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Computing Zagreb Polynomials of
Generalized ryz-Point-Line Transformation Graphs 7%%*(G)
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Abstract: In this paper, we discuss relations among Zagreb polynomials of a graph G and
generalized xyz-point-line transformation graphs 7°Y*(G) when z = —. Zagreb polynomials
of xyz-point-line transformation graphs are obtained in terms of Zagreb polynomials of the

graph G.
Key Words: Zagreb indices, Zagreb polynomials, zyz-point-line transformation graphs.
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§1. Introduction

By a Graph G = (V, E) we mean a nontrivial, finite, simple, undirected graph with vertex set
V and an edge set E of order n and size m. The degree dg(v) of a vertex v in G is the number
of edges incident to it in G. Let G, L(G) and S(G) of a graph G are complement, line graph
and subdivision graph of a graph G respectively. The partial complement of subdivision graph
S(G) of a graph G whose vertex set is V(G)U E(G) where two vertices are adjacent if and only
if one is a vertex of G and the other is an edge of G non incident with it.

In this paper, we denote u ~ v (u » v) for vertices u and v are adjacent (resp., nonadjacent),
e ~ f (e = f) for the adjacent (resp., nonadjacent) edges e and f and u ~ e (u = e) for the
vertex u and an edge e are incident (resp., nonincident) in G. Other undefined notations and
terminologies can be found in [17] or [19].

Polynomials are one of the graph invariants which does not depend on the labeling or
pictorial representation of the graph. A topological index is also one such graph invariant. The
topological indices have their applications in several branches of science and technology.

The first and second Zagreb indices are amongst the oldest and best known topological
indices defined in 1972 by Gutman [15] as follows:

Mi(G)= Y da()?® and My(G)= >  da(u)da(v),

veV(G) weEE(G)
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respectively. These are widely studied degree based topological indices due to their applica-
tions in chemistry, for details refer to [10,11,14,16,23]. The first Zagreb index [21] can also be

expressed as

M(G) = Y lde(u)+da(v)).

uwveE(G)

Ashrafi et al. [1] defined respectively the first and second Zagreb coindices as

M(G) = Y ldo(u)+de(v)] and M(G)= > [do(u)da(v)).

wgE(G) wg E(G)

In 2004, Milidevié et al. [20] reformulated the Zagreb indices in terms of edge-degrees
instead of vertex-degrees. The first and second reformulated Zagreb indices are defined respec-

tively by
EMy(G)= > da(e)* and EMy(G) =Y [dg(e)da(f)]-

ecE(G) e~ f

In [18], Hosamani and Trinajstié defined the first and second reformulated Zagreb coindices

respectively as

EMi(G) = [dg(e) + da(f)] and EMy(G) =Y [da(e)da(f)].

exf exf

Considering the Zagreb indices, Fath-Tabar [13] defined first and the second Zagreb poly-

nomials as

M (G,z) = Z plcitda(vi) 54 Ms(G, z) = Z pdc(vi)-da(vy)
U'L”UjeE(G) Ui,UjEE(G)

respectively, where x is a variable. In addition, Shuxian [22] defined two polynomials related

to the first Zagreb index in the form

M{(G,z) = Z dg(vi):zrdc(vi) and My(G, x) Z pla(vi),
v €V(G) v EV(G)

A. R. Bindusree et al. defined the following polynomials in [9],

My(G,z) = Z Idc(vi)((dc(vi)-i-dc(vj))’ M;5(G,z) = Z Idg(vj)((dg(vi)-i—dc(vj)),
v;,0;€E(G) vi, v, €E(G)

M, (G, z) = Z gde (vi)+bda(v;) M;_,b(G,a:): Z p(de(vi)+a)(da(v;)+b)
vi,0;€E(G) vi, v €E(G)

§2. Generalized xyz-Point-Line Transformation Graph T%V*(G)

For a graph G = (V, E), let G° be the graph with V(G°) = V(G) and with no edges, G' the
complete graph with V(G') = V(G), GT = G, and G~ = G. Let G denotes the set of simple
graphs. The graph operations depending on z,y, z € {0, 1,4, —} induce functions T*¥* : G — G.
These operations were introduced by Deng et al. in [12] and named them as xyz-transformations
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of G, denoted by T%¥*(G) = G®Y*. In [2], Wu Bayoindureng et al. introduced the total
transformation graphs and studied their basic properties. Motivated by this, Basavanagoud
[3] studied the basic properties of the zyz-transformation graphs by changing them as zyz-
point-line transformation graphs and denoted as T*Y*(G) to avoid confusion between various

transformations.

Definition 2.1([12]) Given a graph G with vertex set V(G) and edge set E(G) and three
variables x,y,z € {0,1,4,—}, the zyz-point-line transformation graph T*Y*(G) of G is the
graph with vertex set V(T*¥*(G)) = V(G) U E(G) and the edge set E(T*¥*(G)) = E((G)*) U
E((L(@))Y) U E(W) where W = S(GQ) if z = +, W = S(GQ) if z = —, W s the graph with
V(W) =V (G)UE(G) and with no edges if z =0 and W is the complete bipartite graph with
parts V(G) and E(G) if z = 1.

T0--(G)

Figure 1. P, and its generalized zyz-polint-line transformation graphs T*Y~(Fy).
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Since there are 64 distinct 3 - permutations of {0,1,+,—}. Thus 64 kinds of generalized
xyz-point-line transformation graphs are obtained. There are 16 different graphs for each case
when z =0, z =1, 2 = +, 2z = —. In this paper, we consider the xyz-point-line transformation
graph T*¥*(G) with z = —. The self-explanatory examples of the path Py and its zyz-point-line
transformation graphs T*Y~(P,) are depicted in Figure 1. For more on generalized transforma-
tion graphs refer to [2]-[8].

The following Observations are useful in proving the theorems.

Observation 2.1([4]) Let G be a graph of order n and size m. Let v be a vertex of G and
Y ={0,1,+,—}. Then

m — de(v) ifa=0y €Y,
n+m—1—dgw) ifz=1y €Y,
dTmyf('U): .
m ifr=+y €Y,

n+m-—1-2dg(v) ifx=—-,y €Y.

Observation 2.2([4]) Let G be a graph of order n and size m. Let e be an edge of G and
Y ={0,1,+,—}. Then

n—2 ify=0,z €Y,
p (e) n+m-—3 ify=1x €Y,
T=y-\€) =

n—2+dg(e) ify=+x €Y,

n+m—-3—dgle) ify=—x €Y.

§3. Results on the Zagreb Polynomials of 7%V~ (G)

In this section, we obtain the Zagreb polynomials of the zyz-point-line transformation graph
T*¥*(G) with z = —. In this process, to cover the edges in the complements G, S(G) and L(G)
we need the degrees of nonadjacent vertices (or edges) in the graph. Degrees of these nonadja-
cent vertices (or edges) gives Zagreb coindices. To overcome from this problem Basavanagoud
and Jakkannavar [7] defined the first, second and third Zagreb co-polynomials of a graph G by

using the concept of Zagreb coindices as

Mi(Ga)= 3 aletrdet) ThGa) = Y aleodels)
v, £ 5(C) viv; £E(G)

and
E(G, r) = Z Zldewi)—da(vs)]
vi,v; EE(G)

respectively, where x is a variable.
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In addition, in [7] they defined

M(ij): Z xdG(vi)(dG(vi)erG(vj))’ M(ij): Z xdg(uj)(dg(vi)mc(vj)),

v;,0; EE(GQ) v;,v; ¢ E(G)
Moy(Goa)= 3 ame@tict) T, (Ga)= 3 gldelroldo) o)
0,0 EE(G) vi,v; € E(G)

The following theorems give results on Zagreb polynomials of the generalized zyz-point-line
transformation graphs T%Y~ (G).

Theorem 3.1 Let G be a graph of order n and size m. Then Zagreb polynomials of T~ (G)

are

=

S

3

|

8

&
I

mxm+"_2M0(G, ,T_l) _ $m+n_2Mik(G, ,T_l)
My(TO7(G), ) = ma™" "2 Mo(G,a~""2)) — 2™ =DM (G 2z~ 2)
mx‘""”_mMO(G, ) — Iln_m_Q‘Ml*(G, 2).

5

~

3

|

e

&
I

Proof From Observations (2.1) and (2.2) we have

m—dg(v) ifveV(G),

d 00— (1)) =
e n—2 if ve E@G).

By using definition of M; (G, z), we have

My(T"(G),z) = > £3700- (&) (W Fdroo— ) (v)
weE(T-(Q@))
— Z xdToo—(G) (u)“"dTOOf(G) (’U) — Z xm—dc(v)-i—n—?
Uxv UV
= 22T Y (m—dg(v))a e,
veV(G)
= ma" "2 Mo(G, 27t — 2™ MY (G .

By using definition of M3(G, ), we have

My(T®(G),x) = Yoo @M ()
weB(TO-(G))

— E 2700 () (Wdr00— () (V)

u*v
= 3 glmdet)n-2)
u*v
— Ifm(n72) Z (m _ dg)"tim(niz)dg(v)

veV(G)
= ma™" DM (G, z= ) — gD NG, (2
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By using definition of M3(G, z), we have

Ms(T(G),z) = S gl @@ )l
weE(T-(Q))

— § xldTOO*(G) (“)*dToo—(G) (’L})‘

u*v
— Z I|m—dc(u)—n+2|
u*v
= gln—m=2| Z (m — dg(v))z!de @)
ueV(G)
= ma"m M (G, z) — 22 (G ) O

Theorem 3.2 Let G be a graph of order n and size m. Then, the Zagreb polynomials of
T (G) are

Mi(TO(G),z) = (T;L) g2MHn=8 | padmAn=3 ppr gy p2man=3 g 1)
M, (TOli(G), .I) _ <7;L) x(n+m73)2 + ’rnlxm(n+77173)]\40(6;17 ‘rf(n+’m73))

_:Em(nerfB)Ml* (G, If(nerfS))

M3(T%(G), z) <”;) +ma" B My(Gy 2zt — 2" 3MI(G, ).

Proof From Observations (2.1) and (2.2) we have

m—dg() ifveV(Q)

droi-(g)(v) = _
n+m—3 ifveEQG)

By using the definition of M;(G, z), we have

My (T (G),z) = > gdr01- (@) (WFdroi— () (V)
weE(T—(Q))
— Z xdTmf(G)(u)erTmf(G)(v)

weB(L(G))
+ Z 2dr01— (@) (W Fdroi— (g (v)
wwEE(LG)
+ Z 20r01= (o) (W Fdro1— () (V)
wotv
_ Z I2(n+m73) + Z $2(n+m73) + mefdc(v)JrnerfB
weB(L(G)) uwEE(L(G) unow

_ <7721) g2mAn=3 4 ppamAn=3 G g1y g?mEn=S (G,
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Similarly, we known

My(T"(G),x) = Yoo gt @@ )
weE(T1~ (Q))

= E zdr01- () (Wdzo1— () (v) | E £d701= () (Wdro1— (g (v)

wveE(L(G)) u,v¢ E(LG)
+) atro-@ @i @)
uv
— (’I;’L) x(n+m—3)2 + mxm("+m_3)Mo(G, x—(n+m—3))

—,’Em(n+m_3)Mik (G, x—(n+m—3))

My(T" (@) = 3 afmme@riere
weE(T—(Q))

— E x|dT01f(G)(“)deOIf(G)('U)l + E x\dTm,(G)(u)dem,(G)(v)\

weE(L(G)) u,v¢ E(L(G)
+ Z 2dro1— () (W) =dro1— () (V)]
u”v
m n—3 -1 n—3q r* -1
= (2)+mx Mo(G,x2™) — 2" °M{(G,z7). O

Theorem 3.3 Let G be a graph of order n and size m. Then Zagreb polynomials of T°T~(G)
are

My(T(G),2) = 2 My(L(G),x™ ') + 2™t 2 ) " grdatde)
uU*v
Mo(TOF(G),) = M, g5 (L(G),2) + Y alm=delw)n=2tda(v)
uU*v
My(T*T(G),) = Ma(L(G),z) —a™ "2y " gliettdal®)
u*v

Proof From Observations (2.1) and (2.2) we have

m—dg(v) if veV(G)

dro+- =
o+ () (V) n—2+dg(v) ifve E(G)

Applying the definition of M;(G,x), we have

M(T°(G),z) = > gro+- (o (WFdrot— () (v)
weE(TO+~ (G))
- Z 2ot (o) (WHdrot— () (V) Z 2070+- (@) (W+dpo+— (g ()
weE(L(G)) ww

— LL‘2mM1 (L(G), {E_l) + Zmtn—2 Z x—dc(u)—i-dc(v)-

u*v
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Similarly, we know

My(T""(G),z) = Yoo et @M
weEE(TT—(Q))
_ Z xdT0+f(G)(u)dT0+7(G)('U) + Z :L-dTU**(G)(u)dTO**(G)(v)

w€EE(L(G)) uv
= M(/n72,n72) (L(G)v 'r) + Z x(mfdg(u))(n72+dg(v))
uv
and
Ms(T°*(G),z) = Z zl4ro+ () (W =drot— () (V)

weEE (T~ (Q))
— Z x|dT0+,(G)(u)deo+,(G)(v)\ + Z x|dT0+,(G)(u)deo+,(G)('U)|
weE(L(G)) uxv

= M;3(L(G),z) — gmnt2 Z gldc(w)+da(v) O

U*v

Theorem 3.4 Let G be a graph of order n and size m. Then Zagreb polynomials of T°~~(G)

are
M, (Toii(G), ,’E) _ x2(n+m73)E(L(G), {Eil) + x2m+n73 Z xf(dg(u)er(;(v))
u, ¢ E(G)
Mo(TO(C),8) = Mooy (L(G), 1) 3 alm—do () mn ()
umv
My(T™7(G),x) = Ms(L(G),z) — 2l"=31y " gldelmrda(®)
usv

Proof From Observations (2.1) and (2.2) we have

m—dg(v) if veV(G)

dro-— () (v) =
o (@) (V) n+m-—3—dag(v) ifve BG)

By the definition of M;(G, ), we have
M(T°"(G),z) = > gdr0—=(c) (W Hdro+— () (V)

weE (T~ (Q))
_ Z xdTg,,(G)(u)erTg,,(G)(v) + Z xdTU**(G)(“)JFdTU**(G)(U)

wvg E(L(G)) UV
_ $2(n+m_3)M(L(G), {E_l) + p2mtn—3 Z x—(dg(u)—i—dc('u))
u, ¢ E(G)
Similarly, we know
My(TO"(G),z) = > g0 () (Wdr0—— () (V)

weE(T°~—(Q))
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— Z xdTO,,(G)(u)dTU,,(G)(v) + Z xdTO,,(G)(u)dTU,,(G)(v)

uwwg B(L(G)) Uy
Ml a6 2)+ 3 5t
u»v
M3(T"(G),z) = Z ! 4ro-— (@ (W =dro—— () (V)|

wEE (T~ (Q))
= Z IIdTU**(G)(u)_dTD**(G)(U)I + Z x\dTo,,(G)(u)—dT(,,,(G)(v)\
uvg E(L(G)) umv

= Ms(L(G),z) —zI"3 Z Llde(w)+da(v) -

u»v

Theorem 3.5 Let G be a graph of order n and size m. Then

Ml(Tloi(G),.’,E) = I2(n+m71)M71),1(G, .I) +3:2li(§, .I) +mx(2"+m73)MO(G,x71)
+M; (G, )zt =S)

M2(T107(G),JI) = Ml—(n—‘,—m—l),—(n-‘,—m—l)(G?‘r) + M;n,m(a7 JI)
+m$(n+m_l)(n+2)M0(G, x—(n+2)) _ x(n+m—1)(n+2)M1* (G, x—(n+2))

M3(TY7(G),z) = M3(G,z) + M3(G,x) +ma™  My(G,z™ ') — ™ My (G, z71).

Proof From Observations (2.1) and (2.2) we have,

n+m—1+dgw) ifveV(Q)

d 10— (’U) =
e n—2 if ve B(Q)

By the definition of M;(G, z), we know

M(T"(G),z) = Z zdr10- () (W Fdrio— ) (v)
weB(T10-(G))
_ Z xdTlof(G)(u)erTlo—(G)(v)+ Z pdr10- () (WHdrio- g (v)
weE(G) wgE(G)
+ Z pdr10- () (WFdrio- () (v)

uU*v

_ Z xn—i—m—l-}-dg(u)—i—n—i—m—l-i—dg(v) + Z xn+m—1+dc(u)+n+m—l+dc(v)
weEE(G) wg E(G)
+ Z xn+m—1—dc(v)+n—2

uU*v

_ x2(n+mfl)M_17_1(G7 JJ) + meMl (67 JJ) + ,n,m:(QnerfS)]\40((;7 1'71)
+M{g (G, x—l)x(2n+m—3) .
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Similarly, by the definition of M»(G, x), we have

My(TY(G),x) = Yoo gt @i @)
weE(T19-(Q))
— Z xdTIO*(G)(u)dTIO*(G)(v)_*_ Z xdTlof(G)(u)dTlof(G)(v)
uwveE(G) w¢ E(G)
+ Z 24110 (@) (Wdr10- () (V)

u”v
= M/—(n-i-m—l),—(n—i-m—l) (G7 ‘I) + M;n,m(a’ .I)

_i_,n,u[:(nqufl)(n+2)]\40((;7 $7(n+2)) _ .’L'(n+m71)(n+2)M1*(G, $7(n+2)).

Ms(T"(G),z) = S altne @i o)
weE (T (@)

— E x‘drlof(G)(u)_drlof(c)(vﬂ + E x‘drlof(G)(u)_drlof(c)(v)‘

weB(G) weE(G)
+ Z x‘dTltH(G)(u)—dT10+(c)(U)\
u*v
= M3(G,2) + M3(G,x) + ma™ My(G,z~ 1) — 2™ My (G, 27 1). O

The proof of following theorems are analogous to that of Theorems 3.1-3.5.

Theorem 3.6 Let G be a graph of order n and size m. Then

M (TY(G),2) = 2>tV (G a7 + 2™ My (G, x)
4 (ZL) p2(ntm=3) | I2(n+m—3)Mik(G, I—l)
— m
MU (@)0) = My i (Get) M@)o
+$(n+mfl)(n+m73)M1*(G, I(n+m73))
M3(T"'(G),z) = Mi(G,z)+ M (G,z)+ (Z‘) + 22 M7 (G, z).
Theorem 3.7 Let G be a graph of order n and size m. Then
M (TH(G),z) = 22D, (G ) + ™M, (G, x)
+$2(n—2)M1 (L(G), I) + I2(n+m—3) Z x—dc(u)-i-dc(v)
u®v
My(TH(G)e) = M_ (i), e (Ga™ )+ M i 1) (n-2)(Grz™")
FM), g 5(L(G).x) + Y alrmImda )2t (1)
u»v
My(T'(G),2) = ™' Ms(G,z) + 2*™ My (G, ) + Ms(L(G), z) + 2™ Y~ gldattdel,

u*v



Computing Zagreb Polynomials of Generalized xyz-Point-Line Transformation Graphs T%Y?(G) with z = — 11

Theorem 3.8 Let G be a graph of order n and size m. Then

My(T'"7(G),2) = 22 DN 4(Goa) + 2™ M (G, z) + 22T =3I (L(G), )

TRt =2) 3 - da () —da(v)

wuwv

MQ(Tlii(G%I) = ML(nerfl),f(nqufl)(GaI) +M7/n,m(av .I) +M1/1+2,n+2(L(G)aI)

+ Z x(n-}-m—l—dg(u))(n+m—3—dg('u))

umwe
My(T'""(G),x) = Mi(G,z)+Mi(G, ) + Mi(L(G), ) +a* Y alletdal
UV

Theorem 3.9 Let G be a graph of order n and size m. Then

M(TT7(G),z) = ma®™ +m(n—2)z™+ "2
My(TT(G),z) = ma™ + m(n — 2)z™"=2
Ms(TT(G),z) = m+m(n—2)zlmn+2

Theorem 3.10 Let G be a graph of order n and size m. Then

Ml(T+17(G),.’L') _ mem + <m) x2(n+m73) +m(n _ 2)$(2m+n73)

m

My(TH(G),z) = mz™ + ( >gc(n-i-m—3)2 +m(n— 2)$m(m+n—3)

N3

M3(TH(G),z) = m+ ( ) +m(n —2)z!" 3l

Theorem 3.11 Let G be a graph of order n and size m. Then

M (TH(G),z) = ma®™ + 2?"=DM,(L(G), ) + ma™ "2 My(G, z) — 2™ "2 M} (G, x)
My(TT(G),2) = ma™ + My 9.0 o L(G), x) + mz™ "D My(G, z™) — 2™ "D My (G, z™)
M3(THYH(G),z) = m+ Ms(L(G),z) +mal™ 2y (G, x) — ™2 M (G 2).

Theorem 3.12 Let G be a graph of order n and size m. Then

MUTT(G),0) = ma®™ + 2T (L(G),a ")
_|_,,n$2m-|-n—3]\40(G7 :E_l) _ I2m+n_3Mik(G, I_l)
My(TH(G),2) = ma™ + My_9.,o(L(G), )

+mxm(m+"73)Mo(G, x ™) — xm(er"*S)Ml* (G,z™™)
M3(TT=7(G),z) = m+ M3(L(G),z) +ma" 3 My(G,z) — 2" 3M; (G, x).
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Theorem 3.13 Let G be a graph of order n and size m. Then

M(T7°7(@Q),z) = z 2+ DAN(G, 22) + ma® T3 Mo (G, 272)
—x(2”+m73)Mf(G, 7 %)
My(T707(G),z) = M _(nim-1),—(n+m-1)(G 2*) + ma =DMl V(G 2 2)
+m:c("_2)("+m_1)M1*(G, $—2(n—2))
M3(T7O7(G),2™%) = M;(G,2?) +ma™ M My(G, 27 2%) — 2™ M} (G, x72).

Theorem 3.14 Let G be a graph of order n and size m. Then

M(T7'(G),z) = 22" UD(G,272) + <ﬂ;)xz("+m3)+mz2(”+m2)M0(G,:1:2)
_I2(n+m73)Mik(G, :E)
1 — M\ (o
MaT(C)0) = Tty s (o) (a7

+mx(n+m73)(n+m)MO(G, I72(n+m73))

_x(nerfS)(ner)Ml* (G, x*Q(nerfS))

M3(T'7(G),27%) = M;s(G,2°%) + (7;) +ma 2 My(G, 2?) — x> M7 (G, 2?).

