Congruent Domination Number of Graphs Obtained by Means of Some Graph Operation

M. R. Jadeja^{#1}, H. D. Vadhel^{*2}, A. D. Parmar^{\$3}

[#]Department of Mathematics, Atmiya University, Rajkot, Gujarat

^{*}Department of Mathematics, Saurashtra University, Rajkot, Gujarat

^{\$}Department of Mathematics, R. R. Mehta College of Science and C. L. Parikh College of Commerce, Palanpur, Gujarat

¹jadejamanoharsinh111@gmail.com

²harshad.vadhel18@gmail.com

³anil.parmar1604@gmail.com

Abstract— A dominating set $D \subseteq V(G)$ is said to be a congruent dominating set of a graph G if $\sum_{v \in V(G)} d(v) \equiv 0 \pmod{\sum_{v \in D} d(v)}$. The minimum cardinality of a minimal congruent dominating set of G is called the congruent domination number of G which is denoted by $\gamma_{cd}(G)$. In this paper, we investigate congruent domination number of some graphs obtained by means of some graph operation.

Keywords— Dominating Set, Domination Number, Congruent Dominating Set, Congruent Domination Number

I. INTRODUCTION

Domination in graphs is one of the concepts in graph theory that has piqued the interest of many researchers due to its potential to solve real-world problems involving communication network design and analysis, as well as defence surveillance. There are numerous domination models available in the literature. [1, 4, 6, 7, 8, 9] provide a concise explanation of dominating sets and related concepts. For standard notations and graph theoretic terminology, we follow West [17] while the terms related to number theory are used in the sense of Burton [2].

We begin with finite, undirected and simple graph G = (V(G), E(G)) of order n. A set $D \subseteq V(G)$ of vertices in a graph G is called a dominating set if each vertex in V(G) - D is adjacent to at least one vertex of D. A dominating set D is a minimal dominating set if no proper subset D' of D is a dominating set of graph G. The domination number $\gamma(G)$ is the minimum cardinality of a minimal dominating set.

The following new concept is recently introduced and further explored by Vaidya and Vadhel [13, 14, 15, 16].

A dominating set $D \subseteq V(G)$ is said to be a congruent dominating set of G if

$$\sum_{v \in V(G)} d(v) \equiv 0 \pmod{\sum_{v \in D} d(v)}$$
(1)

A congruent dominating set $D \subseteq V(G)$ is said to be a minimal congruent dominating set if no proper subset D' of D is congruent dominating set. The minimum cardinality of a minimal congruent dominating set of G is called the congruent domination number of G which is denoted by $\gamma_{cd}(G)$.

In the present paper we have investigated the congruent domination number of some graph obtained by means of some graph operation like Corona product, square graph of a graph, complement graph of a graph and extended double cover of a graph. The domination number of the Cartesian product of paths and cycles have been investigated in [5, 10, 11]. We have also investigated the exact value of congruent domination number for Cartesian product of cycles and paths.

The complement \overline{G} of a graph G is the graph with vertex set V(G) and two vertices are adjacent in \overline{G} if and only if they are not adjacent in G.

The square graph G^2 of a graph G with vertex set V(G) is the graph obtained by joining every pair of vertices which are at distance two in G.

The corona $G \circ H$ of two graphs G and H (with order n and m respectively) is defined as a graph obtained by taking one copy of G and n copies of H and joining the i^{th} vertex of G with an edge to every vertex in the i^{th} copy of H.

The Cartesian product of two graphs $G(V_1, E_1)$ and $H(V_2, E_2)$, denoted by $G \Box H$, is the graph with vertex set is $V_1 \times V_2$ and edge set $E(G \Box H) = \{((g_1, h_1), (g_2, h_2)): g_1 = g_2 \text{ and } (h_1, h_2) \in E_2 \text{ or } h_1 = h_2 \text{ and } (g_1, g_2) \in E_1\}$.

