Congruent Domination Number of Graphs Obtained by Means of Some Graph Operation

M. R. Jadeja^{#1}, H. D. Vadhel^{*2}, A. D. Parmar^{\$3}

[#]Department of Mathematics, Atmiya University, Rajkot, Gujarat

^{*}Department of Mathematics, Saurashtra University, Rajkot, Gujarat

 $^{\$}$ Department of Mathematics, R. R. Mehta College of Science and C. L. Parikh College of Commerce, Palanpur, Gujarat

ijadejamanoharsinh1110gmail.com

²harshad.vadhel18@gmail.com

³anil.parmar1604@gmail.com

Abstract— A dominating set $D \subseteq V(G)$ is said to be a congruent dominating set of a graph G if $\sum_{v \in V(G)} d(v) \equiv 0 \pmod{\sum_{v \in D} d(v)}$. The minimum cardinality of a minimal congruent dominating set of G is called the congruent domination number of G which is denoted by $\gamma_{cd}(G)$. In this paper, we investigate congruent domination number of some graphs obtained by means of some graph operation.

Keywords— Dominating Set, Domination Number, Congruent Dominating Set, Congruent Domination Number

I. INTRODUCTION

Domination in graphs is one of the concepts in graph theory that has piqued the interest of many researchers due to its potential to solve real-world problems involving communication network design and analysis, as well as defence surveillance. There are numerous domination models available in the literature. [1, 4, 6, 7, 8, 9] provide a concise explanation of dominating sets and related concepts. For standard notations and graph theoretic terminology, we follow West [17] while the terms related to number theory are used in the sense of Burton [2].

We begin with finite, undirected and simple graph G = (V(G), E(G)) of order n. A set $D \subseteq V(G)$ of vertices in a graph G is called a dominating set if each vertex in V(G) - D is adjacent to at least one vertex of D. A dominating set D is a minimal dominating set if no proper subset D' of D is a dominating set of graph G. The domination number $\gamma(G)$ is the minimum cardinality of a minimal dominating set.

The following new concept is recently introduced and further explored by Vaidya and Vadhel [13, 14, 15, 16].

A dominating set $D \subseteq V(G)$ is said to be a congruent dominating set of G if

$$\sum_{v \in V(G)} d(v) \equiv 0 \pmod{\sum_{v \in D} d(v)}$$
(1)

A congruent dominating set $D \subseteq V(G)$ is said to be a minimal congruent dominating set if no proper subset D' of D is congruent dominating set. The minimum cardinality of a minimal congruent dominating set of G is called the congruent domination number of G which is denoted by $\gamma_{cd}(G)$.

In the present paper we have investigated the congruent domination number of some graph obtained by means of some graph operation like Corona product, square graph of a graph, complement graph of a graph and extended double cover of a graph. The domination number of the Cartesian product of paths and cycles have been investigated in [5, 10, 11]. We have also investigated the exact value of congruent domination number for Cartesian product of cycles and paths.

The complement \overline{G} of a graph G is the graph with vertex set V(G) and two vertices are adjacent in \overline{G} if and only if they are not adjacent in G.

The square graph G^2 of a graph G with vertex set V(G) is the graph obtained by joining every pair of vertices which are at distance two in G.

The corona $G \circ H$ of two graphs G and H (with order n and m respectively) is defined as a graph obtained by taking one copy of G and n copies of H and joining the i^{th} vertex of G with an edge to every vertex in the i^{th} copy of H.

The Cartesian product of two graphs $G(V_1, E_1)$ and $H(V_2, E_2)$, denoted by $G \Box H$, is the graph with vertex set is $V_1 \times V_2$ and edge set $E(G \Box H) = \{((g_1, h_1), (g_2, h_2)): g_1 = g_2 \text{ and } (h_1, h_2) \in E_2 \text{ or } h_1 = h_2 \text{ and } (g_1, g_2) \in E_1\}$.