Theorem 3.15 Let G be a graph of order n and size m. Then

]\41 (T7+7 (G)7 $) _ x2(n+mfl)M(G7 $72) + :C(n72)M1 (L(G)7 LK) + :C2n+m73 Z m72dc(u)+dc(v)
M> (T7+7 (G)7 x) Wf(n+m71),f(n+m71) (G7 $2) + M(,n+2,n+2) (L(G)7 x)

+ Z x(n+m7172dc(u))(n72+dc('u))

uxv

x‘mH‘M’,Q,,l(@, z) + M3(L(G), z) + =™ Z gl?de(WFde ()]

uxv

Mz(T~77(G), z)

Theorem 3.16 Let G be a graph of order n and size m. Then

M(T—(G)x) = 22 DE(G,a2) + 22D I(L(G), )
+$2(n+m—1) Z x—?dc(u)—dc(v)

u*v

My(T~~7(G),2) = M _(nim—1)—(ntm—1)(G,2%) + M _ (5 pm—3) — (n4m—3)(L(G), x)
+ Z I(n-{-m—l—dg(u))(n+m—3—dg('u))
u*v
My(T~~~(G),x) = Ms(G,x)+ Ms(L(G),x) +a* ) altclm=da(v)]

uU*v
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Abstract: In the present paper we define and investigate a new class of sense preserving
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We obtain co-efficient bounds, distortion theorem and extreme points.
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§1. Introduction

Let U = {z : |z| < 1} denote an open unit disc and let H denote the class of all complex valued,
harmonic and sense preserving univalent functions f in & normalized by f(0) = f.(0) — 1 = 0.
Each f € H can be expressed by f = h 4+ g where

h(z)=z+ Zanz” , g(z) = Z b 2", |b1] < 1, (1.1)
n=2 n=1

are analytic in U. A necessary and sufficient condition for f to be locally univalent and sense
- preserving in U is that |h/'(z)| > |¢/(2)| in U. Clunie and Sheil-Small [3] studied H together
with some geometric sub-classes of H. We note that the family H of orientation preserving,
normalized harmonic univalent functions reduces to the well known class S of normalized uni-
valent functions in U, if the co-analytic part of f is identically zero, that is ¢ = 0. Harmonic
functions are famous for their use in the study of minimal surfaces and also play important
roles in a variety of problems in applied mathematics. We can find more details in [1, 2, 4, 5].
Also let H denote the subclass of H consisting of functions f = h + g so that the functions h
and g take the form

h(z) =z - Z anz" g(z) = — Z bnz", |b1] < 1. (1.2)
n=2 n=1

Definition 1.1 Let m be any positive integer. A domain D is said to be m-fold symmetric if a

rotation of D about the origin through an angle %’ carries D onto itself. A function [ is said

1Received July 21, 2018, Accepted May 20, 2019.
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to be m-fold symmetric in D if for every z in D we have

! (62:172) = eiﬁif(z), z€D.

The family of all k-fold symmetric functions is denoted by S*, and for k = 2 we get
class of odd univalent functions. The notion of (j, m)-symmetrical functions (m = 2,3,---, and
j=0,1,2,--- /m—1) is a generalization of the notion of even, odd, k-symmetrical functions and
also generalizes the well-known result that each function defined on a symmetrical subset can be
uniquely expressed as the sum of an even function and an odd function. The theory of (j,m)-
symmetrical functions has many interesting applications; for instance, in the investigation of the
set of fixed points of mappings, for the estimation of the absolute value of some integrals, and for
obtaining some results of the type of Cartan’s uniqueness theorem for holomorphic mappings,
see [8]. Denote the family of all (j, m)-symmetrical functions by SU™). We observe that, S(*:2),
S12) and S are the classes of even, odd and m-symmetric functions respectively. We have

the following decomposition theorem.

Theorem 1.2([8]) For every mapping f : U — C, and a m-fold symmetric set, there exists

exactly one sequence of (j, m)-symmetrical functions f; .. such that

m—1
f(Z) = Z fj,m(z)v
3=0

where

m—1
fim(z) = % Z e f (%), z € U. (1.3)
v=0

Remark 1.3 Equivalently, (1.3) may be written as

ijm(z) = Zan,janzn; a =1, (14)
n=1
where
m—1 .
Onj=— Z g = 7 (1.5)
mi=0 0, n#lm+j;

(leN,m=1,2,---,j=0,1,2,--- ,m—1).

Yong Chan Kim et al [7] discussed the class HCV (k, ) of complex valued, sense preserving

harmonic univalent functions. f of the form (1.1) and satisfying

220" (2) + 229'(2) + 229" (2)
zh!(2) — 2¢'(2)

R{1+(1+kei¢) }204,0§04<1. (1.6)

Now, using the concept of (j,m) symmetric points we define the following.
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Definition 1.4 For0<a <1 andm =1,2,3,---,j =0,1,2,--- ,m — 1. Let HCV?™(k, )
which denote the class of sense-preserving, harmonic univalent functions f of the form (1.1)

which satisfy the condition

j,m(

Re {1 + (1 + ke'?) Z%’;(;B +(Zg_’(%”(z) } za. (1.7)

b ; Qf/ 6
20 (argf(re 9)) = Im <%>

where z = re? 0 <r <1,0<60 <27, 0<k < oo and fjm = hjm + Gjom where hjm,gjm
given by

m—1 m—1
1 , 1 _
=— Y e h(e2), gim(z) = = Y e g(e"2). 1.8
m e h(e2), gjm(2) = — 2 e g(e"z) (1.8)

We need the following result due to Jahangiri [6] to prove our main results.

Theorem 1.5 Let f = h+ g with h and g of the form (1.1). If

Z Ianl Z "+O‘|b|<2 a1=1,0<a<l, (1.9)

then f is harmonic, sense-preserving, univalent in U, and f is convex harmonic of order o
denoted by HK (a). Notice that the condition (1.9) is also necessary if f € HK (o) = HK ()N
H.

§2. Main Results

Theorem 2.1 Let f = h+7 of the form (?7) and fjm = hjm +; , with hjm andg; ,,, given
by (1.8). If0<k<o00,0<a<1lm=1,23,---,7=0,1,2,--- ,m—1 and

—~nn(k+1)—k— k+1 + k + abdy ;]
7, < .
Z:: T as, ) n|+z i) | by |< 2, (2.1)

then f is harmonic, sense- preserving, univalent inU, and f € HCVI™(k, ), where 6, ; given
by (1.5).

Proof Sincen—a <n+nk—-—k—ad,; andn+ao <n+nk+k+ad,; for 0 <k < oo,
it follows from Theorem 1.5 that f € HK(a) and hence f is sense- preserving and convex
univalent in U. Now we need to show that if (2.1) holds then

Re{zh’(z)ﬂl%e”)zzh”( 2) + (14 2ke™)2g/(2) + (1 + ke'?)229" (2 )}
2hj n(2) = 295 (2)

= Re (28) > a. (2.2)
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Using the fact that Re(w) > aif and only if | 1 —a+w |>| 1 + o — w | it suffices to show
that

| A(z) + (1 —)B(2) [ - [ A(z) - (1 + a)B(2) | =0, (2:3)

where A(z) = zh/(2) + (1 + ke'®)22Rh"(2) + (1 + 2ke'®)zg'(2) + (1 + ke'?)22¢"(2) and B(z) =

zh; 1 (2) = 29}, (2). substituting for A(z) and B(z) in (2.3), we obtain

[A(2) + (1 = a)B(2)| - [A(z) — (1 + @) B(2)]|
= ‘zh'(z) + (14 ke'®)22h" (2) + (1 4 2ke™®)zg' (2) 4+ (1 + kei?)22¢"(2)

+ (L= a)[zh] 1, (2) — 295 1 ()]

—|2h(2) + (1 + kew)zzh”(z) +(1+ 2kei¢)zg’(z) + (14 kew)zzg”(z)

~(1+ )] 10 (2) = 2] (2]

=14+ 1 —-a)lz+ i n[n+ (n — ke + (1 — )8, jlanz"

n=2

+ Z nin+ k(n + 1)ke'® — (1 — a)d, ;] bpz"|
n=1

—|[1 = (14 )b ]z + i nnn + (n — ke — (1 + )8, ;]anz"

n=2
Z [n 4 k(n + Dke™ + (14 a)d,,j]bnz"
> [+ (1—a)dig) |z =Y nln(k+1) =k = (1= )dn] [ an || 2" |
n=2

Z n(k+1)+k+ (1 —a)dn ] | ba |l 2" ]

= nn(k+1) —k—ad,; e
(2(1—0&)51] |Z|{ Z (1—ad, ) ]]lan||z| !

n=2

> k+1 —i—k—l—aén]] 1

—nn(k+1)—k—ad,;
> (2(1—a)d ) |z|{ (Z T 7J]|an|
j

o0

n(k+1) + k+ ady ;]
>
; (1—adyj) |bn|>}_0

by (2.1). The harmonic functions

0451J) aalg)
= an bo| <2, (24
Z+Z k—i—l ey Lo |+Z k+1 Tt an ! (24)
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where - -
Z |xn| + Z |yn| =2,
n=1 n=1

show that the coefficient bound given in Theorem 2.1 is sharp. The functions of the form (2.4)
are in HCV7™(k, o) because

S~ nnk+1) —k— n(k+1) + k + ad, ;]
Z (I1—ad ) n|+z (1—ady ;) = b
n=1 Lj Lj
= zal+ D lyal = 2. (2.5)
n=1 n=1
This completes the proof. O

If j = m =1 we get the following result proved by Yong Chan Kim et al in [7].

Corollary 2.2 Let f = h+73g of the form (?7?). If0<k < oo, 0<a<1 and

Z M S 3 M Ry <

n=1

then f is harmonic, sense- preserving, univalent in U, and f € HCV (k, «).

Now we show that the bound (2.1) is also necessary for functions in HC'V (k, a).

Theorem 2.3 Let f = h+7G of the form (1.2) and fjm = hjm +G;m with hjm andg; ,, given
by (1.8). Then f € HOVI™(k,a) if and only if

= nn(k+1) -k —ad, ] = nn(k+1) +k+ ad, ]
o bl < .
g 0= a6 o 14D =y [bnl<2  (26)

n=1
where 0 <k <o00,0<a<1m=123,---,7=0,1,2,--- ,m—1, and J,, ; given by (1.5).
Proof In view of Theorem 2.3, we only need to show that HCV 7™ (k,a) if condition (2.6)

does not hold. We note that a necessary and sufficient condition for f = h+ g of the form (1.1)
to be satisfied. Equivalently, we must have

R{g“ o}

{zh’ (1+ ke')22h" (2) + (1 + 2ke™) (29 (2) + (1 + ke'?) (z%¢"(2)) a} >0
2 (2) — 20 . (2) -

Therefore,

Re { (1 —-0610)z =302 on[n(k+1) — k — adp jllan]|z™ + > or; nn(k + 1) + k + adn j]|bn| 2"

>0 2.7
P17 = S My [an | T Sy mong bl } =0 0

upon choosing the value of z on the positive real axis where 0 < z = r < 1 the above inequality
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reduces to

(1= 81,50) = { Zo2p nlnlh + 1) = k = adn jllan] + 52, nlnlk + 1) + k+ ady ]l | 7~
01,5 — Yoo non jlan|rm =t 4+ 30 ndy jlbp|rn 1

>0 (28)

If condition (2.6) does not hold then the numerator in (2.8) is negative for r sufficiently
close to 1. Thus there exists zg = 7 in (0,1) for which the quotient (2.8) is negative. This
contradicts the required condition for f € HCV7™(k,a)and so proof is complete. |

§83. Extreme Points and Distortion Bounds

Theorem 3.1 Let f be of the form of (1.2). Then f € clcoHCV (k,a) if and only if f(z) =

Zzo:l (Tnhn(2) + Angn(2)) where hi(z) = z, hp(2) = 2 — W(i;)af%z", (n=2,3,4,---,)
1—ady -n )

and gn(2) = 2= gEmrn s 7 (0 = L2300 ), 0 (T + An) = L 2 0 and A > 0,

In particular, the extreme points of HCV?™(k, o) are {h,}and{g,}, and d, ; given by (1.5).

Proof For functions of f of the form f(2) = >_°7 | (Tnhn(2) + Angn(2)) , we have

n=1
z . > _ L 0 (1_O‘5Lj) o
flz) = ;(n+)\n) ;n[n(k+1)—]g_a5n7j]n
3 (1—ady;) .
_,;1 [(k+1)+1<1:+a5nj] _Z_Zanz —sz ) (3.1)

Therefore,

= nn(k+1) —k —ad, ] [(k—i—l)—i—k—i—aé]
: : _ <
S e 3 Ml = 5 3 da =1 <

and so f € HOVI™(k, ).

Conversely, Suppose that f € HCVI™(k,a). We set 7, = %WMM,TL =

2,34, A, = MRl |y = 1,23, and 7= 1= 3000, 7 — Yocy An- Then
> (Tn +2)=1,0<7,<1,0<X\,<1,(n=1,2,3,---,) thus by simple calculations we
get f(2) =507 (Tahn(2) + Angn(2)) and the proof is complete. O

n=1

Theorem 3.2 If f € HCV3™(k, a) then

1 0451‘ 1+2k+a61
< (1 b »J _ ;]b 2 _ 1
() < A+l + 5 [HQ_M“ — m} L=<

and
a51j 1—|—2I€—|—OZ(§1J

1] 1-
> (1—|by)r—= - by|| r? = 1
F(2) = (1= [ba])r 2[k+2_a527j T h@ L lel=r<

where 0 < a < 1, and &, ; given by (1.5).
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Proof Calculation shows that

£ (2)]

IN

IN

IN

IN

IN

=
—~
N
=
IV

Y

v

>

>

(L4 [b1))r 4+ Y (lan] + 1Bu)r™ < (14 [bal)r + D (lan] + |oa])r?

n=2 n=2

(1 + [br])r
1—aéy, {Z Akt —abyy]) | S5k +2) by |bn|} e
=2 -

+
2[(/€ + 2) — aég)j] 1-— aél,j

n=2

1—ady; - k+1)—k—ad,;
(0t e 5 o {me )~ k= adug],

[(k+2) —04527j] s 1 —aél,j
= nn(k+1) +k + ad, ;] 9
+ 2= \byl v
7;2 1—04517j | |
1—0451‘ 1+2k+0¢51‘
1+ b - — by r?
( +| 1|)r+2[(k—|—2)—0&5gd]{ 1—0&517j | 1|}'f'
1 1—(161‘ 1+2/€+O¢51‘
1416 = A J\p 2
( +|1|)r+2{k+2—a52,j k+2—a521j|1|]7°
(L4 [br))r = >~ (anl + [bal)r™ = (14 [br))r = D (lan| + [ba])r?
n=2 n=2
(1= bu])r

. L—ad, o 2[(k +2) — ady ] o 2[(k +2) — ady ] 2
2[(k +2) — ady ;] {Z 1—ady; |an|+1;2 1—ad; bul o

n=2 2. 2.
1—ad = nnk+1) -k —ad, |
1—1b — J Iy,
( | 1|)T 2[(k+2) —04517j] {7;2 1—(161)]‘ |a |

N Z nin(k +1) + k + by ;] Ibnl} 2

ot 1—04517j
1—0451‘ 1+2k+0¢51‘
1— ba|)r — - ———————L|by[ ¢ [ba]r?
(1~ [ba])r 2Kh+m—a&ﬂ{ e |n}hv
1 1—(162‘ 1+2/€+O¢51‘
1—|bi)r—= o 2 1by || 2.
(=l = 5 |y~ gl

This completes the proof.

If j = m =1 we get the following result proved by Yong Chan Kim et al. in [7]

Corollary 3.3 If f € HCV (k,«) then

and

FE <+ b+ g |

1f(z) = (1= ba])r —

11—« 1+2k+ o
k4+2—a k4+2—a

|b1|} r2, lz|=r<1

1[ 1—a 1+2k+a

z — by || 72 = 1.
2 |k+2-a k+2—a|1|}’”’ [l =r<
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§1. Introduction

In 2003, Shaikh [18] introduced and studied Lorentzian concircular structure manifolds (briefly
(LCS),-manifolds) with an example, which generalizes the notion of LP-Sasakian manifolds
introduced by Matsumoto [11]. Also Shaikh et al. ([19,20,21,22]), Prakasha [16], Yadav [29]
studied various types of (LCS),-manifolds by imposing curvature restrictions.

In 1926, the concept of local symmetry of a Riemannian manifold was started by Cartan
[3]. This notion has been used in several directions by many authors such as recurrent manifolds
by Walker [28], semi-symmetric manifold by Szabo [24], pseudosymmetric manifold by Chaki
[4], pseudosymmetric spaces by Deszcz [10], weakly symmetric manifold by Tamassy and Binh
[26], weakly symmetric Riemannian spaces by Selberg [17]. The notions of pseudo-symmetric
and weak symmetry by Chaki and Deszcz and Selberge and Tamassy and Binh respectively
are different. As a mild version of local symmetry, Takahashi [25] introduced the notion of ¢-
symmetry on a Sasakian manifold. In 2003, De et al. [7] introduced the concept of ¢-recurrent
Sasakian manifold, which generalizes the notion of ¢-symmetry.

In 1971, Pokhariyal and Mishra [15] defined a tensor field W* on a Riemannian manifold
given by

1
2(n—1)
~4(X,2)QY]. (1.1)

W*(X,Y)Z = R(X,Y)Z- [S(Y,2)X — S(X,2)Y +g(Y, Z)QX

ISupported by Rajiv Gandhi National Fellowship F1-17.1/2015-16/RGNF-2015-17-SC-KAR-26367.
2Received December 09, 2018, Accepted May 21, 2019.
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Such a tensor field W* is known as M-projective curvature tensor. Ojha [13,14] studied M-
projective curvature tensor on Sasakian and Kaehler manifold. The properties of M-projective
curvature tensor were also studied on different manifolds by Chaubey [5,6], Venkatesha [27] and
others.

Motivated by the above studies, we made an attempt to study M-projective curvature
tensor on (LCS),-manifold.

The present paper is organized as follows: Section 2 is equipped with some preliminaries of
(LCS),, manifold. In section 3, we proved that if (M™,g) is an n-dimensional ¢-M-projective
flat (LCS),-manifold, then the manifold M™ is n-Einstein manifold. We have shown that if
an n-dimensional (LCS),-manifold M™ is M-projective pseudosymmetric then either Ly« =
(a? — p) or the manifold is Einstein manifold, provided (a? — p) # 0, in section 4. Section 5
deals with the study of ¢-M-projective semisymmetric (LC'S),-manifold and proved that the
manifold is generalized n-Einstein manifold, provided (a? — p) # 0. In the last section, we have
studied generalized M-projective ¢-recurrent (LCS),,-manifold and gave the relations between
the associated 1-forms A and B.

82. Preliminaries

An n-dimensional Lorentzian manifold M™ is a smooth connected para-compact Hausdorff
manifold with a Lorentzian metric g of type (0,2) such that for each point p € M, the tensor
gp : Tp(M™) x T,(M™) — R is a non-degenerate inner product of signature (—,+,+,---,+),
where T),(M™) denotes the tangent space of M™ at p and R is the real number space [18,12].

In a Lorentzian manifold (M™, g), a vector field P defined by
9(X, P) = A(X),

for any vector field X € x(M™), (x(M™) being the Lie algebra of vector fields on M™) is said

to be a concircular vector field [23] if
(VxA)(Y) = afg(X,Y) + w(X)A(Y)],

where « is a non-zero scalar function, A is a 1-form and w is a closed 1-form.

Let M™ be a Lorentzian manifold admitting a unit time like concircular vector field &,

called the characteristic vector field of the manifold. Then we have

9(&,8) = -1 (2.1)

Since £ is a unit concircular vector field, there exists a non-zero 1-form 7 such that for

9(X;, &) = n(X), (2.2)
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the equation of the following form holds

(Vxn)(Y) = alg(X,Y) +n(X)n(Y)], (a#0) (2.3)

for all vector fields X and Y. Here V denotes the operator of covariant differentiation with

respect to the Lorentzian metric g and « is a non zero scalar function satisfying

(Vxa) = (Xa) = da(X) = pn(X), (2.4)
p being a certain scalar function given by p = —(£«). If we put
1

then from (2.3) and (2.5) we have
¢*X = X +n(X)E, (2.6)

n(€) = -1, ¢ =0, n(dX) =0, g(¢X,9Y)=g(X,Y)+n(X)n(Y), (2.7)

from which it follows that ¢ is a symmetric (1,1) tensor, called the structure tensor of the
manifold. Thus the Lorentzian manifold M together with the unit timelike concircular vector
field &, its associated 1-form 7 and (1, 1) tensor field ¢ is said to be a Lorentzian concircular
structure manifold (briefly (LCS),-manifold) [18]. Especially, if we take o = 1, then we obtain
the LP-Sasakian structure of Matsumoto [11].

In a (LCS),-manifold, the following relations hold [18]:

N(R(X,Y)Z) = (a® = p)[g(Y, Z)n(X) — g(X, Z)n(Y)], (2.8)
R(X,Y)¢ = (® = p)[n(Y)X —n(X)Y], (2.9)
R(X,6)Z = (a® = p)n(2)X - 9(X, Z)¢], (2.10)

R(§, X)Y = (a® = p)[g(X,Y)E = n(Y)X], (2.11)

R(&, X)E = (a® = p)[X +n(X)¢], (2.12)

S(X,€) = (n—1)(a® = p)n(X), Q&= (n—1)(a® = p), (2.13)
(Vxo)(Y) = afg(X, Y)E + 2n(X)n(Y)E +n(Y)X], (2.14)
S(¢X,9Y) = S(X,Y) + (n —1)(a® = p)n(X)n(Y) (2.15)

for all vector fields X,Y,Z and R, S respectively denotes the curvature tensor and the Ricci
tensor of the manifold.

A (LCS), manifold M™ is said to be a generalized n-Einstein manifold [30] if the following
condition
S(X,Y) = Ag(X,Y) + (X )n(Y) + (X, V) (2.16)
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holds on M™. Here A, p and v are smooth functions and Q(X,Y) = g(¢X,Y). If v = 0 then

the manifold reduces to an n-Einstein manifold.

From (1.1), we have

WW(EY)2) = o SV 2) = 50(Y.2), (217)
W (X.2) =~ S(X.2) - (02 = (X, 2) (218)
n(W*(X,Y)¢) =0, (2.19)
W*(X,Y)¢=0, W*(X,8)E=0, W*"(,£Z =0, (2.20)
. B 1 1
w (X,f,Z,T)— (n_l)S(X,Z)T](T)—mS(X,T)T](Z)
45007 = P)g(X, Thn(Z) ~ (0% ~ p)g(X, Z)n(T), (221)
W*(X,€, Z,€) = —mS(X, Z)+ %(oﬁ -p)9(X,Z), (2.22)
W (X.6)Z = s S(X. 26 - 3 (0® — pla(X. 20, (223
(VuS)(X,€) = (n = Da(a® — p)[g(U, X) +n(U)n(X)] - aS(X, V). (2.24)

83. ¢-M-projectively Flat (LCS),,-Manifold

Definition 3.1 An n-dimensional (LCS),,-manifold (M™,g), (n > 3) is called ¢-M -projective
flat if it satisfies the condition
P*W*(9X, Y )9pZ =0, (3.1)

for all vector fields X,Y,Z on the manifold.

Theorem 3.1 If (M™,g) is an n-dimensional ¢-M -projective flat (LCS),,-manifold, then the
manifold M™ is n-Finstein manifold.