(2)

Definition 1.1 The extended double cover of a graph G with the vertex set $V(G) = \{v_1, v_2, ..., v_n\}$ is a bipartite graph G' with bipartition (X, Y); $X = \{x_1, x_2, ..., x_n\}$ and $Y = \{y_1, y_2, ..., y_n\}$, where two vertices x_i and y_j are adjacent if and only if i = j or v_i is adjacent to v_j in G.

We state the following results as our ready references:

Theorem 1.2 [11] For
$$n \ge 3$$
, $\gamma(C_n \Box P_2) = \begin{cases} \left\lceil \frac{n}{2} \right\rceil + 1 & \text{; if } n \equiv 2 \pmod{4} \\ \left\lceil \frac{n}{2} \right\rceil & \text{; otherwise.} \end{cases}$

Theorem 1.3 [3] Let G be a connected graph of order m and let H be any graph of order n. Then $\gamma(G \circ H) = m$.

II. MAIN RESULTS

Theorem 2.1 Let $m \equiv 0 \pmod{n}$, then $\gamma_{cd}(G \circ K_1) = \gamma_{cd}(G \circ K_2) = n$.

Proof. Let *G* be a graph with *n* vertices and *m* edges.

Let $m \equiv 0 \pmod{n}$, then $2m \equiv 0 \pmod{n}$ and $2m \equiv 0 \pmod{2n}$.

This implies that $\sum_{v \in V(G)} d(v) \equiv 0 \pmod{n}$ and $\sum_{v \in V(G)} d(v) \equiv 0 \pmod{2n}$

Now, consider the graphs $G \circ K_1$ with $V(G \circ K_1) = \{v_1, v_2, ..., v_n, v_{1'}, v_{2'}, ..., v_{n'}\}$, where $d(v_i) = d_G(v_i) + 1$, $d(v_{i'}) = 1$, for $1 \le i \le n$ and $G \circ K_2$ with $V(G \circ K_2) = \{v_1, v_2, ..., v_n, v_1', v_2', ..., v_n', v_1'', v_2'', ..., v_n''\}$, where $d(v_i) = d_G(v_i) + 1$, $d(v_i') = 2$ and $d(v_i'') = 1$, for $1 \le i \le n$.

Moreover, $\sum_{v \in V(G \circ K_1)} d(v) = \sum_{v \in V(G)} d(v) + 2n$ and $\sum_{v \in V(G \circ K_2)} d(v) = \sum_{v \in V(G)} d(v) + 4n$ (3) Let $D = \{v_1', v_2', \dots, v_n'\}$, then D is a dominating set for both $G \circ K_1$ and $G \circ K_2$ with |D| = n. Moreover, D is a minimal

Let $D = \{v_1', v_2', \dots, v_n'\}$, then D is a dominating set for both $G \circ K_1$ and $G \circ K_2$ with |D| = n. Moreover, D is a minimal domination set with minimum cardinality as $\gamma(G \circ K_1) = \gamma(G \circ K_2) = n$.

Moreover, $\sum_{v \in D(G \circ K_1)} d(v) = \sum_{i=1}^n d_{G \circ K_1}(v'_i) = n$ and $\sum_{v \in D(G \circ K_2)} d(v) = \sum_{i=1}^n d_{G \circ K_2}(v'_i) = 2n$ (4) Thus, from (1), (2) and (3), we get, *D* is a minimal congruent dominating set with minimum cardinality.

Hence, $\gamma_{cd}(G \circ K_1) = \gamma_{cd}(G \circ K_2) = n$.

Theorem 2.2 *Let G* be an *r*-regular graph, then $\gamma_{cd}(G \circ K_1) = n$.

