)      Then,   satisfies Condition (1) to be a congruent dominating set. 

Therefore,   is a minimal congruent dominating set, as it is a minimal dominating set. 

Now, for          ,          
 

 
 and so ∑          

  

 
  

Let         be the set of vertices of       with          and ∑              

Then there does not exist any     such that 
  

 
      and       

Therefore,   is minimal congruent dominating set with minimal cardinality. 

 

Case-3:               
Define               with      . 

Then,   is a minimal dominating set with as for any    ,       doesn’t dominate  . 

Moreover, ∑              Then,   satisfies Condition (1) to be a congruent dominating set. 

Therefore,   is minimal congruent dominating set, as it is minimal dominating set. 

Now, for          ,          
 

 
 and so ∑          

  

 
  

Let         be the set of vertices of       with          and ∑              

Then, there does not exist any     such that 
  

 
      and       

Therefore, D is a minimal congruent dominating set with minimal cardinality. 

Hence,  

            {

 

 
              

  

 
                              

            

 

 

 

JASC: Journal of Applied Science and Computations

Volume X, Issue VIII,August/2023

ISSN NO: 1076-5131

Page No: 67



III. CONCLUSION 

The concept of congruent domination in graphs has been recently introduced by Vaidya and Vadhel [13] and further 

investigated in [14, 15, 16]. The concept is a frontier between number theory and theory of graphs. The congruent domination 

numbers have been investigated for the graphs obtained by means of some graph operations. 

REFERENCES 

[1] C. Berge, Theory of Graphs and its Applications, Methuen, London 1962. 

[2] D. M. Burton, Elementary Number Theory, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2008. 
[3] G. E. Carmelito and R.C. Sergio Domination in the corona and join of graphs, International Mathematical Forum, 6(16), pp. 763-771, 2011. 

[4] E. J. Cockayne and S T Hedetniemi, Towards a Theory of Domination in Graphs, Networks, vo. 7(3), pp. 247-261, 1997. 

[5] M. H. El-Zahar, S. M. Khamis, and Kh. M. Nazzal, On the domination number of the Cartesian product of the cycle of length n and any graph, Discrete 
Applied Mathematics, 155, pp. 515-522, 2007. 

[6] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, CRC Press, 2013. 
[7] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs: Advanced Topics, Routledge, 2017. 

[8] S. T. Hedetniemi and R. C. Laskar, Topics on Domination, North Holland, New York, 1990. 

[9] S.T. Hedetniemi and R.C. Laskar, Bibliography on Domination in Graphs and some Basic Definitions of Domination Parameters, Discrete Mathematics, 
vol. 86(1-3), pp. 257-277, 1990. 

[10] S. Klavžar, and N. Seifter, Dominating Cartesian products of cycles, Discrete Appl. Math., vol. 59, pp. 129-136, 1995. 

[11] P. Pavlič, and J. Žerovnic, A note on the domination number of the Cartesian products of paths and cycles, Kragujevac Journal of Mathematics, 37(2), pp. 
275-285, 2013. 

[12] O. Ore, Theory of Graphs, American Mathematical Society, Providence, 1962. 

[13] S. K. Vaidya and H. D. Vadhel, Congruent Dominating Sets in Graph - A New Concept, Accepted for publication in TWMS J. App. Eng. Math. 
[14] S. K. Vaidya and H. D. Vadhel, Congruent domination number of some cycle related graphs, South East Asian J. of Mathematics and Mathematical 

Sciences, Proceedings, vol. 20, pp. 21-36, 2022. 

[15] S. K. Vaidya and H. D. Vadhel, On congruent domination in disjoint and one point union of graphs, J. Indones. Math. Soc., vol. 28(2), pp. 251-258, 2022. 

[16] S. K. Vaidya and H. D. Vadhel, On congruent domination number of      , TWMS J. App. and Eng. Math. Special Issue, No.1, pp. 14-27, 2023. 

[17] D. B. West, Introduction to Graph Theory, Upper Saddle River: Prentice hall. 2001. 
 

JASC: Journal of Applied Science and Computations

Volume X, Issue VIII,August/2023

ISSN NO: 1076-5131

Page No: 68