Proof Let M™ be ¢-M-projective flat. It is easy to define that ¢?(W*(¢X,¢Y)pZ) = 0
holds if and only if
g(W*(¢X, Y )dZ,oU) = 0, (3.2)
for any vector fields X,Y,Z, U € TM™.
By virtue of (1.1) and (3.2), one can obtain
Y(RGX.6V)OZ.0U) = eslS(6Y.02)g(0X.0U) = S(6X. 62)g(oY.U)
+9(¢Y,02)S(0 X, 9U) — g(6 X, 9Z)S(¢Y, U)]. (3.3)
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Let {e1,ea, - ,en—1,&} be a local orthonormal basis of vector fields in M™. By using the fact
that {¢ey, dea, -, den—_1,&} is also a local orthonormal basis, if we put X = U = e; in (3.3)
and sum up with respect to i, we get

n—1
Z 9(R(¢ei, ¢Y)¢Z, de;) = ' ¢eq)
=1
- (¢€Za Z)g(¢Ya ¢€Z) ((bYa QZSZ)S(QZSGZ, (bel)
It can be easily verify by a straight forward calculation that [1],
Zg (Gei, Y)SZ, dei) = S(OY, 6Z) + (Y, ¢ 2), (3.5)
Z S(gei, pei) =1 — (n —1)(a® = p), (3.6)
i=1
n—1
g(gei, 0Z)S(dY, dei) = S(¢Y, ¢Z), (3.7)
i=1
Zg (dei, pes) = (n— 1) (3.8)
and .
> gleei, 02)g(dY, de;) = (oY, ¢Z). (3.9)
i=1
By virtue of (3.5) - (3.8), the equation (3.4) becomes
S(ov,07) = (LA 22021y o) (310
On substituting (2.7) and (2.15), (3.10) yields
S(Y,2) = kig(Y,Z) + kan(Y)n(Z), (3.11)
where ky = {Z=(= 1)(0;1;1’)) 20=D3 and ky = {Tﬁz(n*l)f("nfl)("ﬂ o) }. Thus we proved the
theorem. |

84. M-Projective Pseudosymmetric (LCS),-Manifold

Definition 4.1 An (LCS),-manifold (M",g) (n > 3) is said to be M -projective pseudosym-

metric if it satisfies

(R(X,Y) - W*)(U,V)E = Lw- (X NY) - W*)(U,V)E, (4.1)
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for any vector fields X, Y,U,V,E € TM™.

Theorem 4.2 If an n-dimensional (LCS),-manifold M™ is M -projective pseudosymmetric
then either Ly« = (a® — p) or the manifold is Einstein manifold, provided (o — p) # 0.

Proof Let M™ be M-projective pseudosymmetric. Putting Y = ¢ in (4.1), we get

(R(X,&)- WU V)E = Lw-[(XANOW*U,V)E-W*(X AOU,V)E
WU, (X ANEV)E — W*(U, V) (X A€)E]. (4.2)

Now the left hand side of (4.2) reduces to
In view of (2.10), (4.3) becomes

(o = p)W*(U,V, E,)X = W*(U,V, E, X)¢ = n(U)W* (X, V)E + g(X,U)W*(£,V)E
—n(VYW*(U, X)E + g(X,V)W*(U,&)E — n(T)W*(U, V)X + g(X, E)W*(U,V)E].  (4.4)

Similarly, right hand side of (4.2) reduces to

Ly« [W*(U,V,E, )X — W*(U,V,E, X)§ —n(U)W*(X,V)E + g(X,U)W*(,V)E
—n(VYW*(U,X)E + g(X,VYW*(U,&)E —n(EYW*(U,V)X + g(X, E)W*(U,V)¢§]. (4.5)

On replacing the expressions (4.4) and (4.5) in (4.2), we get

[Lw~ — (& = p){W*(U,V, E, )X — W*(U,V, E, X)¢ — n(U)W*(X,V)E
+9(X,UYWHEVIE — (V)W (U, X)E + g(X, V)W (U, E - n(E)W" (U, V)X

+9(X, E)W*(U,V)¢} = 0. (4.6)
Taking V' = £ and using (2.2) and (2.7) in the above equation, we obtain

+9(X, U)W OE + WU, X)E +n(X)W* (U, E — n(EYW* (U, §)X

+9(X, EYW"(U,£)¢} = 0. (4.7)
On using (2.21) - (2.23), (4.7) gives either Ly« = (a® — p) or

W*(U,X)E = 2(n1_ 1)S(U, E)X + 2(n1_ 5

—5(0* = pg(U, )X — 5(a® ~ p)g(X, Eyn(U)E. (4.8)

S(X, E)n(U)¢
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The above equation implies

W*(U.X.E,G) = ﬁsw, F)g(X,G) + ﬁsgx, E)n(U)n(G)
~5(0 = p)g(U, E)g(X,G) — 5(a* ~ p)g(X, EmUn(@).  (49)
Contracting (4.9) gives
W*(ei, X, E, ;) = 0. (4.10)

Simplifying (4.10), we finally obtain
S(X, E) = (n — 1)(a® - p)g(X, E). (4.11)

Thus the proof of the theorem is completed. O

§5. ¢-M-Projectively Semisymmetric (LCS),-Manifold

Definition 5.1 An n-dimensional (n > 3) (LCS),-manifold is said to be ¢-M-projective

semisymmetric if it satisfies the condition
WHX,Y) ¢ =0, (5.1)
which turns into

(WH(X,Y)-$)Z = W*(X,Y)$Z — ¢W*(X,Y)Z = 0. (5.2)

Before we state our theorem we need the following lemma which was proved in [19].

Lemma 5.2([19]) If M™ is an (LCS),-manifold, then for any X,Y,Z on M", the following
relation holds:

R(X,Y)¢Z —¢R(X,Y)Z = (o —p)[{g(Y,Z)n(X)—g(X, Z)n(Y)}¢
+n(Z){n(X)Y —n(Y)X}]. (5.3)

Theorem 5.3 If an n-dimensional (LCS),-manifold is ¢p-M -projective semisymmetric then it
is a generalized n-Einstein manifold, provided (o — p) # 0.

Proof By virtue of (1.1), we have

W (X, Y)pZ — oW (X,Y)Z = R(X,Y)pZ— ¢R(X,Y)Z — [SY,¢2)X

1
2(n —1)
—S(X,02)Y +9(Y,02)QX — g(X, $2)QY
+5(Y, 2)¢X — S(X, Z2)¢Y + g(Y, 2)pQX — g(X, Z)¢QY]. (5.4)
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On using (2.13) and (5.3) in (5.4), we obtain

(o = p){g(Y. Z)n(X) = g(X, Z)n(Y)}€ + n(Z){n(X)Y — n(Y)X}]
sy S (Y 62)X = S(X,2)Y + (n —1)(a” = p)g(Y, 62) X

5 =T}
—(n—1)(a? = p)g(X,02)Y + S(Y, Z)pX — S(X, Z)pY
+(n—1)(a® = p)g(Y, Z)pX — (n—1)(a”® — p)g(X, Z)¢Y] = 0. (5.5)

Taking inner product of (5.5) with T', we get

(0® = p){g(Y, Z)n(X) = g(X, Z)n(Y)}(T) +n(Z){n(X)g(Y,T) = n(Y)g(X, T)}]

27_1)[ (Y, 02)g(X,T) - 5(X7¢Z)9(Y=T) (n—1)(a® = p)g(Y,¢Z)g(X,T)
—(n—1)(a® = p)g(X,02)9(Y,T) + S(Y, Z)g(¢X.T) - S(X, Z)g(¢Y,T)
+(n—1)(a® = p)g(Y. 2)9(¢X,T) — (n — 1)(a® — p)g(X, Z)g(¢Y,T)] = 0. (5.6)

Contracting (5.6) gives

S(X,02) %(cﬂ —P)9(X,07) + 2((2"__ )) (o = p)g(X, 2)
2 oon(2) 6.7

Replacing X by ¢X in the above equation, we finally obtain

S(X,2) = M(X, Z) + uin(X)n(Z) + vg(¢X, Z), (5-8)
where A = —(n — 1)(a® — p), p = —2(n — 1)(a® — p) and v = —2((7?:21)).
This completes the proof. O

§6. Generalized M-Projective ¢g-Recurrent (LCS),,-Manifold

In 2008, Basari and Murathan [2] introduced generalized ¢-recurrent Kenmotsu manifold. Later,
De [8] and Pal [9] studied generalized concircularly recurrent and generalized M-projectively

recurrent Riemannian manifold.

Definition 6.1 A (LCS),-manifold M™ (n > 3) is said to be generalized M -projective ¢-
recurrent if it satisfies

@*(VoW")(X,Y,2)) = AU)W*(X,Y)Z + B(U)[g(Y, 2)X - g(X,Z)Y], (6.1)

where A and B are two 1-forms, B is non-zero and are defined by A(U) = g(U, p1) and B(U) =
g(U, p2). Here py and pa are vector fields associated to the 1-forms A and B respectively.
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Theorem 6.2 If the (LCS),-manifold M™ is generalized M -projective ¢-recurrent, then the

associated 1-forms A and B are related as follows;

n

5

(& — p) +7]A(U) + (n — 1)B(U) +

Proof Suppose that M™ is generalized M-projective ¢-recurrent (LC'S),-manifold. Then,
by using (2.6), (6.1) takes the form

(VoW X, Y)Z + (VoW )X, Y)Z)¢ = AU)W(X,Y)Z + B(U)[g(Y,2)X — g(X,Z)Y]. (6.3)
From (6.3), it follows that

g((vUW*)(Xv K Z)7T) + g((vUW*)(Xv K Z)vg)g(Tv 5)

B 2(n1— 5y (VS 2)g(X, T) = (VuS)(X, 2)g(V, T) + 9(¥, Z)(Vu )X, T)

—9(X, Z)(VuS)(Y,T)] - [(VuS)(Y, Z)n(X) = (VuS) (X, Z)n(Y)

2(n—1)
+9(Y, Z)(VuS)(X,€) — 9(X, Z)(VuS)(Y.n(T) = A(U)[g(R(X,Y)Z,T)

—ﬁ{s(lﬂ Z)g(X,T) = S(X,Z)g(Y,T)+g(Y,Z2)S(X,T) — g(X, Z)S(Y,T)}]
+BU)[g(Y, Z)g(X,T) — g(X, Z)g(Y,T)]. (6.4)

On contraction, the above equation yields

(VuS)(Y, 2) +n((VuR)(,Y, Z)) — [(n=2)(VuS)(Y, Z)

1
2(n—1)
1
2(n—1)

—(VuS)(Y,n(2)] = AU)[S(Y, Z) -

+dr(U)g(Y, Z)] - [=(VuS)(Y, Z2) = (VuS)(Z,On(Y) + 9(Y, 2)(VuS)(&, €)

ﬁ{(n —2)8(Y, Z) + rg(Y, Z)}]

+(n—1)BU)g(Y, 2). (6.5)

In (6.5), setting Z = ¢ and then using (2.2), (2.3), (2.7), (2.12) and (2.13) one can get

(VuS)(Y, L — 2&__21)] - 2?;(2)77(& = A(U)[S(Y,¢)
_2(n1— =25 + )} + (n = HBU)NY). (6.6)

Now, taking Y = £ in (6.6) and using (2.2), (2.7) and (2.24), we finally obtain (6.2). O
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§1. Introduction

The notion of Lorentzian almost para-contact manifolds was introduced by K. Matsumoto [3].
Later on, a large number of geometers studied Lorentzian almost para-contact manifold and
their different classes, viz., Lorentzian para-Sasakian manifolds and Lorentzian special para-
Sasakian manifolds [4], [5], [6], [7]. In brief, Lorentzian para-Sasakian manifolds are called LP-
Sasakian manifolds. The study of LP-Sasakian manifolds has vast applications in the theory of
relativity.

In an n-dimensional differentiable manifold M, (¢, £, n) is said to be an almost paracontact
structure if it admits a (1, 1) tensor field ¢ , a timelike contravariant vector field £ and a 1-form

1 which satisfy the relations:

n(€) = -1, (1.1)
P*X = X +n(X)E, (1.2)

for any vector field X on M. In an n-dimensional almost paracontact manifold with structure
(¢,&,7), the following conditions hold:

€ =0, (1.3)
no¢=0, (1.4)
rank ¢ =n — 1. (1.5)

Let M™ be differentiable manifold with an almost paracontact structure (¢, &, n). If there

exists a Lorentzian metric which makes £ a timelike unit vector field, then there exists a

1Received September 11, 2018, Accepted May 24, 2019.
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Lorentzian metric g satisfying

9(X, &) = n(X), (1.6)
9(6X, 9Y) = g(X,Y) + n(X)n(Y), (1.7)
(Vx @)Y = g(X,Y)§ +n(Y)X + 2n(X)n(Y)E, (1.8)

for all vector fields X,Y on M [2].

If a differentiable manifold M admits the structure (¢, £, 7, g) such that g is an associated
Lorentzian metric of the almost paracontact structure (¢, &, 7, g) then we say that M™ has a
Lorentzian almost paracontact structure (¢,£,n,g) and M™ is said to be Lorentzian almost

paracontact manifold (LAP) with structure (¢,&,7,9) .
In a LAP-manifold with structure (¢, &, n,g) if we put

QX,Y) = g(¢X,Y), (1.9)
then the tensor field € is a symmetric (0,2) tensor field [?], that is
QX,Y) = QY, X), (1.10)

for all vector fields X,Y on M™. A LAP-manifold with structure (¢,&,n,g) is said to be

Lorentzian paracontact manifold if it satisfies
1
QX Y) = SA(Vxn)Y + (Vyn) X} (1.11)

and (¢, &, 1, g) is said to be Lorentzian paracontact structure. Here V denotes the operator of

covariant differentiation w.r.t the Lorentzian metric g.

In a LP-Sasakian manifold we have the following results from [9]:

Vx§=¢X, (1.12)

(Vxn)Y =Q(X,Y) = g(¢X,Y), (1.13)
R(X,Y)¢ = n(Y)X —n(X)Y, (1.14)
n(R(X,Y)Z) = g(Y, Z)n(X) — g(X, Z)n(Y), (1.15)
R(& X)§ =n(X)§ —n(€)X = X +n(X)¢, (1.16)
S(X,¢) = (n = n(X), (1.17)

5(&,8) =—(n-1), (1.18)

Q¢ =—(n—1), (1.19)

where R is the curvature tensor of manifold of type (1, 3), S is Ricci tensor of type (0,2) and @
being the Ricci operator. An example of a five-dimensional Lorentzian para-Sasakian manifold

has been given by Matsumoto, Mihai and Rosaca in [5].
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§2. D-homothetic Deformations of LP-Sasakian Manifolds

Let M(¢,&,n,g) be an Lorentzian almost paracontact structure. By D-homothetic deformation

[8], we mean a change of structure tensors of the form

_ - 1 _
n = an, 5255’ ¢=¢, g=ag+ala—1)n®mn,

where a is a positive constant.

Theorem 2.1 Under D-homothetic deformation M(¢,€,7,9) is also an LP-Sasakian manifold
M(¢7 5’ ’,77 g) :

Proof Calculation shows that

W) = O =an(z6)=n(E) =1,
F(X) = #(X)=X +n(X),
Gof = B(E)=0(-8)= o =0,
no¢ = T(H(X))=an(¢(X)) =0,
rank ¢ = rank ¢ =n—1,
n(X) = an(X) = ag(X,¢),
FBX.PY) = goX.,0Y) = (ag +ala — )y @ )(¢X, 8Y) = ag(¢X, ¢Y),

(Vx@)Y = (Vxp)Y

g(X,Y)E+en(Y)X + 2n(X)n(Y)S.

Theorem 2.2 Under D-homothetic deformation of a LP Sasakian manifold the following
relation holds
(Leg)(X,Y) = a(Leg)(X,Y),

where L¢ is the Lie derivative.

Proof For an LP-Sasakian manifold we know (L,¢)(X,Y) = 2g(¢X,Y) since g(¢X,Y) =
g9(X, ¢Y). Under D-homothetic deformation

(Leg)(X.Y) = 25(3X.Y)

(Leg)(X,Y) +2(a® — a)n(X)n(Y)
(Leg)(X,Y).

a
a

§3. D-homothetic Deformations of Curvature Tensors on LP-Sasakian Manifolds

In this section we consider conformally flat LP-Sasakian manifold M™(¢,&,n,g) (n > 3). The
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Weyl conformal curvature tensor C is given by

C(X,Y)Z = R(X,Y)Z- %[S(Y, 2)X — S(X, 2)Y + (Y, 2)QX

(n—1)(n—2)

For conformally flat manifold we have C(X,Y)Z = 0. So from (3.1) we have

—9(X, 2)QY] + [9(Y, 2)X — g(X, Z)Y]. 3.1)

R(X,Y)Z — ﬁ{S(Y, 2)X — S(X, 2)Y + (Y, 2)QX — g(X, Z)QY}

—m{gm Z)X — g(X,2)Y}. (3.2)

Putting Z = £ in (3.2), we obtain from (1.14)

n(Y)X —n(X)Y = : {S(Y, )X = S(X, Y + 5(Y, QX — g(X,§)QY}

n—2

_m{g(lﬂ HX —g(X, Y} (3.3)

Putting ¥ = ¢ in (3.3) we calculate

nOX —nX)e = = - S{S(E X — S(XOE+ S(EHQX - (X, £)QE}
‘m{g(é,ﬁ)){ - g(X,€)¢}- (3.4)

After some steps of calculations we obtain

QX = (=14 —2)X + (=14 ——=)n(X)¢ — (n — n(X). (3.5)

Taking inner product with Y, above equation can be written as

r

S(XY) = (14 —)g(X,Y) + (=1 + L )n(X)g(¥.€) = (n — n(X). (3.6)

n —

In view of (3.5), (3.6) equation (3.2) takes the form

RX,Y)Z = [g(Y,2)X —g(X,2)Y] K—H nil) nig

1 r r

T2 <1+n—1) B (n—l)(n—Q)}
9002000 [ (L7 = D56~ 00 - D] + 9 2)

n—1 n—2

<o = Dt~ =]+ 30 | (5 — D) - 2
00 |1 - D) - ). (37

For a conformally flat LP-Sasakian manifold, R(X,Y)Z is given by the equation (3.7). Again in
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a LP-Sasakian manifold the following relation holds [9]

R(X,Y)pZ = ¢(R(X,Y)Z)+2{n(X)Y —n(Y)X}n(Z) +2{g(Y, Z)n(X)
—9(X, Z)n(Y)} — 9(¢X, Z2)¢Y + g(9Y, Z)pX — g(Y, 2) X
+9(X, 2)Y. (3.8)

Again, on using equations (1.15), (1.18) and (1.4) in (3.8) we calculate
9(PR(6X,0Y)Z, ¢W) = g(R(Z, W)X, Y ).

Using (3.8) and then (1.7), (1.15) in the above equation we obtain

g(PR(¢X,8Y)Z,oW) = g(R(X,Y)Z,W)—g(W, X)n(Z)n(Y) + g(Z, X)n(W)n(Y)
+20(Z)n(X)g(W, ¢Y) — 2n(W)n(X)g(Z, ¢Y) — 9(¢Z, X)g(¢W, ¢Y)
+9(oW, X)g(¢Z, ¢Y) — g(W, X)g(Z,8Y) + g(Z, X)g(W, ¢Y). (3.9)

Replacing X,Y by ¢X and ¢Y respectively in (3.8) and taking inner product with ¢W we obtain
on using (1.4) and (3.9) we get

9(R(¢X,8Y)pZ, W) = g(R(X,Y)Z,W)—g(W,X)n(Z)n(Y) + g(Z, X)n(W)n(Y)
+39(Y, oW )n(Z)n(X) — 3g(Z, Y )n(W)n(X) + 29(¢W, X)g(Z,Y")
+2g(6W, X)n(Z)n(Y) — 29(W, X)g(Z, ¢Y). (3.10)

Now we shall recall the definition of ¢-section. A plane section in the tangent space Tp(M) is
called a ¢-section if there exists a unit vector X in T, M orthogonal to £ such that {X,¢X} is an

orthonormal basis of the plane section. Then the sectional curvature
K(X,¢X) = g(R(X,0X)X, $X) (3.11)

is called a ¢-sectional curvature. A contact metric manifold M(¢,&,n,g) is said to be of constant
¢-sectional curvature if at any point P € M, the sectional curvature K (X, $X) is independent of the
choice of non-zero X € D, where D denotes the contact distributions of the contact metric manifold

defined by n = 0. The definition is valid for Lorentzian manifolds also [10].

We give the following theorem.

Theorem 3.1 In a LP-Sasakian manifold M(¢p,&,7n,9) the relation (Qd — ¢Q)X = 4n¢X holds for
any vector field X on M.

Proof Let {X;,0X;,&} (i =1,2,--- ,m) be a local ¢—basis at any point of the manifold. Now
putting Y = Z = X; in (3.10) and taking summation over ¢, we obtain by virtue of n(X;) =0,
YoR(¢pX, 0 X)X = BR(X, Xi) X + 20X g( X5, Xi). (3.12)
Again setting Y = Z = ¢X; in (3.10) we have

YOR(0X,¢°X:)d* Xi = BR(X, 6 X:)dXi + 20X g(X;, Xi). (3.13)
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Adding (3.12) and (3.13) and using the definition of Ricci operator, we calculate

P(Q(PX) — R(¢X,£)¢) = QX — R(X, §)§ + 4ngX.

We can write from (1.16)
R(¢X, )¢ = ¢X.
Using (3.13) and (3.14)
P(Q(PX)) = QX + dngX.

Operating ¢ on both sides and using (1.17)
Q(PX) — (QX) = 4ngX.

By virtue of (3.17) theorem (3.1) is proved.

39

(3.14)

(3.15)

(3.16)

(3.17)

O

For the next proof we consider the symbol W;k where W;k denotes the difference f;k - F;k of

Christoffel symbols in an LP-Sasakian manifold [8]. In global notation we can write

WY, 2) = (1~ a)[n(Z)8Y +n(V)oZ) + 2 (1~ D(TymZ + (V)Y

for all Y, Z € x(M). We state our next theorem.

(3.18)

Theorem 3.2 Under a D-homothetic deformation, the operator Q¢ — ¢Q of a LP-Sasakian manifold

M(,€,n,9) is conformal.

Proof If R and R denote the curvature tensors of the LP-Sasakian manifold M(¢,&,n,g) and

M(9,€,7,7) respectively then we know from [8]

R(X,Y)Z = R(X,Y)Z+ (VxW)ZY)— (VyW)(Z X)
+W(W(Z,Y),X) - W(W(Z,X),Y).

Using (1.13) in (3.18) we calculate
W(Y,2) = (1 - @)[(Z)8Y +n(Y)8Z] + (1~ 2)g(6Y, 2

Taking covariant differentiation w.r.t. X and after using (1.8), (3.2), we obtain,

(VxW)(Y,Z) = (1-a)[g(¢X,Z)Y + g(X,Y)n(Z)E +2n(Z)n(Y)X
+An(X)n(Y)n(Z)§ + g(¢X,Y)oZ + g(X, Z)n(Y)E]
(1= 2)g(9Y, 2)6X.
Using (3.21) in (3.19) we obtain
R(X,Y)Z = RX,Y)Z+1—-a)nY)g(X,2)¢

21— an(Z)(Y)X + (1 = a)g(6X, Z)Y + (1 -

—(1—a)g(Y, Z)n(X)¢

~2(1 — an(X)n(2)Y — (1 - a)g(9Y, Z)pX — (1 - ~

a

)9(02,Y )X

)9(¢Z, X )Y

(3.19)

(3.20)

(3.21)
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+(1 = ()]~ D)g(¢*Z, X)e] + (1= an(Z)[(1 - a(X)¢*Y
H1= D)9V, X)) + (1= )g(82,X)[-(1 = a)oX]
(1= a)n(X)[(1 - )g(¢*2,Y)E] - (1~ apn(Z)[(1 ~ an(¥)6*X
H(1 = 2)g(6*X,V)E] — (1= D967, X)[-(1 - )], (3.22)
From (3.22) we get
aS(Y,2) = S(v, 2) + L= @)’ (3.23)
Using the properties of Ricci operator
aQY = QY + (a _aa)z.
Operating ¢ = ¢ on both sides from left hand side
Wb QY = Qv + U _a“)z.
Operating ¢ = ¢ on both sides from right hand side
a0 Y = oy + U _aa)Q.
Subtracting the above two equations we obtain
(6T -Q ) = (6Q - Qo). (3:21)
The equation (3.24) proves our theorem. O

We can also prove the following theorems as a consequence of D-homothetic deformation.