Proof. Let *G* be an *r*-regular graph with $V(G) = \{v_1, v_2, ..., v_n\}$. Now, consider the graph $G \circ K_1$ with $V(G \circ K_1) = \{v_1, v_2, ..., v_n, v_1', v_2', ..., v_n'\}$, where for each i, v_i' is the corresponding vertex of v_i . Then

 $\sum_{v \in V(G)} d(v) = \sum_{i=1}^{n} d(v_i) + \sum_{i=1}^{n} d(v_i') = n(r+1) + n = n(r+2)$ (5) Let $D = \{v_1', v_2', \dots, v_n'\}$, then D is a minimal domination set with minimum cardinality as $\gamma(G \circ K_1) = n$. Moreover, $\sum_{v \in D} d(v) = \sum_{i=1}^{n} d(v_i') = n$ (6) Thus, from (5) and (6), D satisfies Condition (1) to be a congruent dominating set. Hence, $\gamma_{cd}(G \circ K_1) = n$.

Theorem 2.3 For the square of path P_n ,

 $\gamma_{cd}(P_n^2) = \begin{cases} \frac{n}{3} & \text{; if } n \equiv 0 \pmod{3} \\ \frac{n-1}{2} & \text{; if } n \text{ is prime} \\ \frac{n}{2} & \text{; Otherwise.} \end{cases}$

Proof. Let $V = \{v_1, v_2, ..., v_n\}$ be the set of vertices of path P_n^2 with |V| = n. Here, v_1 and v_n are the vertices of degree 2, v_2 and v_{n-1} are the vertices of degree 3 and $v_3, v_4, ..., v_{n-2}$ are the vertices of degree 4.

Therefore, $\sum_{v \in V(G)} d(v) = 2(2) + 2(3) + 4(n-4) = 4n - 6 = 2(2n - 3).$

Case-1: $n \equiv 0 \pmod{3}$

Define $D = \{v_{3k+1}/0 \le k \le \frac{n}{3} - 1\}$ with $|D| = \frac{n}{3}$. Then D is a minimal dominating set as $D - \{v_i\}$ doesn't dominate vertex v_i , for each $0 \le i \le n$.

Moreover, there is 1 vertex of degree 2 and all other vertices of degree 4 and so $\sum_{v \in D} d(v) = 2 + 4\left(\frac{n}{3} - 1\right) = \frac{2}{3}(2n - 3)$.

Then, D satisfies Condition (1) to be a congruent dominating set. Therefore, D is a congruent dominating set. Since, D is a minimal dominating set, it is a minimal congruent dominating set. Let $S \subset V(G)$ be the set of vertices with |S| < |D| and $\sum_{v \in S} d(v) = t < \frac{2}{3}(2n-3)$.

Then, there does not exist any $t \in \mathbb{N}$ with $t < \frac{2}{3}(2n-3)$ such that t < 2n-1 and t|2(2n-1). Hence, D is a minimal congruent dominating set with minimum cardinality.

Case 2: n is prime.

Define $D = \left\{ v_2 \cup v_{2k+1} / 0 \le k \le \frac{n-3}{2} \right\}$ with $|D| = \frac{n-1}{2}$. Then D is a dominating set.

Moreover, there is one vertex of degree 3 and all other vertex of degree 4 in set D and so, $\sum_{v \in D} d(v) = 3 + 4\left(\frac{n-3}{2}\right) = (2n - 1)^{n-3}$ 3). Then, D satisfies Condition (1) to be a congruent dominating set. Therefore, D is a congruent dominating set.

Moreover, D is a minimal congruent dominating set as $D - \{v\}$; $\forall v \in V(G)$ is not a congruent dominating set. Let $S \subset V(G)$ be the set of vertices with $\sum_{v \in S} d(v) = t < (2n - 3)$.

Then, there does not exist any $t \in \mathbb{N}$ such that t < 2n - 3 and t|2(2n - 1).

Hence, D is a minimal congruent dominating set with minimum cardinality.

Case-3: Define $D = \left\{ v_{2k+1}/0 \le k \le \frac{n}{2} - 1 \right\}$ with $|D| = \frac{n}{2}$. Then D is a dominating set.

Moreover, there is one vertex of degree 2, one vertex of degree 3 and $\left(\frac{n}{2}-2\right)$ vertices of degree 4 in D and so,

 $\sum_{v \in D} d(v) = 2 + 3 + 4\left(\frac{n}{2} - 2\right) = (2n - 3).$

Then, $\sum_{v \in V(G)} d(v) \equiv 0 \pmod{\sum_{v \in D} d(v)}$. Therefore, *D* is a congruent dominating set.

Moreover, D is a minimal congruent dominating set as $D - \{v\}$; $\forall v \in V(G)$ is not a congruent dominating set.

Let $S \subset V(G)$ be the set of vertices with $\sum_{v \in S} d(v) = t < (2n - 3)$. Then, there does not exist any $t \in \mathbb{N}$ such that t < 2n - 3 and t | 2(2n - 1).

This implies that D is a minimal congruent dominating set with minimum cardinality. Hence,

$$\gamma_{cd}(G) = \begin{cases} \frac{n}{3} & \text{; if } n \equiv 0 \pmod{3} \\ \frac{n-1}{2} & \text{; if } n \text{ is prime} \\ \frac{n}{2} & \text{; Otherwise.} \end{cases}$$

Theorem 2.4 For the book graph B_n , $\gamma_{cd}(B_n) = \begin{cases} n+1 & \text{; if } n = 1 \text{ or } n \text{ is even} \\ \frac{n+3}{2} & \text{; Otherwise} \end{cases}$

Proof. Let $V(G) = \{u, v, u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n\}$ be the set of vertices of B_n , where u and v are the apex vertices of degree n + 1 and all other vertices are of degree 2.

Then, $\sum_{v \in V(G)} d(v) = 2(n+1) + 2(2n) = 6n + 2 = 2(3n+1).$

Case-1: n = 1 or n is even. Consider a set $D \subseteq V(G)$ as follows: $D = \{u, v_1, v_2, \dots, v_n\}$ with |D| = n + 1. Then, D is a minimal dominating set as for any $x \in D$, $D - \{x\}$ will not dominate x. Here, $\sum_{v \in D} d(v) = (n+1) + 2(n) = 3n + 1$. Therefore, D satisfies Condition (1) to be a congruent dominating set. Hence, D is a congruent dominating set. Moreover, D is a minimal congruent dominating set as it is a minimal dominating set. Select $i \in \mathbb{N}$ such that i|6n + 2.

Now consider the set of vertices S of V(G) such that |S| < |D| with $\sum_{v \in S} d(v) = \frac{6n+2}{i}$.

Then, $\left(\frac{6n+2}{i}\right)|6n+2.$

But for each i > 2, |S| < 2 and $\gamma(B_n) = 2$.

Therefore, no such congruent dominating set *S* exists such that |S| < n + 1.

This implies that D is a minimal congruent dominating set with minimum cardinality.

Case-2: n > 1 is odd. Consider a set $D \subseteq V(G)$ as follows: $D = \left\{ u, v, u_{2k}/0 \le k \le \frac{n-3}{2} \right\}$ with $|D| = \frac{n+3}{2}$. Then D is a dominating set.

Here, $\sum_{v \in D} d(v) = 2(n+1) + 2\left(\frac{n-1}{2}\right) = 3n + 1$. Therefore, *D* satisfies Condition (1) to be a congruent dominating set. Hence, *D* is a congruent dominating set.

Select $i \in \mathbb{N}$ such that i|6n + 2.

Now consider the set of vertices S of V(G) such that |S| < |D| with $\sum_{v \in S} d(v) = \frac{6n+2}{i}$.

Then, $\left(\frac{6n+2}{i}\right)|6n+2.$

But for each i > 2, |S| < 2 and $\gamma(B_n) = 2$.

Therefore, no such congruent dominating set S exists such that $|S| < \frac{n+3}{2}$.

This implies that D is a minimal congruent dominating set with minimum cardinality.