Theorem 3.3 Under D-homothetic deformation, an n—Einstein LP-Sasakian manifold remains in-

variant.

Proof In an n-Einstein LP-Sasakian manifold [9]

S(XY) = [ = Ug(X,Y) + [ — nln(X)n(Y).

Under D-homothetic deformation we get

— T

S(X,Y) = [a(n

— — DX, Y) + fala = 1)(=—5 = 1) + a* (= = n)}n(X)n(Y).

Hence the result is proved. a

Theorem 3.4 Under D-homothetic deformation, the ¢-sectional curvature of a LP-Sasakian manifold

is conformal.

Proof Putting Y = ¢X,Z = X in (3.12) and taking inner product with ¢X, we obtain on using
(1.4) and the orthogonality property we get

1

ag(R(X, X)X, ¢X) = g(R(X, ¢X) X, ¢X) + (a — ) (3.25)
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WR(X,6X) — K(X,6X) = (a - =

) |
Theorem 3.5 There exists LP-Sasakian manifold with non-zero and non-constant ¢-sectional curva-

ture.

Proof 1If the LP-Sasakian manifold satisfies R(X,Y)& = 0, then it can be proved easily that
K(X,$X) = 0 and therefore from (3.25) we can conclude that K(X,$X) # 0 for a # 1 where X is a

unit vector field orthogonal to £&. Hence the result is proved. O

8§4. An Example of a LP-Sasakian Manifold

In this section we shall prove the equality (3.25) by taking an example of LP-Sasakian manifold [1]. Let
us consider a 5-dimensional manifold M = {(z,y,2,u,v) € R® : ((z,y,2,u,v) # (0,0,0,0,0)} where
(z,y,z,u,v) are the standard coordinate in R®. The vector fields

ad 1o} 0 0 0 0 0

= 29 19y % -2 - = 272 19,2
a 8x+ Yozr oy’ BT h & 8u+ Yoz ¢

o
\

Q

i~

are linearly independent at each point of M. Let g be the Lorentzian metric defined by

g(ei7€j) = 1 for 7‘:.77{37
g(6i7ej) = 0, for 7'75.77
g(es,e3) = —1.

Here i and j runs from 1 to 5. Let n be the 1-form defined by 1n(Z) = g(Z, e3), for any vector field Z
tangent to M. Let ¢ be the (1,1) tensor field defined by

per = ez, ¢ex =e1, des =0, Pes =es5, @es = ey.
Then using the linearity of ¢ and g we have
n(es) = =1, ¢°Z=Z+n(Z)es,
for any vector fields Z, W tangent to M. Thus for ez = g, M(d), &,m, g) forms a LP-Sasakian manifold.

Let V be the Levi-Civita connection on M with respect to the metric g. Then the followings can
be obtained

le1, e2] = —2e3, [e1,es] =0, [e2,es] =0.

On taking e3 = £ and using Koszul’s formula for the metric g, we calculate

vele3 = €2, velez = —e€3, v6161 = O,
Ve2e3 = e, Ve262 =0, ve261 = €3,

Vesez =0, Vegea =e1, Veger =ea.

Using the above relations, we can easily calculate the non-vanishing components of the curvature
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tensor as follows:

R(61,62)62 = 3ei, R(el, 62)61 = 3ea, R(€2,63)63 = —eg,
R(ei,es)ea =0, R(e1,ez)er = —es, R(e2,e3)es = e3,

.R(617 62)63 = 0.

In equation (3.22) we put X = e1,Y = ¢pe1, Z = e;. Taking inner product with ¢e; we obtain

aK(e1,per) — K(e1, de1) = a — é

Hence, by this example Theorem 3.4 is verified.
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Abstract: In literature, there are three affine frames commonly used for space curves, which
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§1. Introduction

Affine differential geometry is the study of differential invariants with respect to the group of affine
transformation. The group of affine motions special linear transformation namely the group of equi-
affine or unimodular transformations consist of volume preserving (det(a;x) = 1) linear transformations

together with translation such that
3
m?zZajkxk+cj ji=1,2,3
k=1

This transformations group denoted by ASL(3,IR) := SL(3,IR) x IR*® and comprising diffeomor-
phisms of TR? that preserve some important invariants such curvatures that in curve theory as well.
An equi-affine group is also called an Euclidean group [3].

Salkowski and Schells gave the equi-affine frame [4], Kreyszig and Pendl gave the characterization
of spherical curves in both Euclidean and affine 3-spaces [3]. Su classified the curves in affine 3-space by
using equi-affine frame [6]. Winternitz dwelled on the insufficiency of equi-affine frame for curves class
of C® and defined the new frame known as Winternitz frame [5,1]. Davis obtained new affine frame by
defining intrinsic affine binormal and in this study, we called that frame as intrinsic affine frame [2].

A set of points that corresponds to a vector of vector space constructed on a field is called an

affine space associated with vector space. We denote A3 as affine 3-space associated with TR>. Let
a:J — As

represent a curve in As, where t € J = (t1,t2) C IR is fixed and open interval. Regularity of a curve

1Received November 03, 2018, Accepted May 25, 2019.
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in Az is defined as| & & @& |# 0on J, where & = da/dt, etc. Then, we may associate o with the

/ 1/6
s:a(t):/‘a a all at
t1

which is called the affine arc length of a(s). The coordinates of a curve are given by three linearly

invariant parameter

independent solutions of the equations
o™ (s) 4k (s) " () + 7a (5) @' (5) =0 (1
under the condition
a'(s) a’(s) o (s) |=1 (2)

where k (s) and 74 (s) are differentiable functions of s.

§2. Position Vectors of the Curves in Affine 3-Space According to

Equi-Affine Frame

Let a (s) be a regular curve with affine arc lengh parameter s. The vectors o’ (s), a” (s) and o’ (s) are
called tangent, affine normal and affine binormal vectors respectively, and the planes sp {a’ (s),a” (s)},
sp{a’ (s),a"" (s)} and sp{a” (s),a’” (s)} are called osculating, rectifying and normal planes of the

curve « (s). Thus, the frame

T'(s) = N(s),
N'(s) = B(s), ()
B'(s) = —7a(s)T(s) —k(s)N(s)

is called equi-affine frame, where k(s) and 7.(s) are called equi-affine curvature and equi-affine torsion,

which are given as follow
ks = | o'(s) o”(s) ot (s) | (4)
(s) = —| a"(s) o"(s) o™ (s) | 5)
Let f(s), g (s) and & (s) be differentiable functions then we can write
a(s) = £ () T(s) + g(s) N(s) +h (s) B(s) (6)

and by differentiating equation (6) with respect to s and by using equations (3), we obtain

, , B (s)+ g(s)
0=1{f(s) =h(s)ka(s) =1} T(s)+{ f(s)+g (s)} N(s)+ B(s)
{ } { g'(s)} h()kals)

Therefore, for o’ (s) = N(s) and B(s) = o’ (s), we obtain the following theorem.

Theorem 2.1 Let a(s) be a unit speed curve in As, with equi-affine curvature k(s) and with equi-

affine torsion Ta(s), then a(s) has the position vector in (6) according to equi-affine frame for some
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differentiable functions f (s), g (s) and h(s) satisfy the equations

Assume that the position vector of a(s) always lies in the plane sp{N(s), B(s)}. Position vector

of the curve a(s) satisfies the equation
a(s) = g(s) N(s) + h(s) B(s) (7)

for some differentiable functions g (s) and h(s). Differentiating equation (7) with respect to s, we

obtain
0={~h(s)7a(s) =1} T (s) +1{g (s)—h(s)k(s)} N+ {h'(s)+g(s)} B(s)

It follows that

h(s)Ta(s) = -1,
9 (s)—h(s)k(s) = 0, (8)
b (s) + g (s) =0

and h (s) = #(13)7 g’ (s) = —h" (s). Therefore, from the second equation we get
R" (s)+h(s)k(s) =0 (9)

and also

(L)) LR g (10)

a(s)z( L )/N(s)—LB(s).

T ()

and we find

—

By considering o’ (s) = N(s) and o' (s) = B(s), we have the following theorem.

Theorem 2.2 Let «(s) be a unit speed curve in As , with nonzero equi-affine curvatures satisfying

(7w) =5

then, a(s) is a curve whose position vector according to equi-affine frame always lies in the sp{ N (s), B(s)}

if and only if a(s) is the solution of the differential equation of

In the case of k(s) = 0, from the first and the second equation of (8) g(s) = co, h(s) = #(13)
and from the third equation of (8), we get 7o (s) = ﬁ Thus, from (7), the position vector of « (s)
satisfies the following differential equation

(cos —c1)a’"(s) — coa’ (8) +a(s) = 0.
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In the case of k(s) nonzero constant, from the second and the third equation of (8)

Co ksin(\/Es) - kcos(\/Es)
c1 sin(\/Es) + co cos(\/Es)

> <
—~
vy »
= —
[

and from the first equation of (8)

~1
c1 sin(\/Es) + co cos(\/Es) '

Ta(s) =

From (7), the position vector of « (s) satisfies the following differential equation
<cz ksin(Vks) — c1Vk cos(x/Es)) o’ (s) + (cl sin(Vks) + ¢z cos(\/%s)) a"(s) = a(s)

It is clear that 7,(s) cannot be zero from the first equation of (8).
In the case of 7(s) nonzero constant, from the first and the third equation of (8) g(s) = 0,
h(s) = :—al and from the second equation of (8), we obtain k(s) = 0. From (7), the position vector of

a (s) satisfies the following differential equation

"' (s) + Tac (s) =0

\3/77'&(78 7\3/77'0”15 3/—
a(s) =ce 2 + coe 2 + cze VT Te?

In the case of 7o(s) and k(s) nonzero constants, from the first and the third equation of (8)
g(s) =0, h(s) = ;—al and from the second equation of (8), we obtain k(s) = 0. By using (7), the

position vector of « (s) satisfies the following differential equation

a”'(s) + Tac (s) =0

Y—7abs - ¥Y=7qas
a(s)=ce 2 + coe 2 + c3e

Y=ras

where a and b are scalars that can be complex in general. Hence, we know the following theorem.

Theorem 2.3 Let a(s) be a unit speed curve in As , with the equi-affine curvature k(s) and with the

intrinsic affine torsion To(s) whose position vector lies in sp{N(s), B(s)} then the followings are true,
(1) If k(s) = 0 and Ta(s) = C08;7011,%671 position vector of a(s) satisfies the equation
(cos —c1)a’’(s) — coa” (s) + a(s) = 0;
(2) If k(s) > 0 constant and To(s) = = then position vector of o (s) satisfies the equation

wa’(s) —w'a” (8) —a(s) =0,

where w = c1 sin(\/Es) + co cos(\/Es);
(3) There is no curve whose 7o(s) =0 in As;
(4) If Ta(s) < 0 constant then k(s) = 0 and position vector of o (s) is

a(s) = c1e”’ + caef?® + cze’?’.

3, 3
where p1 = ~ 27“ , p2 = % and p3 = /—7o. Here, a and b are scalars that can be complex in

general.
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We assume that the position vector of a(s) always lies in the plane sp{7'(s), B(s)}. Position vector

of the curve a(s) satisfies equation
a(s) = £ (5)T(s) + h () B(s) (1)

for some differentiable functions f(s) and h(s). Differentiating equation (11) with respect to s, we

obtain
0= {f’ ()T(s) = h(s)Tals) — 1} T+{f(s)—h(s)k(s)} N +h'(s)B(s).
It follows that

f'(s) =h(s)7als) = 1,
f(s)=h(s)k(s) = 0,
R (s)=0

and it is clear thath (s) = co and then,

' (s) —cota(s) = 1,
f(s) —cok(s) = 0,
K'(s) — 1a(s) = L

Therefore, we obtained
a(s) = cok1(s)T(s) + coB(s).

By considering o’ (s) = T'(s) and o (s) = B(s), we can give the following theorem.
Theorem 2.4 Let a(s) be a unit speed curve in As , with nonzero affine curvatures satisfying

F(s) = 7als) =

then, « is a curve whose position vector according to equi-affine frame always lies in the sp{T'(s), B(s)}
if and only if « is the solution of the differential equation of

cok(s)a’ (s) +coa (s) —a(s) = 0.

In the case of k(s) = 0, from the second and the third equation of (12)

h(s)=co, [(s)=0, Ta(s) #0
and from the first equation of (12) we get

—1
TQ(S) = E

Thus, from (11), the position vector of « (s) satisfies the following differential equation

coa” (s) —a(s) =0

—as b

S S
o (3) = 6162(‘:0)1/3 + 6262(C0)1/3 —+ C3e(co)1/3 .

In the case of k(s) nonzero constant, from the second and the third equation of (12) h(s) = co,

f(s) = cok and from the first equation of (12) 7a(s) = ;—01 From (11), the position vector of a (s)
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satisfies the following differential equation

coa” (8) 4 coka’ (s) —a(s) =0

{7(c0)1/3271/3a)\2+k{72)\(c0)2/3+c0k321/3b}}5

a(s) = cae 6(c0)2/32
—{7(c0)1/3271/3b/\2+k{2/\(c0)2/3+c0k321/3a}}5
+ese 6(c0)2/3x
{(c0)t/327 /32 e k221 /3 (c0)2/3kA}s
+cse 3(co)2/3x

where
A = (—2k3co + 3v/—12c0k3 + 81 4 27) /3

and a, b are scalars that can be complex in general.

In the case of 74(s) = 0, from the second and the third equation of (12) h(s) = co, f (s) = cok(s)
and from the first equation of (12), we obtain

1
k(s) = —s+ .
Co
From (11), the position vector of « (s) satisfies the following differential equation

coa”'(8) 4 cok(s)a’ (s) — a(s) = 0.

In the case of 74 (s) nonzero constant, from the second and the third equation of (12) h (s) = co,
f(s) = cok(s) and from the first equation of (11), we obtain k(s) = HE—ST“S + c1. From (12), the

position vector of « (s) satisfies the following differential equation

coa”'(8)co + k(s)a' (s) — a(s) = 0.

In the case of 7o(s) and k(s) nonzero constants, from the second and the third equation of (12)
h(s) = co, f(s) = cok and from the first equation of (12) we obtain 7o = % By using (11), the

position vector of « (s) satisfies the following differential equation
coa”'(s) 4 coka’ (s) — a(s) = 0.

Hence, we obtain the following theorem.

Theorem 2.5 Let a(s) be a unit speed curve in As , with the equi-affine curvature k(s) and with the

intrinsic affine torsion T (s) whose position vector lies in sp{N(s), B(s)} then, the followings are true.
(1) If k(s) = 0 and Ta(s) = ;—01 then position vector of a (s) satisfies the equation
a(s) = c1e”® 4 c2e%?° + c3e”3°

where 61 = 7. 2 = ks ond 0 =

(2) If Ta(s) and k(s) are nonzero constants then position vector of « (s) satisfies the equation

a(s) = c1e®t’ + c2e??’ + cze®?®
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where
{=(co) 227 /%an? 4k { =20 (c0)/* + cok?2"/ 0} |
Y1 = 6(co)2/3X
- {—(co)1/32’1/3b)\2 Tk {2)\((30)2/3 n c0k321/3a}}
P2 = 6(co)2/3X
{(00)1/3271/3)\2 T ocok?2'/3 — (00)2/3k)\}
®3 = 3(00)2/3)\ )
A = (=2k3co + 3v/ —12cok3 + 81 4 27) /3
and c1,c2,c3 € ITR? such that ‘ c1 C2 c3 ‘ =1 and a, b are scalars that can be complex in general;

(3) If Ta(s) = 0, and k(s) = %5 + c1 or Ta(s) nonzero constant and k(s) = Hz—gms + c1 then

position vector of a (s) satisfies the equation

coa”’ (8)co + k(s)a’ (s) — a(s) = 0.

Now, assume that the position vector of a(s) always lies in the plane sp{T'(s), N(s)}. Position

vector of the curve « satisfies equation
a(s)=f(s)T(s)+ g(s)N(s) (13)

for some differentiable functions f (s) and g (s). Differentiating equation (13) with respect to s, we

obtain
0={f"(s) =1} T(s)+{ g () + [ ()} N(s) + g(s) B(s).
It follows that

1
g (s)+f(s) =0, (14)
0

There is no f (s) and g (s) satisfying equations (14). Thus, we get the following theorem.

Theorem 2.6 There is no curve in Az whose position vector always lies in the sp{T(s), N(s)} according

to equi-affine frame.

§3. Position Vectors of the Curves in Affine 3-Space According to Winternitz Frame

Let a (s) be regular C°—curve with affine arclenght parameter s. A. Winternitz in [5] defined a new

equi-affine frame by taking
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which are called the first and the secod affine curvatures (also we called them the first and the second
Winternitz affine curvatures). Here, k(s) and 74(s) are called equi-affine curvature and equi-affine
torsion given in (4) and (5). Winternitz frame (also called equi-affine frame for C®—curves) is defined

with the equations

T'(s) = N(s)
N'(s) = ki(s)T(s)+ B(s) (15)
B'(s) = ka(s)T(s) + 3ki(s)N(s).

Let f(s), g(s) and h (s) be differentiable functions, then we can write
a(s) = f(s)T(s)+ g(s) N(s) +h(s) B(s). (16)

Differentiating equation (16) with respect to s and by using equations (15), we obtain

N O RN OLIC I S B AORY IO

N(s h (s )\ B(s
+h(s)ka(s) — 1 +3h (s) k1 (s) )+ (R (s) +9 ()} B6)

Therefore, for o’ (s) = N(s) and B(s) = o' (s) + k(:) o’ (s), we get the following theorem.

Theorem 3.1 Let o (s) be a unit speed curve in As, with Winternitz curvatures ki(s) and kz(s), then
a (s) has the position vector in (17) according to Winternitz frame for some differentiable functions

f(s), g(s) and h(s) satisfies the equations

F ()4 g(8)ki(s) +h(s)ka(s) = 1
g’ () + f(s) +3h(s) ki(s) - 0
R (s) + g (s) - 0.

Assume that the position vector of a(s) always lies in the plane sp{N(s), B(s)}. Position vector

of the curve a(s) satisfies the equation
a(s) = g(s) N(s) + h(s) B(s) (17)

for some differentiable functions g (s) and h(s). Differentiating equation (17) with respect to s, we

obtain
0= {g(s)ki(s) +R(s)ka(s) =1} T(s) + {g' (s) + 3 (s) k1 (s)} N(s) + {h' () + g(s)} B(s).

Thus, we have the following equations

() ki(s) +h(s)kals) = 1
g’ (s) + 3h(s) ki(s) = 0 (18)
W () + 9(s) _

From the first and the third equation of (18)

B (s)ki(s) —h(s)ka(s) +1=0
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then solution is p
s

h = - —+ , 19

©=v{-[2sral (19)

ko(s) s )
I F®% and from the second equation for ¢’ (s) = —h" (s) we get

where p = e
h" (s) — 3h (s) ki(s) = 0. (20)
Then by using (19), (20) it turns to
_ds — ¢ 1(s) — (ka(s))* _ [R2(s) / __ka(s) Ki(s) =
w{./ ki (s) }{3k ©) o) {kl(s)} } o) T = @Y

and we find

o(s) = {“0//@%8(3) —cop + ﬁ@)}N(S) “P{/w%s(s) —CO}B(S).

By considering o’ (s) = N(s) and B(s) = o’ (s) + %S)o/ (s), we get the following theorem.

Theorem 3.2 Let a(s) be a unit speed curve in As , with nonzero Winternitz curvatures satisfing
(21), then a(s) is a curve whose position vector according to Winternitz affine frame always lies in
sp{N(s), B(s)} if and only if a(s) is the solution of the differential equation of

o it oy o () {¢ [ ity —eod gt e () |
—o{ [ s — o ka()al () + a(s)

In the case of ki(s) = 0, from (18), we obtain g (s) = co, h(s) = —cos + c1 and ka(s) = L

—cos+ep”
From (17), position vector of « (s) satisfies

(cos —c1)a” (8) — coa’ (8) + a(s) = 0.
In the case of k1(s) # 0 constant, from the second and the third equation of (18), we get
R (s) — 3kih(s) =0

and the solution is
h(s) = ci1e®™ 3k 4 e VERL

Also, from the first equation, we get the second curvature is

. 1+ c1vV3k1e® 3k _ coV/3k1e”® 3k1

k2(8) (Cles\/m_"_@e,s\/%)

and so g (s) is
g(s)= \/%{rrszs‘/m - CleS\/m} .

From (17), position vector of « (s) satisfies

<Cles\/3k1 + 02673‘/3k1> Oél” (S) + \/m {02678\/3161 _ Cles\/m} Oé” (8)

=0.
—k1 <cleSV3k1 + czefs”kl) o' (s) —a(s)
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In the case of k2(s) = 0, from the first and the third equation of (18), we obtain g (s) = ﬁ(s)?

his)y=—/ #(SS) + ¢o and from the second equation of (18), we obtain the relation of the curvatures
EY(s)k1(s) — 3k1(s) + 3ki1(s)® = 0.

Thus, from (17), position vector of « (s) satisfies

(_ 5+ ) o (5) + e (5) - (— |55+ ) Ki()a (5) = a(s) = 0.

In the case of k2(s) nonzero constant, from the first and the third equation of (18), we obtain

© ds r_ds
h(s) = {kiz + coe? ! } g(s) = —]:f—(k;)e’c” o)

and from the second equation of (18), we obtain the relation between the curvatures as follows

{3]€1(5)3 _ (k2)2 } Coesz % n 3k1(8) —0.

kl (5)2 kz

From (17), position vector of a (s) satisfies

ko ds k ko ds
(& +eoc? B} o () - szt w7 (5)

& =0.
B {% + coekQ I % } k1 (s)a/ (S) — (3)

In the case of k1(s) and k2(s) nonzero constants, from the first and the third equation of (18), we
get

1 kag k
h(s) = P +coeF17, g(s) = —cok—lekl

and also from the second equation of (18), we get the relation between the curvatures as follows
k
{3(k1)? = (k2)?} cokae™ ° + 3(k1)* = 0.

From (17), position vector of « (s) satisfies
k k k
L + coeﬁs a” (s) — coﬁeﬁsa" (s) — L + coeﬁs kid' (s) —a(s) = 0.
ko k1 ko

Therefore, we get the following theorem.

Theorem 3.3 Let a(s) be a unit speed curve in As , with the Winternitz curvatures ki(s) and ka(s),

whose position vector lies in sp{N(s), B(s)} then, the followings are true.