Hence, $\gamma_{cd}(B_n) = \begin{cases} n+1 & \text{; if } n = 1 \text{ or } n \text{ is even} \\ \frac{n+3}{2} & \text{; otherwise.} \end{cases}$

Theorem 2.5 Let G be the complement of path P_n with n > 2, then

 $\gamma_{cd}(G) = \begin{cases} 2 & ; \text{ if } n \text{ is odd} \\ \frac{n}{2} & ; \text{ if } n \text{ is even.} \end{cases}$

Proof. Let $V(G) = \{v_1, v_2, ..., v_n\}$ be the set of vertices of graph *G*. Then, $d(v_1) = d(v_n) = n - 2$ and $d(v_i) = n - 3$; $\forall 2 \le i \le n - 1$ and so, $\sum_{v \in V(G)} d(v) = 2(n - 2) + (n - 2)(n - 3) = (n - 1)(n - 2).$

Case-1: n is odd.

Consider a subset $D \subseteq V(G)$ of vertices as follows:

 $D = \{v_1, v_2\}$ with |D| = 2. Then D is a minimal dominating set with minimum cardinality as $\gamma_{cd}(\overline{P_n}) = 2$.

Now, $\sum_{v \in D} d(v) = 2(n-2)$ and $\sum_{v \in V(G)} d(v) = (n-1)(n-2)$.

Here, 2(n-2)|(n-1)(n-2) this implies that 2|n-1 as n is odd and so, D satisfies Condition (1) to be a congruent dominating set.

Since D is a minimal dominating set with minimum cardinality it is also a minimal congruent dominating set with minimum cardinality.

Case-2: n is even.

Consider a subset $D \subseteq V(G)$ of vertices as follows:

 $D = \{v_1, v_2, \dots, v_k/1 \le k \le \frac{n}{2}\}$ with $|D| = \frac{n}{2}$. Then D is a dominating set.

Now,
$$\sum_{v \in D} d(v) = (n-2) + \left(\frac{n}{2} - 1\right)(n-3) = \frac{(n-1)(n-2)}{2}$$
.

Then, D satisfies Condition (1) to be a congruent dominating set. Therefore, D is a congruent dominating set.

Now $\gamma(\overline{P_n}) = 2$ and so $2 \leq \gamma_{cd}(\overline{P_n})$.

Select $i \in \mathbb{N}$ such that i|(n-1)(n-2).

Now consider the set of vertices S of V(G) such that |S| < |D| with $\sum_{v \in S} d(v) = \frac{(n-1)(n-2)}{i}$.

Then, $\left(\frac{(n-1)(n-2)}{i}\right) | (n-1)(n-2).$

But for each i > 2, |S| < 2 and $\gamma(\overline{P_n}) = 2$.

Therefore, no such congruent dominating set *S* exists such that $|S| < \frac{n}{2}$.

This implies that D is a minimal congruent dominating set with minimum cardinality.

Hence, $\gamma_{cd}(G) = \begin{cases} 2 & \text{; if } n \text{ is odd} \\ \frac{n}{2} & \text{; if } n \text{ is even.} \end{cases}$

Theorem 2.6 Let G be the extended double cover of cycle C_n , then

$$\gamma_{cd}(G) = \begin{cases} \frac{n}{2} & \text{; if } n \equiv 0 \pmod{4} \\ \frac{2n}{3} & \text{; if } n \equiv 0 \pmod{3} \& n \not\equiv 0 \pmod{4} \\ n & \text{; otherwise.} \end{cases}$$

Proof. Let v_1, v_2, \dots, v_n be the vertices of cycle C_n . Then, $V(G) = \{v_1, v_2, \dots, v_n, v_1', v_2', \dots, v_n'\}$ is the set of vertices of graph G, where G is the extended double cover of cycle C_n and d(v) = 3, $\forall v \in V(G)$. Moreover, $\sum_{v \in V(G)} d(v) = 6n$.

Case-1: $n \equiv 0 \pmod{4}$

Consider $D = \{v_{4k+1} \cup v_{4k+3}'/0 \le k \le \frac{n}{4} - 1\}$, then $|D| = \frac{n}{2}$. Moreover, *D* is a minimal dominating set with minimum cardinality with degree sum of vertex set of dominating set *D* is $\frac{3n}{2}$. Hence, *D* satisfies the condition (1) for being a congruent dominating set.

Since D is a minimal dominating set with minimum cardinality, it is also a minimal congruent dominating set with minimum cardinality.

Thus, $\gamma_{cd}(G) = \frac{n}{2}$, in this case.

Case-2: $n \equiv 0 \pmod{3} \& n \not\equiv 0 \pmod{4}$

Consider $D = \left\{ v_{3k+1} \cup v_{3k+2}' / 0 \le k \le \frac{n}{3} - 1 \right\}$, then $|D| = \frac{2n}{3}$ and D is a dominating set. Moreover, the degree sum of vertex set of a dominating set D is 2n. Hence, D satisfies the condition (1) for being a congruent dominating set.

We claim that *D* is of minimal cardinality.

Let $i \in \mathbb{N}$ such that i|6n.

If possible, let $S \neq D$, $S \subset V(G)$ with |S| < |D| and degree sum of vertices of S is $\frac{6n}{i}$.

Then, $\left(\frac{6n}{i}\right) | 6n$.

But for each i > 3, $|S| < 2\left[\frac{n}{3}\right]$ and $\gamma(G) = 2\left[\frac{n}{3}\right]$.

Therefore, no such congruent dominating set *S* exists such that |S| < n. This implies that *D* is a minimal congruent dominating set with minimum cardinality. Thus, $\gamma_{cd}(G) = \frac{2n}{3}$, in this case.

Case-3: $n \not\equiv 0 \pmod{3,4}$

Consider $D = \{v_1, v_2, ..., v_n\}$, then |D| = n and D is a dominating set with degree sum of vertex set of dominating set D is 3n. Hence, D satisfies the condition (1) for being a congruent dominating set.

Since, $n \ge 0 \pmod{3,4}$ and $\forall v \in V(G)$, d(v) = 3 implies there does not exist any congruent dominating set S with |S| < |D| and so, D is a minimal congruent dominating set with minimum cardinality.

Thus, $\gamma_{cd}(G) = n$, in this case.

Hence,

$$\gamma_{cd}(G) = \begin{cases} \frac{n}{2} & \text{; if } n \equiv 0 \pmod{4} \\ \frac{2n}{3} & \text{; if } n \equiv 0 \pmod{3} \& n \not\equiv 0 \pmod{4} \\ n & \text{; otherwise.} \end{cases}$$

Theorem 2.7 $\gamma_{cd}(P_n \times K_1) = n$.

Proof. Let $V(G) = \{v_1, v_2, \dots, v_n, u_1, u_2, \dots, u_n\}$ be the set of vertices of $C_n \times K_1$ with |V(G)| = 2n. Here v_1 and v_n are the vertices of degree 2, v_2, v_3, \dots, v_{n-1} are the vertices of degree 3 and u_1, u_2, \dots, u_n are the vertices of degree 1. Therefore, $\sum_{v \in V(G)} d(v) = 2(2) + 3(n-2) + n = 2(2n-1)$.

If n is even, then define $D = \{v_{2k} \cup u_{2k+1}/0 \le k \le \frac{n}{2}\}$ with |D| = n.

If n is odd, then define $D = \left\{ v_{2k} \cup u_{2k+1} / 0 \le k \le \frac{n-1}{2} \right\}$ with |D| = n.

Then, in both the cases D is a minimal dominating set with minimum cardinality as $\gamma(P_n \times K_1) = n$.