(1) If k1(s) = 0 and ka(s) = then position vector of «(s) satisfies the equation

1

—cps+cy
(cos —c1) " (5) — cod” (8) + a(s) = 0;

(2) If k1(s) > 0 is constant and kz(s) = H—f then position vector of «(s) satisfies the equation

~I Il

gua (s) = Fa’" (s) — kaga’ (s) —ar(s) = 0

where @ = c1e®Y 3k1 4 eV Skl;
(3) If k2(s) = 0 and k1(s) satisfy kY (s)k1(s) — 3ki(s) + 3k1(s)® = 0 then position vector of «(s)
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satisfies the equation

where ¢ = — [ —kf(ss) + co;

(4) If k2(s) is nonzero constant, ki(s) and k2 satisfy

{3]€1(s)3 _ (k2)2 } Coe’” I ﬁ n 3k1(8) -0

kl (5)2 kz

then, the position vector of o (s) satisfies the equation

(i eoo o ()= 2 )~ {1+ oo p o) ()~ () =0

k2f d_SS
where ¢ = e k1(s)

(5) If k1(s), ka2(s) monzero constants and satisfy the equation
k
{3(k1)? = (k2)?} cokae™ * +3(k1)* = 0

then, the position vector of a (s) satisfies the equation

L +cov | & (5) — co@va” (s) — 1 +cov | k1d’ (s) —a(s) =0
kg kl k2

ka g
where v = eF1 ",

We assume that the position vector of a(s) always lies in the plane sp{7'(s), B(s)}. Position vector

of the curve a(s) satisfies equation
a(s) = £ (5)T(s) + h () B(s) (22)

for some differentiable functions f(s) and h(s). Differentiating equation (22) with respect to s, we

obtain
0= {f’ (s) + h(s) ka(s) — 1} T(s) +{f(s) +3h(s)ki(s)} N(s) + h' (s) B(s),
it follows that
£ (5) + (s ka(s) = 1
f(s)+3h(s)ki(s) =0 (23)
K(s)=0
for h (s) = co. From the first and second equations of (23), we get
ka(s) — 3K) (s) = %
and
f(s) = =3coki(s).
Therefore, we obtained
a(s) = —3cok1(s)T(s) + coB(s).

By considering o’ (s) = T'(s) and B(s) = o’ (s) + #a' (s), we get the following theorem.
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Theorem 3.4 Let a(s) be a unit speed curve in As with nonzero Winternitz curvatures satisfing
ka(s) — 3Kki(s) = %, then, a(s) is a curve whose position vector according to Winternitz affine frame

always lies in sp{T(s), B(s)} if and only if a (s) is the solution of the differential equation of

coa”" (8) — 4deoki(s)a’ (s) —a(s) =0

In the case of k1(s) = 0, from (23), we find h (s) = co, f(s) =0 and k2(s) # 0. From (22), we get
cod”’ (s) —a(s) =0

and the solution is

—as

bs s
a(g) = cre2()t/® 4 0262(00)1/3 + 036(60)1/3 .

In the case of k1(s) nonzero constant, from the second and the third equation of (23), we obtained

h(s) = co, f(s) = —3cok:1 and also ka(s) = % From (22), we get « (s) satisfies the equation
coa”’ (8) — dcokia’ (s) — a(s) = 0.

In the case of k2(s) = 0 constant, from the first and the third equation of (23) f (s) = s + 1,
h (s) = co and from the second equation of (23), we obtain ki (s) = %ccol From (22), we get that « (s)
satisfies the equation
3coa’”’ (8) + 4(s +c1)a’ (s) — 3a (s) = 0.

In the case of k2(s) nonzero constant, from the first and the third equation of (23) h(s) = co,
f(s) = (1 — cok2)s + c1 and from the second equation of (23), we obtain ki(s) = % From
(22), we get that « (s) satisfies the equation

3coa” (8) + 4 ((1 — cok2)s +c1) o’ (s) — 3a (s) = 0.

In the case of ki(s) and k2(s) nonzero constants, from the first and the third equation of (23)
h(s) = co, f(s) = —3cok1 and also from the second equation of (23), we obtain k2 = ;—01 From (22),
we get

coa” (8) — deokia’ (s) —a(s) =0

and the solution is

{4k1(c0)2/3b121/37w2}5 —{4k1(c0)2/3121/3a—4p2b}5
a(s) = cae 2¢ + c2e 2¢
121/3 L4k (c)?/3121/3 442} 5
+cze 6e(co)!/3 ,

1/3
where ¢ = {9 + 1/ —T768(co)2(k1)3 + 81} . Hence, we can give the following theorem.

Theorem 3.5 Let a(s) be a unit speed curve in As with the Winternitz curvatures ki(s) and ka(s),

whose position vector lies in sp{N(s), B(s)}, then, the followings are true.
(1) If k1(s) = O then position vector of c(s) is
a(s) =c1e™® + ce™* + cze”’

_ - . —b _ 1
for some ka(s), where ri = W7 2 = 5e=i7s and r3 = ToiTE
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(2) If k1(s) and k2(s) are nonzero constants then, position vector of a (s) is
a(s) = c1e¥1® & cpe¥? o+ 63ew35,

where

{4k1 (00)2/36121/3 — ach}

= =
— {4k1 (00)2/3121/3a — gozb}
Yo = —
121/3 {4k1(60)2/3121/3 n <p2}
s = 6p(ca)1 7

o= {9 + /—=768(co)2 (k1)? + 81}1/3

and a, b are scalars that can be complex in general;

(3) If k2(s) = 0 and ki(s) = %6601 then, position vector of c(s) satisfies the equation

"

3coa’” (8) +4(s +c1)a’ (s) — 3a(s) = 0;

(4) If ka(s) is nonzero constant and k1(s) = (C°k27,10)sfcl then, position vector of a (s) satisfies

3c
the equation

3coa’” (8) + 4 ((1 — cok2)s +c1)a’ (s) — 3a(s) = 0.

Now, assume that the position vector of a(s) always lies in the plane sp{T'(s), N(s)}. Position

vector of the curve «(s) satisfies equations

a(s)=f(s)T(s)+ g(s)N(s) (24)

and
0={f"(s)+ g(s)kr(s) =1} T(s) + { g’ () + f (s)} N(s) + g (s) B(s)

for some differentiable functions f(s) and g (s). Differentiating equation (24) with respect to s, we

obtain
fr )+ gls)ka(s) = 1
g'(s)+ f(s) =0 (25)
g (s) = 0.

There is no f (s) and g (s) satisfying equations (25). Thus, we get the following theorem.

Theorem 3.6 There is no curve in As whose position vector always lies in sp{T(s), N(s)} according

to Winternitz affine frame.

84. Position Vectors of the Curves in Affine 3-Space According to Intrinsic

Equi-Affine Frame

In [2], D. Davis obtained a new affine frame by taking T'(s) := o/(s), N(s) := a”'(s), B(s) := k(s)a/(s)+

a"’(s) (which is called intrinsic affine binormal) and 7o (s) := k(s) — 74(s) (which is called intrinsic
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affine torsion) with the equations

T'(s) = N(s)
N'(s) = —k(s)T(s) + B(s) (26)
B'(s) = —7a(s)T(s).

We called {T'(s), N(s), B(s)} is intrinsic affine frame. Here, k(s) and 7.(s) are called equi-affine cur-

vature and equi-affine torsion given in (4) and (5).

Let f(s), g(s) and h (s) be differentiable functions then, we can write
a(s) = f(s)T(s)+ g(s) N(s) +h(s) B(s). (27)
Differentiating equation (27) with respect to s and by using equations (26), we obtain

W (s)+ g(s)
—h(s)k(s)

0={f"(s) =h(s)Tal(s) =1} T(s) +{ f(5) + 9" (s)} N(s) + B(s).

For o (s) = N(s) and B(s) = k(s)a’(s) + o’ (s), we can give the following theorem.
Theorem 4.1 Let a(s) be a unit speed curve in As with equi-affine curvature k(s) and with intrinsic

torsion Ta(s), then, a(s) has the position vector in (27) according to intrinsic equi-affine frame for

some differentiable functions f (s), g (s) and h(s) satisfy the equations

I (8) = h(s) Tals) = 1,
f(s)+4 (s) = 0,
W(s)+ g(s)—h(s)k(s) = 0

Assume that the position vector of a (s) always lies in the plane sp{N(s), B(s)} then, position

vector of the curve « (s) satisfies the equation
a(s) = g(s) N(s) + h(s) B(s) (28)

for some differentiable functions ¢ (s) and h(s). Differentiating equation (28) with respect to s, we

obtain
0= {~h(s)Tals) = g(s)k(s) =1} T(s) + g’ (s) N(s) + {I' (s) + g (s)} B(s).
It follows that

h(s)Ta(s)+g(s)k(s) = -1,
g9’ (s) = 0, (29)
W (s)+g(s) = 0.

and we get g (s) = co and h (s) = —cos + c¢1. From the second, the third and the first equation of (29),
we obtain
(—cos + c1) Tal(s) + cok(s) = —1.

In this case, we can write
a(s) = coN(s)+ (—cos + c1) B(s).

By considering o’ (s) = N(s) and B(s) = k(s)a’(s) + a’”’(s) we can give the following theorem.
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Theorem 4.2 Let a(s) be a unit speed curve in As with nonzero equi-affine curvature k(s) and with

intrinsic torsion Ta(s) satisfying
(cos — c1) Tal(s) — cok(s) =1,

then, a(s) is a curve whose position vector according to intrinsic equi-affine frame always lies in
sp{N(s), B(s)} if and only if a (s) is the solution of the equation

(—cos+c1)a’(s) + coa” (8) + (—cos + c1) k(s)a'(s) — a(s) =0.

In the case of k(s) = 0, from the first and the second equation of (29), we obtained g (s) = co,
h(s) = #(18) and 7, (s) # 0. From the third equation of (29), we get To(s) = —~—. Thus, from (28),

cps—cy

the position vector of « (s) satisfies the following differential equation
o' (5) — coTa(s)a” (8) + Tu(s)a (s) = 0.

In the case of k(s) nonzero constant, from the second and the third equation of (29), we obtained
g (s) = co, h(s) = —cos + c1. From the first equation of (29), we get Ta(s) = % From (28), the
position vector of « (s) satisfies the following differential equation

(—cos +c1)a’”'(s) + coa” (s) + (—cos + c1) ka'(s) — a(s) = 0.

In the case of To(s) = 0, from the second and the third equation of (29), we obtained g (s) = co,
h(s) = —cos + c1. From the first equation of (29), we obtained k(s) = c;ol From (28), the position

vector of « (s) satisfies the following differential equation
(—cos +c1) &' (s) 4 coa” (8) + (—cos + c1) k(s)a’(s) — a(s) = 0.

In the case of To(s) nonzero constant, from the second and the third equation of (29) g (s) = co,
h(s) = —cos + ¢1 and from the first equation of (29), we obtain k(s) = {02=27a=1 From (28), the

[h)
position vector of « (s) satisfies the following differential equation

(—cos + c1) &' (s) 4+ coa” (8) + (—cos + c1) k(s)a/(s) — a(s) = 0.

In the case of 7o(s) and k(s) nonzero constants, from the second and the third equation of (29),

l+cok

we obtained g (s) = co, h (s) = —cos+c1 and from the first equation of (29), we obtained 7o = 2%

By using (28), the position vector of « (s) satisfies the following differential equation,
(—cos 4 c1)a”'(s) 4+ coa” (8) + (—cos + c1) k' (s) — a(s) = 0.

Hence, we get the following theorem.

Theorem 4.3 Let o (s) be a unit speed curve in As with the equi-affine curvature k(s) and with the

intrinsic affine torsion T (s) whose position vector lies in sp{N(s), B(s)} then, the followings are true.

(1) If k(s) = 0 then position vector of a(s) satisfies the equation

o' (s) — coTu(s)a” (8) + Tu(s)a(s) =0
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for some Ta(s);

(2) If Ta(s) = 0 and k(s) = c;ol or Ta(s) is nonzero constant and

(cos —c1)Ta — 1

k(s) =

Co

then, position vector of a (s) satisfies the equation

(—cos +c1) ' (s) + coa” (8) + (—cos + c1) k(s)a/(5) — a(s) = 0;

14+cok

= or Ta(s) and k(s) are nonzero constants then,
cos—cq

(3) If k(s) is nonzero constant and To(s) =

position vector of a (s) satisfies the equation

(—cos + c1) &' (s) + coa” (8) + (—cos + c1) k' (s) — a(s) = 0.

We assume that the position vector of a always lies in the plane sp{T'(s), B(s)}. Position vector

of the curve « satisfies equation
a(s)=f(s)T(s)+h(s)B(s) (30)

for some differentiable functions f (s) and h (s). Differentiating equation (30), with respect to s, we
obtain
0={f"(s) = h(s)7al(s) =1} T(s) + f (s) N(s) + I (s) B(s).

It follows that

f(s)=h(s)7als) = 1,
f(s) = 0 (31)
R (s) =0

and we get h (s) = co and 74(s) = ;—01 Thus, we can write
a(s) = coB(s).

If 7o (s) = 0 then, there is no function f (s) that satisfies the first and the second equation of (31).

By considering o’ (s) = T'(s) and B(s) = k(s)a’ + ", we can give the following theorem.

Theorem 4.4 Let a(s) be a unit speed curve in As with nonzero intrinsic affine torsion, then, o (s)
is a curve whose position vector according to intrinsic equi-affine frame always lies in sp{T(s), B(s)}

if and only if a (s) is the solution of the equation
coa” (8) + cok(s)a’ (s) —a(s) =0
for some k(s).

Now, assume that the position vector of a (s) always lies in the plane sp{T'(s), N(s)}. The position

vector of the curve « (s) satisfies equation
a(s)=f(s)T(s)+ g(s) N(s) (32)

for some differentiable functions f(s) and g (s). Differentiating equation (32) with respect to s, we
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obtain
0={f (5)T(s) =g (s)ka(s) =1} T(s) + { g' (s) + [ (s)} N(s) + g (s) B(s).

It follows that
f()T(s) = g(s)kals) =
g'(s)+ £ (s) =
g(s) =

o o =
—
w
w
=

There is no f (s) and g (s) satisfying equations (33). Thus, we get the following theorem.

Theorem 4.5 There is no curve in Az whose position vector always lies in the sp{T(s), N(s)} according

to intrinsic equi-affine frame.
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§1. Introduction

A function f: I CR — R is said to be convex if the inequality

[+ (1 —ty) <tf(x)+ 1 -1)f(y)

is valid for all z,y € I and ¢t € [0, 1]. If this inequality reverses, then the function f is said to be concave
on interval I # (.

This definition is well known in the literature. It is well known that theory of convex sets and
convex functions play an important role in mathematics and the other pure and applied sciences. In
recent years, the concept of convexity has been extended and generalized in various directions using

novel and innovative techniques.

Theorem 1.1 Let f: I CR — R be a conver function defined on the interval I of real numbers and

a,b € I with a <b. The following inequality

f(aer>S 1 a/bf(x)deM, (1.1)

2 b—a 2

holds. This double inequality is known in the literature as Hermite-Hadamard integral inequality for

convex functions.

The classical Hermite-Hadamard integral inequality provides estimates of the mean value of a
continuous convex or concave function. See [2-4, 7, 9], for the results of the generalization, improvement

and extension of the famous integral inequality (1.1).

1Received January 15, 2019, Accepted May 27, 2019.
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The following inequality is well known in the literature as Simpson’s inequality:

Let f : [a,b] — R be a four times continuously differentiable mapping on (a,b) and Hf(‘l)H

sup ‘f(4) (:c)‘ < 00. Then the following inequality holds:

z€(a,b)
{f(a);f(b) +2f(a§b)} b—a/f = 2880 waH (b~ a).

In recent years many researchers have studied error estimations for Simpson’s inequality; for

1
3

refinements, counterparts, generalizations and new Simpson’s type inequalities, see [1,10-12].

In this paper, in order to provide a unified approach to midpoint inequality, trapezoid inequality
and Simpson’s inequality for functions whose derivatives in absolute value at certain power are multi-
plicatively P-functions, we derive a general integral identity for differentiable functions. Finally some

applications for special means of real numbers are provided.

Definition 1.2 Let I # 0 be an interval in R. The function f : I — [0,00) is said to be multiplicatively
P-function (or log-P-function), if the inequality

fte+ (1 —t)y) < f(z)f(y)
holds for all x,y € I and t € [0,1].

In [8], some inequalities of Hermite-Hadamard type for differentiable multiplicatively P-functions

were presented as follows.

Theorem 1.3 Let the function f: I — [1,00),be a multiplicatively P-function and a,b € I with a < b.
If f € Lla,b], then the following inequalities hold:

b
0 1(45) <55 [ F@f @b -0 do < @O
@) 1 (452) < @102 [ 1@ < @

In [5], i§can obtained inequalities for differentiable convex functions using following lemma.

Lemma 1.4 Let f: I CR — R be a differentiable mapping on I° such that f' € Lla,b], where a,b € I
with a < b and a, A € [0,1]. Then the following equality holds:

Maf(@) + (L—a) f(B) + (1 N) f(aa + (1 — a)b b_a/f (1.2)
(b—a) / t—a)) f (tb+ (1 —t)a )dt+/(t—1+A(1—a))f’(tb+(1—t)a)dt
0 150

§2. Main Results

In this section, in order to prove our main theorems, we shall use the identity (1.4).
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Theorem 2.1 Let f : I C R — R be a differentiable mapping on I° such that f' € Lla,b], where
a,b € I° with a < b and a, X € [0,1]. If |f'|? is multiplicatively P-function on [a,b], ¢ > 1, then the
following inequality holds:

b
Maf(@) + (1= ) f0) + (1= X) flaa+ (L= a)t) - 72— [ fla)do (2.1)

O=a)|[f (@] Oz +ve], ad<l-a<1-A(l-aq)

<9 @=a)|f (@f®)lhz4+v] ax<l-A1-a)<1l-a
(b—a)|f (@]f ®))[n+wv] T-a<ard<l-X(1-a)
where
v = (1-0a) {a)\—(l—a)},’yzz(a)\)z—%, (2.2)
v = #—a[l—)\(l—a)], (2.3)
ve = w—(xﬂ)u_a)u_m_a)],

Proof Suppose that ¢ > 1. From Lemma 1.4, the well known power mean inequality and property

of multiplicatively P-function of |f’|? on [a,b], that is
| (o + (1 =t)a)|" <[ ®)]"|f (@], tel0,1],

we have

Maf(@) + (1) FB) + (1 X) flaa+ (L -a)b) = 71— [ fla)do

<(b—a)[/ [t — Al [f (tb+ (1 —t)a)| dt + / |t—1+,\(1—a)||f’(tb+(1—t)a)|dt}

0 11—

<(b-a) (/ |t—a)\|dt> (/ It—aAl\f’(tb+(1—t)a)!th)

0 0

+ (/ |t—1—|—)\(1—a)|dt) (/ |t—1+A(1—a)|\f’(tb+(1—t)a)\th)

—x

Q=

1—a 1
< (b=a)|f'(@)]|f (b)] { / [t — a)|dt + / [t—1+X(1- a)|dt} . (2.4)
0 12a
Hence, by simple computation
1—a
/|t—ax|dt—{”2’ eAsl-a (2.5)
) Y1, aA>1—«
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1

v, 1-A(l—-a)<1l—-«
/|t—1+)\(1—a)|dt: ! (1-a)< 7 (2.6)
2 v, 1=-A(l—-a)>1—-a

2
v = #—Oz[l—)\(l—a)]7
2
vy = #—(A—l—l)(l—a)[l—)\(l—a»
11—« -«
/ [t —al|f (tb+ (1—t)a)|"dt < / [t — Xl [f ()| | (a)|" dt
0 0
11—«
= FOL 1@ [ - o
0
@B, ax<1-—
_ [wr@rsor. asi-a .
NI @I IO, ad>1-a
1
/ [t—1+X(1—a)||f (tb+ (1 —t)a)|"dt
1
< / [t—=1+X1—=a)||f®)]"|f (a)dt
l;a
1
— O I @ [ le-1aa- ol
[ wlrorirer. 1-aa-a<i-a 08)
v 'O [f @, 1-A1-a)21-a
Thus, using (2.5)-(2.8) in (2.4), we obtain the inequality (2.1). This completes the proof. O
Corollary 2.2 Let the assumptions of Theorem 2.1 hold. Then for a = % and A = %7 from the
inequality (2.1) we get the following Simpson type inequality
1 a+b 5
g{f(a)+4f< 5 )+f } dx 3—b—ayf a)| | £ (b)]- (2.9)

Corollary 2.3 Let the assumptions of Theorem 2.1 hold. Then for a = % and X = 0, from the
inequality (2.1) we get the following midpoint inequality

Com

Remark 2.4 We note that the result obtained in Corollary 2.3 coincides with the result in [8].

x)dx < — y’(a)Hf’(b)y (2.10)
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Corollary 2.5 Let the assumptions of Theorem 2.1 hold. Then for a« = L and X\ = 1, from the
inequality (2.1) we get the following trapezoid inequality

b

HAPI0 L [ pwys| < 2227 @] 17 0)

a

Remark 2.6 We note that the result obtained in Corollary 2.5 coincides with the result in [8].

Using Lemma 1.4 we shall give another result for multiplicatively P-functions as follows.

Theorem 2.7 Let f : I C R — R be a differentiable mapping on I° such that f' € L[a,b], where
a,b € I° with a < b and a, X € [0,1]. If |f'|? is multiplicatively P-function on [a,b], ¢ > 1, then the
following inequality holds:

b
Maf(@) + (1) F0) + (1= X) flaa+ (- a)t) = ;1 [ fla)de (2.11)
\ (1—a)y 07 +a%07, ar<l—a<1-A(1—-a)
s(b—a)lf'(a)llf’(b)|<ﬁ>p (1—a) 07 +a%07, ad<1-A(1—a)<l—a
(l—a)%9§+a%9§, l-a<ar<1l1-A(1-a)
where
0 =N+ 1 —a—a)T, =1 -)T Fa—A(1 - ) (2.12)
O3 = (@A) —(1—a—aP™,  O=PD1-a) —[a—A(1— )t '
and%—k%:l.

Proof From Lemma 1.4 and by Holder’s integral inequality, we have

b
Maf(@) + (1= a) fO) + (1= X) flaa+ (1= a)8) - 71— [ fla)do

<(b—a) /|t—a,\||f’(tb+(1—t)a)|dt+ / [t—=1+ X1 —a)||f (tb+ (1—t)a)|dt
) .