Now, if *n* is even then there are $\left(\frac{n}{2}-1\right)$ vertices of degree 3, one vertex of degree 2 and $\frac{n}{2}$ vertices of degree 1 and so, $\sum_{v \in D} d(v) = 3\left(\frac{n}{2}-1\right) + 2 + \frac{n}{2} = 2n - 1.$

Then, *D* satisfies Condition (1) to be a congruent dominating set.

Also, if *n* is odd then there is $\binom{n-1}{2}$ vertices of degree 3 and $\binom{n+1}{2}$ vertices of degree 1 and so, $\sum_{v \in D} d(v) = 3 \binom{n-1}{2} + \frac{n+1}{2} = 2n-1$.

Then, in both cases, D satisfies Condition (1) to be a congruent dominating set. Therefore, D is a congruent dominating set. Since, D is a minimal dominating set with minimum cardinality, it is a minimal congruent dominating set with minimum cardinality.

Hence, $\gamma_{cd}(P_n \times K_1) = n$.

Theorem 2.8 For $n \ge 3$,

$$\gamma_{cd}(C_n \times P_2) = \begin{cases} \frac{n}{2} & \text{; if } n \equiv 0 \pmod{4} \\ \frac{2n}{3} & \text{; if } n \equiv 0 \pmod{3} \text{ and } n \not\equiv 0 \pmod{4} \\ n & \text{; otherwise} \end{cases}$$

Proof. Let $V(G) = \{v_1, v_2, \dots, v_n, u_1, u_2, \dots, u_n\}$ be the set of vertices of $C_n \times P_2$ with |V(G)| = 2n. Here, d(v) = 3; $\forall v \in V(G)$. Therefore, $\sum_{v \in V(G)} d(v) = 6n$.

Case-1: $n \equiv 0 \pmod{4}$

Define $D = \{v_{4k+3} \cup u_{4k+1}/0 \le k \le \frac{n}{4} - 1\}$ with $|D| = \frac{n}{2}$. Then, *D* is a minimal dominating set with minimum cardinality as for $n \equiv 0 \pmod{4}$, $\gamma(C_n \times P_2) = \frac{n}{2}$.

Moreover, $\sum_{v \in D} d(v) = \frac{3n}{2}$. Then, D satisfies Condition (1) to be a congruent dominating set. Therefore, D is congruent dominating set.

Since, D is a minimal dominating set with minimum cardinality, it is a minimal congruent dominating set with minimum cardinality.

Case-2: $n \equiv 0 \pmod{3}$ and $n \not\equiv 0 \pmod{4}$

Define $D = \left\{ v_{3k+2} \cup u_{3k+2} / 0 \le k \le \frac{n}{3} - 1 \right\}$ with $|D| = \frac{2n}{3}$. Then D is minimal dominating set with as for any $u \in D$, $D - \{u\}$ doesn't dominate N(u).

Moreover, $\sum_{v \in D} d(v) = 3\left(\frac{2n}{3}\right) = 2n$. Then, D satisfies Condition (1) to be a congruent dominating set.

Therefore, D is a minimal congruent dominating set, as it is a minimal dominating set.

Now, for $n \not\equiv 0 \pmod{4}$, $\gamma(C_n \times P_2) > \frac{n}{2}$ and so $\sum_{v \in D} d(v) > \frac{3n}{2}$.

Let $D' \subset V(G)$ be the set of vertices of $C_n \times P_2$ with |D'| < |D| and $\sum_{v \in D'} d(v) = t$.

Then there does not exist any $t \in \mathbb{N}$ such that $\frac{3n}{2} < t < 2n$ and t | 6n.

Therefore, D is minimal congruent dominating set with minimal cardinality.

Case-3: $n \not\equiv 0 \pmod{3,4}$

Define $D = \{v_1, v_2, \dots v_n\}$ with |D| = n.

Then, *D* is a minimal dominating set with as for any $u \in D$, $D - \{u\}$ doesn't dominate *u*.