11—«
1 1
11—« P 11—« q
<(b—a) /|t—a,\|Pdt /\f’(tb+(1—t)a)yth
0 0

q

1 P 1
+ /|t—1+)\(1—a)|pdt /‘f’(tb—t—(l—t)a)‘th

1
o P

<b—a)|f' @7 )| |- /|t—awdt
0
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P

tau / lt—1+A(1—a)dt (2.13)
—x
By simple computation
1/a L
[t —aX|Pdt = AN o - (2.14)
(aX)PT —(aX—14a)P
) , ad>1—«
and
D)t e 2a—a)?T gy < - A (1 - @)
t—1+A(1—o)dt= P ’ - 2.1
/ | A= o)l LY CETE) ) e YT B S IR Y (1-w (249)
p+1 ’ =
Thus, using (2.15) in (2.13), we obtain the inequality (2.11). This completes the proof. O
Corollary 2.8 Let the assumptions of Theorem 2.7 hold. Then for a = % and X = %, from the

inequality (2.11) we get the following Simpson type inequality

é{f(a)wf(“;b) e }

Corollary 2.9 Let the assumptions of Theorem 2.7 hold. Then for a = %

inequality (2.11) we get the following midpoint inequality

(3

b—a 1420t 1\ |,
(up+n)’f“

bga(giq)%u%mufw>

)] (2.16)

and A = 0, from the

Remark 2.10 Notice that the result obtained in Corollary 2.9 coincides with the result in [8].

Corollary 2.11 Let the assumptions of Theorem 2.7 hold. Then for a = %
inequality (2.11) we get the following trapezoid inequality

b 1
a b b—a P 4
@0 L [ < b (;$T>\fwﬂﬁw)

and A = 1, from the

Remark 2.12 Notice that the result obtained in Corollary 2.11 coincides with the result in [8].

§3. Some Applications for Special Means

Let us recall the following special means of the two nonnegative numbers a and b with « € [0,1] :

(1) The weighted arithmetic mean

Ao = Ao (a,b) ;= aa+ (1 — a)b, a,b>0.
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(2) The unweighted arithmetic mean

a+b

A= A(a,b) = 2

, a,b>0.
(3) The weighted geometric mean
Ga = Ga(a,b) := a®b' ™, a,b>0.
(4) The unweighted geometric mean
G = G(a,b) := Vab, a,b> 0.

(5) The Logarithmic mean

L=L(ab)=—2=9

.:m7 a;éb, a,b>0.

(6) Then n-Logarithmic mean

bn+1 _ an+1

Lo=Loah) = (s

)n , n€Z\{-1,0}, a,b>0, a#b.

Proposition 3.1 Let a,b € R with0 <a <b and n € Z* U{0}. Then, for a, A € [0,1] and ¢ > 1, we
have the following inequality:
Mo (@™, 0") + (1= \) A" — L7
(b—a)n?(ab)" 'z +v2] arx<l—a<l-A(1-a)
<9 (b—a)n®(@h)" '[p+ur] arx<l-A(l-a)<l-a ,
(b—a)n? (@) '[y14+wv] 1l—a<ar<1l-A(1-a)

where y1, y2, v1, v2, numbers are defined as in (2.2) — (2.3).

Proof This assertion immediately follows from Theorem 2.1 in the case of f(z) = 2™, = €
[1,00), n € ZT U{0}. O

Proposition 3.2 Let a,b € R with 0 < a <b and n € Z* U{0}. Then, for a, A € [0,1] and ¢ > 1, we
have the following inequality:

M (@™ 57) + (1 = \) A — L7 < (b— a) n?G2"2 (L);
«@ b « n — p+1
.1 11
1-a)d6f +a10s|, ard<l-a<1l-A(1-a)
. L !
X 1-a)a0f +adb)|, ad<l-A(l-a)<1l-a ,
.1 11
1-a)d6; +ad0s|, 1—a<ar<1l-A(1-a)
where 01, 02,03, 04 numbers are defined as in (2.12).
Proof This assertion immediately follows from Theorem 2.7 in the case of f(z) = 2", = €

[1,0), n€eZT U{0}. O
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Proposition 3.3 Let a,b € R with 0 < a <b. Then, for a,\ € [0,1] and g > 1, we have the following

inequality:
‘AA (Aa (e“7eb) ,Ga (ea7eb>) —L (€a7€b)‘
(b—a)e* [y2+12] ad<l—a<1l-A(l—a)
<9 b—a)ea+vi] adx<l-A1-a)<l-a ,
b—a)e* A [y +v2] 1l—a<ar<1l—-A(l—a)

where y1, y2, v1, v2, numbers are defined as in (2.2) — (2.3).

Proof The assertion follows from Theorem 2.1 in the case of f(z) = €%, x € [0,00). O

Proposition 3.4 Let a,b € R with 0 < a < b. Then, for a,\ € [0,1] and g > 1, we have the following

inequality: )
‘AA (Aa (e“7eb) .Gy (ea7eb)) - L (€a7€b)‘ < (b—a) e24 (1%) v

ad<l—-a<1-X(1-a)

—
=
|
Q
=
Qe
D
+
Q
N
>

X
—~

ard<l-A(l-ao)<l-a ,

=
Qe
>

R ) T
Q
Q=
>

Vg B Ny

— —
| |

Q Q
+

Q

Q=

>

—

N
Q=
>

l-a<ar<1-A(1-aq)
where 01,602, 03,04 numbers are defined as in (2.12).

Proof The assertion follows from Theorem 2.7 in the case of f(z) = e®, x € [0,00). O
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§1.

Throughout this paper, by a graph we mean a finite, undirected and simple graph. Let G(V, E) be a

graph with p vertices and ¢ edges. For notations and terminology, we follow [4]. For a detailed survey
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Abstract: In a study of traffic, the labeling problems in graph theory can be used by
considering the crowd at every junction as the weights of a vertex and expected average
traffic in each street as the weight of the corresponding edge. If we assume the expected
traffic at each street as the arithmetic mean of the weight of the end vertices, that causes
mean labeling of the graph. When we consider a geometric mean instead of arithmetic mean
in a large population of a city, the rate of growth of traffic in each street will be more
accurate. The geometric mean labeling of graphs have been defined in which the edge labels
may be assigned by either flooring function or ceiling function. In this, the readers will
get some confusion in finding the edge labels which edge is assigned by flooring function
and which edge is assigned by ceiling function. To avoid this confusion, we establish the
C-Geometric mean labeling on graphs by considering the edge labels obtained only from the
ceiling function. A C-Geometric mean labeling of a graph G with q edges, is an injective
function from the vertex set of G to {1,2,3,---,¢ + 1} such that the edge labels obtained
from the ceiling function of geometric mean of the vertex labels of the end vertices of each
edge, are all distinct and the set of edge labels is {2,3,4,--- ,¢+1}. A graph is said to be a
C-Geometric mean graph if it admits a C-Geometric mean labeling. In this paper, we study
the C-geometric meanness of some cycle related graphs such as cycle, union of a path and a
cycle, union of two cycles, the graph Cs x P,, corona of cycle, the graphs Py s, P? and some

chain graphs.

Key Words: Labeling, C-Geometric mean labeling, Smarandache 2k-Geometric mean la-

beling, C-Geometric mean graph.
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Introduction

on graph labeling we refer to [3].

vertices at each vertex of G. Let G1 and G2 be any two graphs with p1 and p2 vertices respectively.

Then the cartesian product G1 X G2 has p1p2 vertices which are {(u,v) : u € G1,v € G2} and any two

Path on n vertices is denoted by P,. G®.S,, is the graph obtained from G by attaching m pendant

1Received November 1, 2018, Accepted May 30, 2019.
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vertices (u1,v1) and (ug2,v2) are adjacent in G1 x G2 if either u1 = uz and v1 and vy are adjacent in

G2 or u1 and u2 are adjacent in G1 and vi = ve.

Let w and v be two fixed vertices. We connect u and v by means of b > 2 internally disjoint paths
of length a > 2 each. The resulting graph embedded in the plane is denoted by P, . Let a and b be
integers such that a > 2 and b > 2. Let y1,y2, -+, Y. be the ‘a’ fixed vertices. We connect y; and yi+1
by means of b internally disjoint paths of length (i + 1) for each ¢, 1 <4 < a — 1. The resulting graph
embedded in the plane is denoted by P?.

Barrientos [1] defines a chain graph as one with blocks Bi, B2, Bs,- - , B such that for every
i, B; and B;+1 have a common vertex in such a way that the block cut point graph is a path. The
chain graph @(1017161710271627 -+, kn—1,pn) is obtained from n cycles of length p1,p2,ps,---,pn and
(n — 1) paths on k1, ks, ks, - -+ , kn—1 vertices respectively by identifying a cycle and a path at a vertex
alternatively as follows. If the " cycle is of odd length, then its (piT%)th vertex is identified with a
pendant vertex of the i'" path and if the i*" cycle is of even length, then its (3’9;—2)“1 vertex is identified
with a pendant vertex of the i*" path while the other pendant vertex of the " path is identified with
the first vertex of the (i + 1)** cycle. The chain graph G*(pi1,p2,--- ,pn) is obtained from n cycles of
length p1,p2,--- ,pn by identifying consecutive cycles at a vertex as follows. If the " cycle is of odd
length, then its (pi—f)th vertex is identified with the first vertex of (i +1)*" cycle and if the i'" cycle is
of even length, then its (3’9;—2)“1 vertex is identified with the first vertex of (i + 1) cycle. The graph
G’ (p1,p2,- -+ ,pn) is obtained from n cycles of length p1, p2,- - , pn by identifying consecutive cycles at

an edge as follows:

, th
The (I)]T”) edge of 5" cycle is identified with the first edge of (5 + 1) cycle when j is odd and

th
the <p”;1> edge of j* cycle is identified with the first edge of (j + 1)*" cycle when j is even.

The study of graceful graphs and graceful labeling methods was first introduced by Rosa [5] and
many authors are working in graph labeling [2,3]. Motivated by their methods, we introduce a new
type of labeling called C-Geometric mean labeling. A function f is called a C-Geometric mean labeling
of a graph G if f : V(G) — {1,2,3,--- ,g + 1} is injective and the induced function f* : E(G) —
{2,3,4,--- ,q+ 1} defined as

F(uw) = [ f(u)f(v)w , for all wv € E(Q)

is bijective. Furthermore, if

fuw) = [25/ f(u)’“f(v)k-‘ , for all uv e E(G)

is bijective, where k > 1 is an integer, such a function f is called a Smarandache 2k-Geometric mean
labeling, and C-Geometric mean labeling of a graph G if kK = 1. A graph that admits a C-Geometric

mean labeling is called a C-Geometric mean graph.
In [6], S.Somasundaram et al. defined the geometric mean labeling as follows:
A graph G = (V, E) with p vertices and q edges is said to be a geometric mean graph if it is possible

to label the vertices x € V with distinct labels f(z) from 1,2,--- ,q+ 1 in such way that when each edge
e = uv 1is labeled with f(uv) = { f(u)f(v)J or [ f(u)f(v)J then the edge labels are distinct.

In the above definition, the readers will get some confusion in finding the edge labels which edge

is assigned by flooring function and which edge is assigned by ceiling function.

In [6], the authors have given a geometric mean labeling of the graph Cs U C7 as in the Figure 1.
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3 4 4 11 10 9
Figure 1 A geometric mean labeling of Cs U C5.

From the above figure, for the edge uv, they have used flooring function { f(u)f(v)J and for
the edge vw, they have used ceiling function [ flu)f (v)—‘ for fulfilling their requirement. To avoid

the confusion of assigning the edge labels in their definition, we just consider the ceiling function
L/f(u)f(v)-‘ for our discussion. Based on our definition, the C-Geometric mean labeling of the same
graph Cs U C7 is given in Figure 2.

5

Figure 2 A C-Geometric mean labeling of C5 U C7

In this paper, we have discussed the C-Geometric mean labeling of the cycle for n > 4, union of
any two cycles C,, and C,,, union of the cycle C,, and a path P,, the graph C5 x P,, corona of cycle,
the graphs P, , P? and some chain graphs.

§2. Main Results

Theorem 2.1 A graph C, is a C-Geometric mean graph only if n > 4.

Proof The proof is divided into 2 cases following.
Case 1. n > 4.

Let v1,v2,- -+ , v, be the vertices of C,,. Define f: V(Cy,) — {1,2,3,--- ,n+ 1} as follows:

2i— 1, 1<i<2,

2 -2 3<i<|2]+1
f(’Uz): ) ‘ ZJ )

n+1, z:{%J-G-Q,

2n+5-2i, |3 +3<i<n
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Then, the induced edge labeling is obtained as follows:

2i, 1<i<2,
2 — 1, 3<i< 2] +1,
frvivig1) = n+1, i=|2] +2and nis odd,
n, 1= L%J 4 2 and n is even,
2n + 4 — 24, 3<i<|3]+3<i<n-1

and f*(vpv1) = 3.

Hence, f is a C-Geometric mean labeling of the cycle C}. Thus the cycle C,, is a C-Geometric
mean graph for n > 4.

Case 2. n=3.

Let v1,v2 and vs be the vertices of C's. To get the edge label ¢+ 1, ¢ and g+ 1 should be the vertex
labels for two of the vertices of C3, say v1 = ¢ = 3 and v2 = ¢+ 1 = 4. Also to obtain the edge label 2,
1 is to be a vertex label of a vertex of C3, say vs = 1. Since the edge labels of the edges vivs and vavs

are one and the same. Hence C is not a C-Geometric mean graph. a

Theorem 2.2 A union of two cycles Cp, and C,, is a C-Geometric mean graph if m > 3 and n > 3.
Proof Let ui,u2, -+ ,um and vi,v2, -+ , v, be the vertices of the cycles C), and C), respectively.
Case 1. m>4orn > 4.
Define f: V(Cr, UCR) — {1,2,3,-+-- ;m+n+ 1} as follows:
1<i<[Vm+2] -2,
i+ 1, [Vm+2]-1<i<m-—1,
f(Um) =m+ 27

m—1+2i,

IN
IN

fvi) =

IN +

1
m+2n+4-2i, |[2]+2<i

Then, the induced edge labeling is known as follows:

i+ 1,

1
F(uinitr) =
i+2,  [VmF2]-1<i<m-1,

f*(uhum) = { m+2-|7

m + 2i, 1<i<|2],
f*(vivi+1) = m+n+1, = {%J +1,
m+2n+3-2, |[2]+2<i<n-—1

and f*(vivn) = m + 3.

Hence, f is a C-Geometric mean labeling of the graph C,, U C),. Thus the graph C,, U C), is a
C-Geometric mean graph, for m >4 or n > 4.
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Case 2. m =3 and n = 3.

A C-Geometric mean labeling of C3 U Cs is shown in Figure 3.

1 4
b 6
2 3
6 7
3 5
4 7

Figure 3 A C-Geometric mean labeling of C3 U Cs.

This completes the proof. a

Theorem 2.3 A graph C,, U P, is a C-Geometric mean graph if m > 3 and n > 2.

Proof Let ui,uz2, -+ ,uUm and vi,v2, -+ ,v, be the vertices of the cycle C,, and the path P,

respectively.

Define f : V(Cr, U P,) — {1,2,3,--- ,m + n} as follows:

Fus) n42i—2, 1<i< |2 +1,
u‘ =
Z n+2m+3-2, @ |Z]+2<i<m,
floi))=1, for1<i<n-—1and
flon) =n+1.
Then, the induced edge labeling is obtained as follows:
n—1+2i 1<i< |2,
f*(uiui+1) = m+n, 7= {%J +1,
n+2m+2-2i, [Z]+2<i<m-—1,

ff(urum) =n+2 and

ffovig) =i+1, for 1 <i<n-—1.

Hence, f is a C-Geometric mean labeling of the graph C,, U P,. Thus the graph C,, U P, is a
C-Geometric mean graph, for m > 3 and n > 2. a

Theorem 2.4 A graph Cs x P, is a C-Geometric mean graph if n > 4.

Proof Let V(Cs x Pp) = {fugi), véi), véi); 1 <i < n} be the vertex set of Cs x P, and E(Cs x P,) =
{oPu? véi)vy)wgi)véi); 1<i<n}u Pl yfDpfith véi)véiﬂ); 1 <i<mn—1} be the edge set of
03 X Pn.
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Define f: V(Cs x P,) — {1,2,3,--+ ,6n — 2} as follows

8§ —11, 3<j<4,
’ 2j+11, 3<j<4,

7j—6, 3<j<4

and f(vl(j)) = f(v(jfg)) 4+ 18 for 1 <i <3 and 5 < j < n. Then, the induced edge labeling is obtained

(3
as follows:
2, ji=1
Frfv) =14 5 2<j<3,
U0y 18, 4<j<n,

37 +2, 1<5<2
55 +1, 3<j<4,
Fefef 418, s<i<n,
6 — 3, 1<j<2,
87 — 10, 3<5<4,
FEf ™) +18,  5<j<n,

U0y 118 5<j<n—1,

6, j=1
57 + 3, 2<j<4,
FrdPef ™) +18,  5<j<n—1,

@) =

45 +3, 1<j<2
55 +4, 3<j<4
FrfPef ™) 418, 5<j<n-—1.

@) =

8 4, 1<j<2
frePe ™) =4 8 -1, 3<j<4,

Hence f is a C-Geometric mean labeling of C3 x P,,. Thus the graph C3 x P, is a C-Geometric
mean graph, for n > 4. a
Theorem 2.5 A graph Cp, ® Sy, is a C-Geometric mean graph if n > 3 and m < 2.

Proof Let ui,uz2,--- ,un, be the vertices of the cycle C,, and let v(()i)7v§i)7 . 7117(,? be the vertices
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of the star graph S, such that v(()i) is the central vertex of S, for 1 <i <n.

Case 1. m=1
Subcase 1.1 [ 2(2n + 1)—‘ is odd and n > 5.

Define f: V(C,, ® S1) — {1,2,3,--- ,2n + 1} as follows:
24, 1<i< LL(?“) :
flui) =
2i+1, {7\/2(227L+I)J+1§i§i§n7
_ % —1, 1gig{7V2(22”“)J7
Fi?) = —
24, {7VJ+1§i§i§n.

2

Then, the induced edge labeling is obtained as follows:

2%i4+1, 1<i< F”?*”J —1,
[ (uiuipr) =
2+ 2, {7“(2’””J+1gigign—1,
fHuu) = [V2@n+ D]

Subcase 1.2 [ 2(2n + 1)—‘ is even.

Define f: V(C,, ® S2) — {1,2,3,--- ,2n + 1} as follows:
1<i< {*V m{””J -2,

flu) =4 2i-1, i:{@J_L

2i+ 1, {7\’2(22”+1)J§i§i§n7

2%—1, 1<i<|¥2erD) o
Fi) = L

24, {7\/2(22”+1)J—1§i§i§n.

2,

Then, the induced edge labeling is obtained as follows:
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P (wrun) = [ 202n + 1)}
%, 1<i§{7\/2(2"+1)J—1,

and f*(ul?) =
%+ 1, {L@;*”J <i<n.

Hence, the graph C,, ® S1, for n > 4 admits a C-Geometric mean labeling.

For n = 3, a C-Geometric mean labeling of Cs ® S; is shown in Figure 4.

5 @ .
5 4 6 7 6

Figure 4 A C-Geometric mean labeling of C3 ® S;.

Case 2. m=2.
Subcase 2.1 [V6n| = 0(mod 3).

Define f : V(Cr ® S2) — {1,2,3,---,3n + 1} as follows:

34— 1, 1§zg{@J—17
flui) =
34, {??"Jgign,
. 3i — 2, 1§z§{%J,
f(”lz)_
3i— 1, {S"J#—lgzgn,
. . 6n
%ol
30+ 1, {%nggn

Then, the induced edge labeling is obtained as follows:

) 3+ 1, 1§zg{@J—17
M (winiy1) =
3i + 2, { gnng‘gn—L

£ (wnur) = [V6n]

o 34— 1, 13@{@}
f*(u“}l )=
34, {??”J—t-lgign,
. . 6n
30+ 1, {%J <i<n
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Subcase 2.2 [V6n| = 1(mod 3).

Define f : V(Cr, ® S2) — {1,2,3,---,3n + 1} as follows:

3i— 1, 1§¢§{@J,
1

flui) =4 3i+1, ZZ{QF_ 7
34, {LJ t2<i<n,

sy = [ Bz rsi< ]
3i-1, { J 1<i<n,
=] > 1<i< [+
3i+1, { J 9<i<n.

Then, the induced edge labeling is obtained as follows:

. 3+ 1, lng{@J—L
[ (uiuipr) =
3 +2, { gnJgign—L

Frunur) = [\/ﬁw ,

W 31, 13@{@}
f (“1”1 )=
34, {S”J—t-lgign,
. 3 1<i< {ﬂJ
f*(u“}éz)): ’ 3
3+ 1, {S”J—t-lgign

Subcase 2.3 [V6n| = 2(mod 3).

Define f : V(Cr ® S2) — {1,2,3,---,3n + 1} as follows:

fsi-1 < g{ﬂJ
flus) = 3, {LJ 1<:<n,

oo [ 3i-2 1< S{QJ
f(v§))— 3 1. {EJ l<i<n

ol rsic| )
: 3+ 1, { J 1<i<n

. 3+ 1, 1§z§{@J,
[ (winipr) =
si+2, [ +1<i<n-1,

I (unr) = [V

7
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3i—1, 1§1§L@J,
I (uivi) =
34, [ &2 | +1<i<n,
34, 1<i< |,
1™ (wivg”) =
si+1,  |¥|41<i<n

Hence, the graph C,, ©®S2, for n > 3 admits a C-Geometric mean labeling. Thus the graph C,, ® S;,

is a C-Geometric mean graph, for n > 3 and m < 2. a

Theorem 2.6 A graph @(pl,ml,pg,mg, cer  Mn—1,pn) is a C-Geometric mean graph if p1 # 3.

Proof Let {vﬁj);l <j<n,1<i<p;}and {ul(-j);l <j<n-1,1<1i<m;} be the n number

of cycles and (n — 1) number of paths respectively. For 1 < j < n — 1, the 4" cycle and j** path are

(J ) (49) (J) €]

identified by a vertex v P2 and uy’ while p; is even and v, P43 and u;"’ while p; is odd and the jth

J (J+1).

path and (j + 1)*" cycle are identified by a vertex u i and v;

~ n—1
Define f : V(G(p1,m1,p2, M2, ,Mn—1,Pn)) — {172737--- s > (pj+my) +pn —n + 2} as
i=1

follows:

If p1 is odd and p; # 3,

2 —1, 1<i<2,
F(o) =1 2i-2, 3<i<|B]+2,
2p1+5—2i, |[B|+3<i<p.
and if p1 is even,
37 j:17
£(e7) = % 2<j< (),
2p1 + 3 — 2i, |2 +1<j<p—1
f(vz(ﬁ)) =1, f(uﬁ”) —pi+i, for2<i<m. For2<j<n,
=1 .
kZ(pk+mk)+21—J7 2<i< | B +1,
=1
i1 ‘
= > (o +my)+2i—5—1, = |2 | +2 and p, is odd,
fl”)=1¢ "= ,
> (i +mu) +2i — j =3, = |2 | +2 and p; is even,
k=1
i1 ,
L (pr i) +2p; = 20— j =5, %] +3<i<p;
and for 3 <j <n,
Fd™D) =3 "(pr +mu) +pj1 +i+2—j, for 2 <i <myoa.
k=1

Then the induced edge labeling is obtained as follows:
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If p1 is odd and p1 # 3,

1<i<2,
FrePv) =4 2i—1, 3<i< B +1,
2p1 + 4 — 2, |2 +2<i<pi—1,
F) = 3.
and if p1 is even,
Jj=1
FMo) =1 241, 2<i<|B,
2p1 + 2 — 24, |2 +1<i<p—2,
Frop i) =3,
Frey =2,

FuPu) =pr+i, 1<i<mi—1

and for 2 < j < n,

j—1

S Pk +mn) +2i—j+1, 1<i< %],
k=1
-1
S(pk+mi)+2i—j+1, i=|%|+1and p; is odd,
f ( (4) (J)) k=1
7, 7,+ Jj—1
> (e +mi) +2p; —2i— 5+ 4, i=|%] +1 and p; is even,
k=1
j—1 )
z (pk +mi)+2p; —2i—j+4, [B|+2<i<p -1,
j—1
1( (J) (J) Zpk+mk Y—j+4
k=1
and
j—2
F a0y =S (e +mk) +pj1+i+3—j, for 1<i<my 1 —1land3<j<n.
k=1
Hence, f is a C-Geometric mean labeling of é(p17m17p27m2-~~ ,Mn—1,Pn). Thus the graph
CAT'(pl7 mi,p2, M2+ ,Mn-1,Pn) is & C-Geometric mean graph, for p; # 3. O

Corollary 2.7 A graph G*(p1,p2,--+ ,pn) is a C-Geometric mean graph if p1 # 3.

Theorem 2.8 A graph G'(pi,p2,--- ,pn) is a C-Geometric mean graph if all p;’s are odd and p1 # 3
orallp;j’s1 < j <n are even.

Proof Let {vﬁj); 1<j<n,1<1i<p;} be the vertices of the n number of cycles.
Case 1. pj;isodd and p1 #3 for 1 <j < n.

For 1 < j < n —1, the j** and (j + 1)'" cycles are identified by the edges v v and

Pjt1 T’J+3
2
(JH)UI(,J]JS) while j is odd and v(ﬁj) 1 v(pjj)+1 and U(JH)UI(,J]ﬁ) while j is even.
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n

Define f : V(G'(p1,p2, -+ ,pn)) — {172737--- , > Dj —n+2} as follows:

Jj=1

3, i=1,
Fw) =1 2, 2<i< B+,
2p1 + 3 — 2, |BL|+2<i<pi—1,
flp)) =1
and for 2 < j < n,
j—1 .
Spk—7+2i+2, 2<1 §{TJJ and j is even,
k=1
j—1 )
S pr 4 2p; +3—j — 2i, |%]4+1<i<p;—1andj even,
f(’t)(])): k=1
1 j—1
Sk —j+2+1, 2<1 S{TJJ—i—la,ndjisodd7
k=1
j—1
S pe+2p 4+ 4 — 5 — 24, |%|+2<i<p;—1andjodd.

=

-

The induced edge labeling is obtained as follows:

4, i=1,
) =1 211, 2<i< |8,
2pm+2-2i  |B]+1<i<pi—2
1 1
Py =3, 1)) =2
and for 2 < j < n,
-1
S pp—j+2i+3, 1<i< |2 andjis even,
k=1
j=1 .
S Pk 4 2p; +2—j — 2i, |%] +1<i<p;—1andj even,
1 (U(J),U(J) )= k=1
1 i+1 j—1 .
Sk —j+2+2, 1< SLTJJ and j is odd,
k=1
j—1
S pr+2p; +3— 5 — 2, |%Z|+1<i<p;—1andjodd.

Case 2. pjisevenfor 1 <j < n.

For1 < j < n—1, the j*" and (j—l—l)t cycles are identified by the edges vg.?)v(pj)ﬂ and v(JH) G+

P+l :
Define f : V(G'(p1,p2, -+ ,pn)) — ;> Dj —n+2} as follows:
=1
1 =1,
w?) 2<i<|B),
2p1 + 3 — 24, |2 +1<i<p—1,

1
vz(,l) 1
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and for 2 < j < n,

j—1
o) >opk—j+2i+1, 2
flo”) =19 %=

k=

IN

i< %),

.
==

pr+ 2p; +4— 5 — 2, B +1<i<p—1
1

The induced edge labeling is obtained as follows:

47 Z: 17
f*(vinvgl) =1{ 2i+1, 2<i< |2,
2pr+2 -2, B +1<i<p -2
* 1
f (”1()1)71”1()11)) =3,
«, (1) (1
Fr i) =2
and for 2 < j <mn,
j—1 .
@) G) Pr—J+2i+2, 1§iSL%J7
(v’ vz‘J+1) = ];f%

pr+2p+3—j—2, |H|+1<i<p,—1

k=1

Hence, f is a C-Geometric mean labeling of G’(p1,p2,...,pn). Thus the graph G’(p1,p2,--.,Pn)
is a C-Geometric mean graph, for p; # 3. a

Theorem 2.9 A graph P, is a C-Geometric mean graph if b < 4 and a > 2.

Proof Let v(gi),vii),véi), e ,vl(f) be the vertices of the " copy of the path of length ‘a’ where
i =1,2,---,b, v(()i) = u and v{” = v, for all i. Clearly, [V(Pap)| = ab—b+ 2 and |E(Pap)| = ab.
Consider a graph P, with a > 2.

Case 1. b=2.

Notice that P, 2 is a cycle of length more than 3. By Theorem 2.1, it admits a C-Geometric mean

labeling.
Case 2. b=3.

Define f : V(Pa,3) — {1,2,3, -+ ,3a + 1} as follows:

flu)=a+1,

fv) =3a+1,

j7 ISJS{V3G+1-|_27
j+1, [V3a+1]-1<j<a-1,

foy=a+i-1+2j for2<i<3, 1<j<a-1

f(vtg,lj]) =
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Then, the induced edge labeling is obtained as follows:

POy =4 0T
a=sa=3 j+2, [V3a+1] -1

i) = [VBa+T],

fruw)=a+1,

o) =3a—2+i, for2<i<3,
f(uvg)):a—b-i, for 2 <13 <3,
FrPv) )y =a+i+2j, for2<i<3and1<j<a-2.

Case 3. b=4.

Consider a graph P, with a > 3. Define f : V(P,4) — {1,2,3,--- ,4a + 1} as follows:

flu)=a+1,
f(v) =4a +1,
Fm ) = Js 1<j< [Vada+T1] -2,

j+1, [Via+1] -1<j<a-1,
a+35—1, 1<j<a-1andjis odd,
a+3j+1, 1<j<a-1andjis even,

a-+ 3+ 37, 1<j<a—1andjiseven

(2) {
(3) { a+143j, 1<j<a-—1andjis odd,
(4) { a+ 3+ 37, 1<j<a-—1andjis odd,

a—1+4 3y, 1<j<a—1andjiseven.

Then, the induced edge labeling is obtained as follows:

Pl o® = j+1,  1<j<[Via+1] -2,
a—j~a—j j+27 "\/4a+1-‘—1§‘7§a_27

£ @) = (VAT
(uv1 N =a+1,

(7“)1 K

)=a+1i, for2<i<4
((Z) v)=4a —3+1, for 2<i<4 and

a+2+ 3y, i=2and 1<j<a—2,
a+T7T—1i+4+3j 3<i<4and1<j<a-—2.

(4),,(4)
f (vj v3+1)
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For a = 2, a C-Geometric mean labeling of P> 4 is as shown in Figure 5.

1

Figure 5 A C-Geometric mean labeling of P> 4

Hence, the graph P, for b < 4 admits a C-Geometric mean labeling. Thus the graph P, ; for
b < 4 is a C-Geometric mean graph. a

Theorem 2.10 A graph PP is a C-Geometric mean graph if b < 3.

Proof Let y;,xij1,Tij2, - ,Tiji, yi+1 be the vertices of the jth path of it* block of P(f, where
1<i<a-—1and1<j<b. Obviously,

V(PY) ={ys1<i<a} <aU Ufzimi1 <k < i})

i=1j=1

a—1 b
U{yzmwl 1< < b}U (U U{m”k:cm(kH)J <k<i- 1})

=1 =1 j=1

U (U {Zijiyir1;1 < j < b})

i=1
Hence, |V (P2)| = 22=1 | 4 and |[E(PY)| = Helet?)
Case 1. b=2.
Notice that the graph P%is G* (p1,p2, -+ ypn). Applying Corollary 2.9, P2 is a C-Geometric mean
graph for p; # 3.
Case 2. b=3.

Define f : V(P2) — {172737 e 7% + 1} as follows:

f(y) =3,

Iy w+l,for2§i§a,

111

=bk+5, for 1 <k <2,

)
)
:c131):j+3 for 2 < j <3,
)
)
f(xosg) =13 —k, for 1 <k <2

(
(
flxo1x) =4k + 5, for 1 <k <2,
(
(
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and for 3 <i<a-—1,

WD po 4y, 1<5<2,

f(wij) = 301+ | o) i—3
3G 4 95 4 3k —1 1<j<2,2<k<i—1andFk is even,
3G-1042) 4 g 1, j=32<k<i—1andk is even,
BDEHD) 4 9543k -3, 1<j<3,2<k<i—1andk is odd,
flmige) = ¢ 30002 4 3 g, j=1,k=1and k is odd,
BG10H2) 4 3k 4 g, 2<j<3k=iand k is odd,
3G 4 g 4541, 1<j<2k=:iand k is even,
w-&-?)k—l, j =3,k =1 and k is even.

Then, the induced edge labeling is as follows:

3 - 1)(i+2)

yﬂ?m = 2 +]+1, for1§]§3and2§z§a—1,
2, j=1,

*(y1z151)
Jj+2, 2<5<3,
3, 7=1,

$131y2

F(xo12252)

$232y3

|
1:
1

and for 3 <i<a-—1,

BNEHD) 4 3k 125 —1, 1<k<i—1,
and 1 < j <2

fr(@ijrzijrr) = o
v BU=1)G+2) 4 gf 4 9 1<k<i-1,

and j = 3,

BOES) 4 j—2, 1<j<3andiis odd,
and f*(ziiyis1) = M‘kj_L 1<j<2andiis even,
w_1 j =3 and i is even.

Hence, f is a C-Geometric mean labeling of P?, for b < 3. Thus the graph P? for b < 3 is a

C-Geometric mean graph.

Theorem 2.11 Let G be a graph obtained from a path by identifying any of its edges by an edge of

a cycle and none of the pendent edges is identified by an edge of a cycle of length 3. Then, G is a

C-Geometric mean graph.

Proof Let vi,v2,--- ,vp be the vertices of the path on p vertices. Let m be the number of cycles are
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placed in a path in order to get G and the edges of the j* cycle be identified with the edge (vij, vij+1)
of the path having the length n; and n1 # 3 when i; = 1. For 1 < j < m, the vertices of the jth cycle

be vijyhl <1 < n; where Vij 1 = Vi and Vijn; = Vij+1-

Define f: V(G) — {172737-~~ ,y.nj+p— m} as follows:

Jj=1

fuk) =k, for 1 <k <1y,
j—1
fi) =i+ Y (nk—2)+j—1, for 1<j<m,

k=1
f(ij41) = f(vi;) +ny, for 1< j <m,
f(vij+k) = f(vij+1) +k—-1for2<k<ijy1—i;—land1<j<m—1,
Fipti+1) = fWipe4r) + =1, for 2< kb <p—in

and for 1 < j < m,

Fo) +1=1, 2 <0< [ f )] = Fo) =1,

f Vij,1) =
) Fw)+L I @] = feg) <1<ng -1,

Then, the induced edge labeling is obtained as follows:

frlogvgs1) =k+1, for 1 <k <4 —1,
f*(vij+kvij+k+1) = Vij+k + 1, for 1<k<ijy1—i;j—land 1 <j<m—1,

I Wi +5Vigth41) = f(Ui k) + 1, for 1 <k <p—im — 1
and for 1 < j < m,
f(vij)+l7 1<1< ’V f(vij)f(vij+1) _f(vij)_17
f(vij)+l+17 [ f(vij)f(vifrl)—‘ _f(vij)glgnj_lv

f*(vijvij+l) = [ f(vij )f(vij+1)—‘ , for 1 <j <m.

f* (Uij,lvij,l+1) =

Hence, the graph G admits a C-Geometric mean labeling. Thus the graph G is obtained from a
path by identifying any of its edges by an edge of a cycle and none of the pendent edges is identified
by an edge of a cycle of length 3, is a C-Geometric mean graph. a
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Abstract: The Klein 4-group,denoted by V4 is an abelian group of order 4. It has elements
Vi={0,a,b,c} witha+a=b+b=c+c=0anda+b=cb+c=a,c+a=>. A graph
G(V(G), E(G) is said to be neighbourhood Vi;—magic if there exists a labeling f : V(G) —
V4\{0} such that the induced mapping Nf+ : V(G) — Vi defined by Nf+ (V) =X uenw) f(W)
is a constant map. If this constant is p(p # 0),we say that f is a p—neighbourhood Vi—magic
labeling of G and G a p—neighbourhood V4—magic graph. If this constant is zero, we say
that f is a 0—neighghbourhood Vj-magic labeling of G and G a 0—neighbourhood Vi—magic
graph. In this paper, we discuss neighbourhood V4;—magic labeling of some shadow graphs.
Key Words: Klein-4-group, shadow graphs, a-neighbourhood Vi-magic graphs, O0-

neighbourhood Vi-magic graphs, Smarandachely Vi-magic.

AMS(2010): 05C78, 05C25.

§1. Introduction

Throughout this paper we consider simple, finite, connected and undirected graphs. For standard
terminology and notation we follow [1] and [2]. For a detailed survey on graph labeling we refer
[6]. The Vi-magic graphs were introduced by S. M. Lee et al. in 2002 [3]. We say that, a graph
G = (V(G), E(GQ)), with vertex set V(G) and edge set E(G) is neighbourhood Vj-magic if there
exists a labeling f : V(G) — Vi\{0} such that the induced mapping N;r : V(G) — Vi defined by
N;r(v) = ZMEN(U) f(u) is a constant map. Otherwise, it is said to be Smarandachely Vi-magic, i.e.,
‘{N}L(v)m € V(G)H > 2. If this constant is p, where p is any non zero element in Vj,then we say
that f is a p—neighbourhood Vj-magic labeling of G and G is said to be a p—neighbourhood Vj-magic
graph. If this constant is 0,then we say that f is a 0—neighbourhood V;-magic labeling of G and G is
said to be a 0—neighbourhood V4-magic graph. We divide the class of neighbourhood V;-magic graphs

into the following three categories:

(1) Qq := the class of all a—neighbourhood Vi-magic graphs;

(2) Qo := the class of all 0—neighbourhood Vi-magic graphs, and

(3) Qa0 :=Qa N Q.

The shadow graph Sh(G) of a connected graph G is constructed by taking two copies of G say

G1 and Ge, join each vertex u in G1; to the neighbours of the corresponding vertex v in G2.The Bistar

1Received October 10, 2018, Accepted May 31, 2019.
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By.,nis the graph obtained by joining the central vertex K1, and K1 , by an edge [6]. The wheel graph
W, is defined as W,, ~ C,, + K1, where C,, for n > 3 is a cycle of length n.The Helm H,, is a graph
obtained from the wheel graph W, by attaching a pendant edge at each vertex of the cycle C,, [7].The
Sunflower SF), is obtained from a wheel with the central vertex wo and cycle C), = wiwaws - - - wrwi
and additional vertices v1,v2,v3,- -+ , v, where v; is joined by edges to w; and w;+1 where ¢ + 1 is taken
over modulo n [8].Jelly fish graphJ(m,n)is obtained from a 4—cycle wiwswswaw; by joining wi and
w3 with an edge and appending the central vertex of Ki,, to ws and appending the central vertex
of Ki,n to wa [6]. The graph P,OP, is called Ladder, it is denoted by L, [5].The graph with vertex
set{us,v; : 0 < 7 < n+ 1}tand edge set {uiuit1,viviy1 : 0 < i < n}U{uv; : 1 < i < n}is called
the ladder Ly+2.The corona P, ® K; is called the comb graph C'B,,.The Book graph B, is the graph
SpOPs, where S, is the star with n+1 vertices and P» is the path on 2 vertices [5]. A gear graph G,, is
obtained from the wheel graph by adding a vertex between every pair of adjacent vertices of the cycle.
G, has 2n + lvertices and 3n edges [9]. This paper investigate neighbourhood Vi—magic labeling of
shadow graphs of the above said graphs.

§2. Main Results

Theorem 2.1 The graph Sh(Cy) € Q4 if and only if n = 0(mod 4).

Proof Considering the shadow graph Sh(Ch), let {u1,u2,us, - ,un }be the vertex set of first copy
of C,, and let {v1,v2, v, , v, }be the corresponding vertex set of second copy of C,, in order. Assume
that n # 0(mod 4).Then either n = 1(mod 4) or n = 2(mod 4) or n = 3(mod 4). We show that in each
these cases Sh(Cr) ¢ Qa.

Case 1. n = 1(mod 4)

In this case n = 4k + 1 for some k € N. Then V(Sh(Cr)) = {ui,vi : 1 <14 < 4k + 1}. If possible,
let Sh(Cr) € Qq with a labeling f. Then NJT (u2) = a implies that f(ui) + f(v1) + f(us) + f(vs3) = a,
N;r(m;) = a implies that f(us) + f(vs) + f(us) + f(vs) = a. Proceeding like this, Nf+(u4k) =a
implies that f(uag—1) + f(vak—1) + f(vwag+1) + f(vak+1) = a. Now consider f(u1) + f(v1),then either
fu) + f(vr) =0or f(ur) + f(v1) = aor f(u1) + f(vr) =bor fur) + f(v) = c.

Subcase 1.1 f(u1) + f(vi) =0

If f(u1) + f(v1) = Othen f(u3) + f(vs) = a, f(us) + f(vs) =0, f(ur) + f(vr) = a, which implies
that f(uart+1) + f(vags1) = 0. Now N;r(ul) = a implies that f(u2) + f(v2) = a, f(usa) + f(va) =
0, f(ue) + f(ve) = a. Proceeding like this we get f(uar) + f(var) = 0. ThereformN}r (tar41) = f(ur) +
f1) + fuag) + f(var) = 0+ 0 = 0, a contradiction.

Subcase 1.2 f(u1) + f(vi) =a

If f(u1) + f(v1) = a, then proceeding as in Subcase 1.1 we get N;L(U4k+1) = f(u1) + f(v1) +
f(uar) + f(var) = a + a = 0, a contradiction.

Subcase 1.3 f(u1) + f(vi) =b

If f(u1)+ f(v1) = bthen f(us)+ f(vs) = ¢, f(us)+ f(vs) = b, f(ur)+ f(vr) = ¢, which implies that
f(uaks1)+f (vag+1) = b. Now, N (u1) = a gives f(uz2)+f(v2) = ¢, f(ua)+f(va) = b, f(war)+f(var) = b.
Thelrefore,N;r (wak+1) = f(ur) + f(v1) + f(var) + f(vag) = b+ b = 0, which is a contradiction.

Subcase 1.4 f(u1) + f(v1) =c¢
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If f(u1) + f(vi) = ¢, then proceeding as in Subcase 1.3 we get Nf+(u4k+1) = f(u1) + f(v1) +
fluar) + f(var) = ¢+ ¢ = 0, a contradiction.

Thus if n = 1(mod 4), we have Sh(Cy) ¢ Q..
Case 2. n = 2(mod 4)

In this case n = 4k + 2 for some k € N. Then V(Sh(Cy)) = {ws,vi : 1 < i < 4k + 2}. If
possible let Sh(Cy) € Qq with a labeling f. Considering f(u1) 4+ f(v1), then either f(ui) + f(vi) =0
or f(u1) + f(v1) = aor f(ui) + f(v1) = bor f(ur) + f(v1) = c.

Subcase 2.1 f(u1)+ f(vi) =0
If f(u1) + f(v1) = O,then N;r(uz) =a, f(us) + f(vs) = a, f(us) + f(vs) = 0, which implies that

f(ua41) + f(vak+1) = 0. Therefore, N (uarr2) = f(ur) + f(v1) + f(uart1) + f(var+1) =0+0=0, a
contradiction.

Subcase 2.2 f(u1) + f(vi) = a

If f(u1) + f(v1) = a, then proceeding as in Subcase 2.1 we get N;L(U4k+2) = f(u1) + f(v1) +
f(uars+1) + f(vag+1) = a + a = 0, which is a contradiction.

Subcase 2.3 f(u1) + f(v1) =0

If f(u1) + f(v1) = b,then N;r(uz) = a implies that f(us) + f(vs) = ¢, f(us) + f(vs) = b, implies
that f(u4k+1)—|—f(v4k+1) = b. Therefore, N;(U4k+2) = f(ul) +f(v1)—|—f(u4k+1)+f(v4k+1) =b+b=0,
which is a contradiction.

Subcase 2.4 f(u1) + f(v1) =c¢

If f(ui) + f(vi) = ¢, then proceeding as in Subcase 2.3 we get Nf+(u4k+2) = f(u1) + f(v1) +
fuar+1) + f(vag+1) = ¢+ ¢ = 0, a contradiction.

Thus if n = 2(mod 4), Sh(Cr) ¢ Q.
Case 3. n = 3(mod 4)

In this case n = 4k + 3 for some k € N. Then V(Sh(Cr)) = {wi,vi : 1 < i < 4k + 3}. If
possible let Sh(Cy) € Qq with a labeling f. Considering f(u1) + f(v1), then either f(ui) + f(vi) =0
or f(u1) + f(v1) = a or f(ui) + f(v1) = bor f(u) + f(v1) = c.

Subcase 3.1 f(u1) + f(vi) =0

If f(u1) + f(v1) = 0, then N (u2) = a gives f(us) + f(vs) = a, f(us) + f(vs) = 0, f(uars1) +
f(vars1) = 0, f(uanss)+f(varts) = a. Now, N (u1) = a implies that f(uz)+f(v2) = 0, f(ua)+f(va) =

)=

a, f(uart2) + f(vars2) = 0. Therefore Nf (uart3) = f(ur) + f(v1) + f(uar+2) + f(var+2) =0+0=0,
which is a contradiction.

Subcase 3.2 f(u1)+ f(vi) =a

If f(u1) + f(v1) = a, then proceeding as in Subcase 3.1 we get N;L(U4k+3) = f(u1) + f(v1) +
f(uars2) + f(vag42) = a + a = 0, a contradiction.

Subcase 3.3 f(u1) + f(v1) =0

If f(u1)+ f(v1) = b, then N;r(uz) = a implies that f(us)+ f(vs) = ¢, f(us)+ f(v
):

=b, f(uar+1)+
f(vag41) = b, f(war+3)+ f(vant3) = c. Now, N (u1) = a implies that f(uz2)+ f(v 4)

5)
b, f(ua)+f(va) =
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c, f(U4k+2) =+ f(v4k+2) = b. Therefore, N;r (U4k+3) = f(U1) + f(’l)1) =+ f(U4k+2) + f(v4k+2) =b+b=0,

which is a contradiction.
Subcase 3.4 f(u1)+ f(v1) =c¢

If f(ui) + f(v1) = ¢, then proceeding as in Subcase 3.3 we get Nf+(u4k+3) = f(u1) + f(v1) +
f(uags2) + f(vag+2) = ¢+ ¢ = 0, a contradiction.

Thus if n = 3(mod 4), we also have Sh(Cy) ¢ Q4. Therefore, n Z 0(mod 4) implies that Sh(Cy) ¢
Qq.