Moreover, $\sum_{v \in D} d(v) = 3n$. Then, D satisfies Condition (1) to be a congruent dominating set.

Therefore, D is minimal congruent dominating set, as it is minimal dominating set.

Now, for $n \neq 0 \pmod{4}$, $\gamma(C_n \times P_2) > \frac{n}{2}$ and so $\sum_{v \in D} d(v) > \frac{3n}{2}$. Let $D' \subset V(G)$ be the set of vertices of $C_n \times P_2$ with |D'| < |D| and $\sum_{v \in D'} d(v) = t$. Then, there does not exist any $t \in \mathbb{N}$ such that $\frac{3n}{2} < t < 2n$ and $t \mid 6n$.

Therefore, D is a minimal congruent dominating set with minimal cardinality. Hence,

 $\gamma_{cd}(C_n \times P_2) = \begin{cases} \frac{n}{2} & \text{; if } n \equiv 0 \pmod{4} \\ \frac{2n}{3} & \text{; if } n \equiv 0 \pmod{3} \text{ and } n \not\equiv 0 \pmod{4} \\ n & \text{; Otherwise.} \end{cases}$

III. CONCLUSION

The concept of congruent domination in graphs has been recently introduced by Vaidya and Vadhel [13] and further investigated in [14, 15, 16]. The concept is a frontier between number theory and theory of graphs. The congruent domination numbers have been investigated for the graphs obtained by means of some graph operations.

REFERENCES

- [1] C. Berge, Theory of Graphs and its Applications, Methuen, London 1962.
- [2] D. M. Burton, Elementary Number Theory, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2008.
- [3] G. E. Carmelito and R.C. Sergio Domination in the corona and join of graphs, International Mathematical Forum, 6(16), pp. 763-771, 2011.
- [4] E. J. Cockayne and S T Hedetniemi, Towards a Theory of Domination in Graphs, Networks, vo. 7(3), pp. 247-261, 1997.
- [5] M. H. El-Zahar, S. M. Khamis, and Kh. M. Nazzal, On the domination number of the Cartesian product of the cycle of length n and any graph, Discrete Applied Mathematics, 155, pp. 515-522, 2007.
- [6] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, CRC Press, 2013.
- [7] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs: Advanced Topics, Routledge, 2017.
- [8] S. T. Hedetniemi and R. C. Laskar, Topics on Domination, North Holland, New York, 1990.
- [9] S.T. Hedetniemi and R.C. Laskar, Bibliography on Domination in Graphs and some Basic Definitions of Domination Parameters, Discrete Mathematics, vol. 86(1-3), pp. 257-277, 1990.
- [10] S. Klavžar, and N. Seifter, Dominating Cartesian products of cycles, Discrete Appl. Math., vol. 59, pp. 129-136, 1995.
- [11] P. Pavlič, and J. Žerovnic, A note on the domination number of the Cartesian products of paths and cycles, Kragujevac Journal of Mathematics, 37(2), pp. 275-285, 2013.
- [12] O. Ore, Theory of Graphs, American Mathematical Society, Providence, 1962.
- [13] S. K. Vaidya and H. D. Vadhel, Congruent Dominating Sets in Graph A New Concept, Accepted for publication in TWMS J. App. Eng. Math.
- [14] S. K. Vaidya and H. D. Vadhel, Congruent domination number of some cycle related graphs, South East Asian J. of Mathematical Sciences, Proceedings, vol. 20, pp. 21-36, 2022.
- [15] S. K. Vaidya and H. D. Vadhel, On congruent domination in disjoint and one point union of graphs, J. Indones. Math. Soc., vol. 28(2), pp. 251-258, 2022.
- [16] S. K. Vaidya and H. D. Vadhel, On congruent domination number of $C_n \square C_m$, TWMS J. App. and Eng. Math. Special Issue, No.1, pp. 14-27, 2023.
- [17] D. B. West, Introduction to Graph Theory, Upper Saddle River: Prentice hall. 2001.