Conversely if n = 0(mod 4), We define f : V(Sh(Cr)) — V4\{0} as:

b if ¢=1,2(mod 4), ]
flu) = and f(v;) =a for 1<i<n.
¢ if ¢=0,3(mod 4)

Then, f is an a—neighbourhood Vi —magic labeling for Sh(C,, ). This completes the proof of the theorem.
O

Theorem 2.2 Sh(Cy) € Qo for all n > 3.

Proof The degree of each vertex in Sh(Ch,)is 4. By labeling all the vertices by a, we get N;r (u) =0
for all u € V(Sh(Ch)).

Corollary 2.3 Sh(Cr) € Qa0 if and only if n = 0(mod 4).

Proof The proof is obviously follows from Theorems 2.1 and 2.2. a

Theorem 2.4 The graph Sh(P,) € Qo for all n > 2.

Proof If we label all the vertices by a,we get G € Q. a

Theorem 2.5 Sh(P,) € Qq for n =0,2,3(mod 4).

Proof Let G be the shadow graph Sh(P,), and let {u; : 1 < ¢ < n}and{v; : 1 < i < n} be the

vertex sets of first and second copy of P, respectively.
Case 1. n = 0(mod 4)
Define f : V(G) — V4\{0} as:

a if i=0,1(mod 4),
b if i=2,3(mod4),

a if i=0,1(mod 4),
¢ if i=2,3(mod4).
Case 2. n = 2(mod 4)
Define f : V(G) — V4\{0} as:

a if i=0,3(mod 4),

f(ui) = o
if i=1,2(mod 4),
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a if i=0,3(mod 4),
¢ if i=1,2(mod 4).
Case 3. n = 3(mod 4)

Define f : V(G) — V4\{0} as:

b if i=1,2(mod 4),
a if i=0,3(mod 4),

flui) =

¢ if i=1,2(mod 4),
a if i=0,3(mod 4).

flvi) =

In all the above cases, we have N;r (ui) = Nf+ (vi) = a for 1 < i < n. Therefore, Sh(P,) € Q, for
n =0,2,3(mod 4). O

Theorem 2.6 Sh(P,) ¢ Qa for n = 1(mod 4).

Proof Consider the shadow graph Sh(P,) with n = 1(mod 4). Let {u; : 1 < ¢ < 4k + 1}
and{v; : 1 < i < 4k + 1} be the vertex sets of first and second copy of P, respectively. Assume
that Sh(P,) € Q. with a labeling f. Since Nf+(u1) = a, we have either f(u2) = b and f(v2) = ¢
or f(u2) = c and f(v2) = b. Without loss of generality assume that f(u2) = b and f(v2) = ¢. Then
f(uar) = f(var) implies that N;r (tak+1) = 0, a contradiction. Therefore, Sh(P,) ¢ Qaq. O

Corollary 2.7 Sh(Py,) € Qa,0 for n =0,2,3(mod 4).
Proof The proof directly follows from theorems 2.4 and 2.5. a

Theorem 2.8 Sh(K1,) € Qq for alln € N.

Proof Let V = {u;,v; : 0 < i < n} be the vertex set of Sh(K1,,) where {u; : 0 <4 < n} and
{v; : 0 < i < n} are the vertex sets of first and second copy of K1, with apex wo,vo respectively.
Define f: V — V4\{0} as:

b oif i=0,1,
flui) = _
a if i=2,3, R
c if i1=0,1,
f(ui) = ,
a if =23, N
Then, N;r (us) = NJZL (vi) = a for all 0 < ¢ < n. This completes the proof. O

Theorem 2.9 Sh(Kin,) € Qo for alln € N.

Proof 1f we label all the vertices by a,we get Sh(K1,») € Qo. m|

Corollary 2.10 Sh(Kin) € Qa0 for alln € N.

Proof The proof obviously follows from Theorems 2.8 and 2.9. a

Theorem 2.11 Sh(Bm,n) € Qo for all m and n.



Neighbourhood V4 —Magic Labeling of Some Shadow Graphs 91

Proof Labeling all the vertices by a, we get Sh(Bm,») € Qo for all m and n. O

Theorem 2.12 Sh(Bm,n) € Qq for allm >1 and n > 1.

Proof Let Vi = {u,v,u1,uz,"* ,Um,v1,v2,03, - ,Un} be the vertex set of first copy of By, and
Vo = {u' v ul,ub, -+ up,, v, v9,v5, - , v, } be the corresponding vertex set of second copy of B, n,
where u;,v; are pendant vertices adjacent to u,v respectively. Then V(Sh(Bm,n)) = Vi U Va.

Define f : V(Sh(Bm,n)) — Va\{0} as:

flu) = f(v) =b;
f) =) =¢
flu)) = f(ui) =afor 1 <i<mg

Then, f is an a—neighbourhod labeling of Sh(Bym,»). This completes the proof. O

Corollary 2.13 Sh(Bm,n) € Qq,0 for allm >1 andn > 1.

Proof The proof follows from Theorems 2.11 and 2.12. a

Theorem 2.14 Sh(W,) € Qo for alln > 3.

Proof The degree of a vertex in Sh(W,,) is either 6 or 2n. If we label all the vertices by a, we get
N (u) = 0 for all u € V(Sh(Wp)). o

Theorem 2.15 Sh(W,) € Qq for alln = 1(mod 2).

Proof Let Vi = {uo,u1,uz2, -+ ,un} be the vertex set of first copy of W, with central vertex wuo
and let V2 = {vo,v1,v2, -+ ,vn} be the corresponding vertex set of second copy of W,with central
vertex vo. Then, V = V(Sh(W,)) = Vi1 U Va. Define f: V — V,\{0} as:

flu)=b if i=0,1,2,3,---,n,

fli)=c¢ if i=0,1,2,3,---,n.
Then7 N;r(uz) = N?(’UZ) —qa for all 1 = 071727 ceeLn. O

Corollary 2.16 Sh(W,) € Qq,0 for all n = 1(mod 2).

Proof The proof directly follows from Theorems 2.14 and 2.15. a

Theorem 2.17 Sh(Wy,) € Qq for all n = 2(mod 4).

Proof Let Vi = {uo,u1,u2, -+ ,un} be the vertex set of first copy of W, with central vertex
uo and let Vo = {vo,v1,v2, -+ ,vn} be the vertex set of second copy with central vertex wvg.Then
V(Sh(W,)) = V1 U Va. Define f : V(Sh(W,)) — V4\{0} as:

a if i=1,3(mod 4),

f(ui) = o
¢ if 1=0,2(mod 4),
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a if i=1,3(mod 4),

f(ui) = o
b if i=0,2(mod 4).

Clearly, N;r(ui) = Nf(vi) =aforall i =0,1,2,...,n. Hence Sh(Wy) € Q. O

Corollary 2.18 Sh(W,) € Qa0 for all n = 2(mod 4).

Proof The proof directly follows from Theorems 2.14 and 2.17. a

Theorem 2.19 Sh(H,) € Qo for alln > 3.

Proof In Sh(Hy), degree of vertices are either 2 or 8 or 2n. If we label all the vertices by a, we
get N;r(u) =0 for all u € V(Sh(Hn»)). O

Theorem 2.20 Sh(H,) admits a—neighbourhood Vi—magic labeling for all n = 1(mod 2).

Proof Consider the shadow graph Sh(H,). Let v be central vertex,v1,v2,vs, - ,v, be the rim
vertices and w1, u2, us,- -+ ,un be the pendant vertices adjacent to vi,v2,vs, - ,v, in the first copy of
H,, and let v’, v}, v5,v%, -+ ,vl,,ul, ub, us, -+ - ,ul, be the corresponding vertices in the second copy of

H,,. Then V(Sh(H,)) = {v,v',vi,vj,ui,uj : 1 <i < n}. Wedefine f: V(Sh(H,)) — Vi\{0} as:

fw)=a and f(v;)=f(ui)=0b for i=1,2,3,...,n,
f@W)=a and f(vj) = f(u;)=c for i=1,2,3,...,n.

Obviously, f is an a—neighbourhood Vi—magic labeling of Sh(H,). O

Corollary 2.21 Sh(Hy) € Qa0 for all n = 1(mod 2).

Proof The proof directly follows from Theorems 2.19 and 2.20. a

Theorem 2.22 Sh(SF,) admits a—neighbourhood Vi—magic labeling for all n = 2(mod 4).

Proof Considering Sh(SF,), let the vertex set of first copy of SF, be Vi = {w,w;,v; : 1 <i<n}
where w is the central vertex, wi, w2, ws, -+ ,w, are vertices of the cycle and v; is the vertex joined
by edges to w; and w;+1 where i + 1 is taken over modulo n. Let Vo = {w’,w}, v : 1 <i < n} be the
corresponding vertex set of second copy of SF;,. Then V(Sh(SF,)) = V1UVa. Define f : V(Sh(SF,)) —
Va\{0} as:

b if i=1(mod 2),
¢ if i=0(mod 2),

b if i=1(mod 2),
¢ if i=0(mod 2),

f(w) :f(w/):f(w:) :f(vg):afori:172737"' 5 T
Then f is an a—neighbourhood Vi—magic labeling of Sh(SFy). m|

Theorem 2.23 Sh(SF,) admits 0—neighbourhood Vi—magic labeling for all n.

Proof If we label all the vertices by a, we get NJZL (u) =0 for all u € V(Sh(SFyp)). a
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Theorem 2.24 Sh(SFy,) € Qa0 for all n = 2(mod 4).

Proof The proof is obviously follows from Theorems 2.22 and 2.23. m|

Theorem 2.25 Sh(Cp © K2) € Qq for all n = 0(mod 4).

Proof Let G bet the shadow graph Sh(C, ® K3). Let Vi = {u;,vi,w; : 1 < i < n} be the vertex
set of first copy of C,, ® K2, where u}s are vertices of Cy, and vj, w; are the vertices on j*" copy of K>
and let Vo = {u},v;,w; : 1 <4 < n} be the corresponding vertex set of second copy of Cy, ® K2. Then
V(G) = Vi UVa. Define f: V(G) — Vi\{0} as:

b if i=1,2(mod 4),

f(ui) = o
¢ if i=0,3(mod4),
¢ if i=1,2(mod 4),
fui) = o
b if i=0,3(mod4),
¢ if i=1,2(mod 4),
flwi) =

b if i=0,3(mod 4),
f(u;):f(vi)—f(w;):aforz:1,2,3, , 1.

Then f is an a—neighbourhood Vi—magic labeling of Sh(Cr © K2). m|
Theorem 2.26 Sh(C, © K3) € Qo for all n.

Proof By labeling all the vertices of Sh(Cy, ® K2) by a,we get N;r (u) =0. O
Corollary 2.27 Sh(Cp © K2) € Qa0 for all n = 0(mod 4).

Proof The proof follows from Theorems 2.25 and 2.26. a

Theorem 2.28 Sh(C,, ® K,,) € Q4 for all m and n > 3.

Proof Let G be the shadow graph Sh(C, ® ?m). Let w1, u2,us, -+ ,u, be the rim vertices of

first copy of Cp, ® K., and {wi1, wiz, wiz, -+ ,uim} be the set of pendant vertices adjacent to w; for
1<i<ninC,® K, and let u},ub,ul,--- ,ul, be the rim vertices of second copy of C,, ® K, and
{ui1, i, ujs, -+ , Ui } be the set of pendant vertices adjacent to uj for 1 < i < n in second copy of

Crn ® K. Here we consider two cases.
Casel. m=1
Define f : V(G) — V4\{0} as:
fu) = flusn)=0b for i=1,2,3,--- ,n.
fui) = fuj,) =c for i=1,2,3,--- n.
Case 2. m>2

Define f : V(G) — V4\{0} as:

f(ui)=b for i=1,2,3,--- n.
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f(u;):c for i=1,2,3,---,n.

fu)=a for i=1,2,3--,n.

boif j=1,
flui) =qc if j=2,
a if j>2.

Obviously, f is an a—neighbourhood Vi—magic labeling of Sh(Cy, ® K ). ad

Theorem 2.29 Sh(C,, ® Kn,) € Qo for all m and n > 3.

Proof Labeling all the vertices by a,we get Sh(Cy, ® K ) € Qo. a

Corollary 2.30 Sh(C, ® ?m) € Qq,0 for allm and n > 3.

Proof The proof directly follows from Theorems 2.28 and 2.29. m|

Theorem 2.31 Sh(J(m,n)) € Qo for all m and n.

Proof Labeling all the vertices by a, we get Sh(J(m,n)) € Qo. O

Theorem 2.32 Sh(J(m,n)) € Qq for all m and n.

Proof Let G be the graph Sh(J(m,n)). Let Vi = {w;,uj, vk : 1 <i<4,1<j<m,1<k<n}
and F1 = {wiwsz, wows, wsws, wawr, wiwz} U {wou; : 1 < j < m}U{wsv; : 1 < j < n} be the vertex
and edge set of first copy of J(m,n) and let Vo = {wj,u};, v}, : 1 <4 <4,1 <5 <m,1 <k <n} bethe
corresponding vertex set of second copy of J(m,n). Then V(G) = V4 U V,. Define f : V(G) — Vi\{0}
as:

flwy))=0b for i=1,2,34;
fwj)=c for i=1,2,3,4;

b if 1=1, , c if =1,
flui) = L flui) = L
a if 1>2, a if i>2,
boif =1, ) ¢ if i=1,
flui) = L flvi) = o
a if 1>2, a if 1>2.
Then, f is an a—neighbourhood Vi—magic labeling of Sh(J(m,n)). O
Corollary 2.33 Sh(J(m,n)) € Qa,0 for all m and n.
Proof The proof directly follows from Theorems 2.31 and 2.32. a
Theorem 2.34 Sh(Ly) € Qo for all n.
Proof By labeling all the vertices by a,we get Sh(L,) € Qo for all n. m|

Theorem 2.35 Sh(Ly) € Qq for all n = 2(mod 3).
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Proof Consider Sh(L,) with n = 2(mod 3). Let Vi = {u;,v; : 1 <i < n} be the vertex set of first
copy of L, with edge set E1 = {u;uit1,vivit1,uv; : 1 <i<n—1,1<j <n}. Also let Vo = {uj,vj :
1 <i < n} be the corresponding set of vertices in second copy of L,. Then V = V(Sh(L,)) = V1 U Va.
Define f : V — V4\{0} as:

b if i=1,2(mod 6),
fui) =S¢ if i=4,5(mod 6),
a if ¢=0,3(mod 6),

c if i=1,2(mod 6),
fvi)=<b if =4 5(mod6),
a if i=0,3(mod 6),

f(u;):a for i=1,2,3,---,n,
f(vé):a for i=1,2,3,---,n.

Then, f is an a-neighbourhood Vi—magic labeling of Sh(Ly). ]

Corollary 2.36 Sh(Ly,) € Qa0 for all n = 2(mod 3).

Proof The proof directly follows from Theorems 2.34 and 2.35. m|

Theorem 2.37 Sh(Ln+2) € Qo for allm € N.

Proof By labeling all the vertices by a,we get Sh(Ln+2) € Qo for all n. a

Theorem 2.38 Sh(Ln+2) € Qa for alln € N.

Proof Let G be the shadow graph Sh(Ln42). Let Vi = {us,v; : 0 < i < n+1} and E1 =
{uithit1, vivig1 : 0 <4 < n}U{uv; : 1 <7 < n} be the vertex and edge set of first copy of Ln42 and
let Vo = {uj,v; : 0 < i < n+ 1} be the corresponding set of vertices in second copy of L,t2. Define
£ 5 V(Sh(Lns2)) — Va\{0} as:

flus) = f(vi))=b for i=0,1,2,3,--- ,n+1,

fw)) =fw)=c for i=0,1,2,3,--- ,n+1,

Then, N;r (u) = a for all vertices u in Sh(Ln+2). O
Corollary 2.39 Sh(Lnt2) € Qa,0 for alln € N.
Proof The proof directly follows from Theorems 2.37 and 2.38. m|

Theorem 2.40 Sh(CBy) € Qq for alln > 1.

Proof Let {u;,v; : 1 < i < n} be the vertex set of first copy of CB,, where v; (1 < i < n) are
the pendant vertices adjacent to u; (1 < ¢ < n). Let {uj,v; : 1 <14 < n} be the corresponding set of
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vertices in second copy of CB,,. Define f : V(Sh(CB,)) — Vi\{0} as

flu;)) = b if 1<i<m
flu)) = ¢ if 1<i<n
a if 71=1 or n,
floi)) = ) _
b if 1<i<n,
, a if i=1orn,
fo)) = . .
c if 1<i<n.
Then f is an a—neighbourhood Vi;—magic labeling of CB,,. m|

Theorem 2.41 Sh(CBy) € Qo for alln € N.

Proof By labeling all the vertices by a,we get Sh(CB,) € Qo. ad

Corollary 2.42 Sh(CB;) € Qa0 for alln > 1.

Proof The proof directly follows from Theorems 2.40 and 2.41. a

Theorem 2.43 Sh(Kmmn) € Qa for allm > 1 and n > 1.

Proof Let G be the shadow graph Sh(K,,»). Let X = {u1,uz,us, -+ ,um}andY = {v1,v2,v3, -+ ,0n}
be the bipartition of the first copy of K, » and let X' = {u], us, us, ..., up, } and Y’ = {v1, vy, 05, ..., v, }
be the corresponding bipartition second copy of K . Define f: V(G) — V4\{0} as:

b if i=1, b if j=1,
flw)=<c if i=2, flo))=qc if j=2
a if i>2 a if j>2

fuj)=a for 1 <i<mand f(v;) =a for 1 <j<n.

Then f is an a—neighbourhood Vi—magic labeling of Sh(Km,»). This completes the proof of the
theorem. a

Theorem 2.44 Sh(Km.n) € Qo for allm,n € N.

Proof Labeling all the vertices by a, we get Sh(Km,n) € Qo. O

Corollary 2.45 Sh(Kmn) € Qa0 for allm >1 and n > 1.

Proof The proof directly follows from Theorems 2.43 and 2.44. m|

Theorem 2.46 Sh(By) € Qq for all n = 1(mod 2).

Proof Let G be the shadow graph Sh(By,). Let vertex set of first copy of By, be Vi = {(u, v;), (us,v;) :
1<i<n,1<j<2}, where {u,u1,u2,us, - ,un} and {v1,v2} be the vertex sets of S, and P» re-
spectively, and u be the central vertex, u}s are pendant vertices in S,. Also let Vo = {(v/,v}), (uf, v}) :
1 <i<n,1<j <2} be the corresponding vertex set of second copy of B,. Then V(G) = Vi U Va.
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Define f : V(G) — V4\{0} as:

b if j=1, b if j=1land1<i<n,
f(u7vj) = . . and f(ui7vj) = . X X
c if j=2, c if j=2and1<i<n,

S, vi) =afor j=1,2 and f(u;,v;) =a for 1<i<n, 1<j<2
Clearly, f is an a—neighbourhood Vi—magic labeling of Sh(By). m]
Theorem 2.47 Sh(By) € Qo for alln € N.

Proof By labeling all the vertices by a, we get Sh(By) € Q. ad

Corollary 2.48 Sh(B,) € Qa0 for all n = 1(mod 2).

Proof The proof follows from Theorems 2.46 and 2.47. a

Theorem 2.49 Sh(Gr) € Qo for all n.

Proof The degree of vertices in Sh(By) is either 4 or 6 or 2n. If we label all the vertices by a, we
get N;r(u) =0 for all u € V(Sh(Gnr)). O

Theorem 2.50 Sh(Gr) € Qa for all n = 2(mod 4).

Proof Let G be the shadow graph Sh(Gr). Let Vi = {u,u; : 1 <4 < 2n} and E1 = {uuzi—1 :
1 <i<n}U{uiuirr : 1 <i<2n—1} U {uznui} be the vertex and edge set of first copy of G,. Let
Vo = {u/,u} : 1 <i < 2n} be the corresponding vertex set of second copy of G,,.Then V(G) = V; U Va.
Define f : V(G) — V4\{0} as:

f(u)=0b, f(u')=cand f(u;) =a for 1 <i < 2n,

a if i=0(mod 4),
b if i=1(mod 4),
flu) = o
a if i=2(mod 4),
¢ if i=3(mod 4).
Then f is an a—neighbourhood Vi;—magic labeling for Sh(Gy). O

Corollary 2.51 Sh(G,) € Qa0 for all n = 2(mod 4).

Proof The proof directly follows from Theorems 2.49 and 2.50. m|
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Abstract: A set S C V(G) of vertices in a graph G is called a packing of G if the closed
neighborhood of the vertices of S are pairwise disjoint in G. A subset S of V(G) is called
an open packing of G if the open neighborhood of the vertices of S are pairwise disjoint in

G. We have investigated exact value of these parameters for triangular snakes.
Key Words: Neighborhood, packing, Smarandache k-packing, open packing.
AMS(2010): 05C70.

§1. Introduction

We begin with the finite, connected and undirected graph G = (V(G), E(G)) without multiple edges
and loops. For a vertex v € V(G), the open neighborhood N(v) of v is defined as N(v) = {u €
V(G)/uv € E(G)} and the closed neighborhood N[v] = {v} U N(v). We denote the degree of a vertex
v € V(G) in a graph G by dg(v). The minimum degree among the vertices of G is denoted by §(G)
and the maximum degree among the vertices of G is denoted by A(G). For any real number n, |n|
denotes the greatest integer not greater than that n and [n] denotes the smallest integer not less than

that n. For the various graph theoretic notations and terminology, we follows West [8] and Haynes et
al. [3].

Definition 1.1 The triangular snake T}, is obtained from the path P, by replacing every edge of a path
by a triangle Cs.

Definition 1.2 An alternate triangular snake AT, is obtained from a path P, with vertices ui,uz, -« ,Un
by joining u; and ui+1 (alternately) to a new vertex v;. That is every alternate edge of a path is replaced
by 03 .

Definition 1.3 The double triangular snake D(Ty) is obtained from a path P, with vertices vi,v2, -+ ,Un
by joining v; and vit1 to a new wvertex w; for i = 1,2,--- . n — 1 and to a new verter u; for i =
1,2,---,n—1.

Definition 1.4 A double alternate triangular snake D(ATy) consists of two alternate triangular snakes

which have a common path.

1Received November 21, 2018, Accepted June 3, 2019.
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A packing of a graph G is a set of vertices whose closed neighborhoods are pairwise disjoint.
Generally, a Smarandache k-packing of a graph G is a set of vertices whose closed neighborhoods
intersect just in k vertices, and disjoint if k& = 0. Equivalently, a packing of a graph G is a set of
vertices whose elements are pairwise at distance at least 3 apart in G. The maximum cardinality of a
packing set of G is called the packing number and it is denoted by p(G). This concept was introduced
by Biggs [1].

A subset S of V(@) is an open packing of G if the open neighborhoods of the vertices of S are
pairwise disjoint in G. The maximum cardinality of an open packing set is called the open packing
number and is denoted by p°. This concept was introduced by Henning and Slater [5]. A brief account
of on open packing and its related concepts can be found in [2,4,6,7]. In the present paper, we obtain

the packing and open packing number of various snakes.

§2. Main Results

Theorem 2.1 Forn > 3, p(G) = [n

g—‘ , where G is triangular snake T, and double triangular snake
D(Ty).

Proof The triangular snake T, is obtained from a path P, with vertices v1,v2,- -+ , v, by joining
v; and v;11 to a new vertex w; for ¢ = 1,2,3,--- ;n — 1 while to construct double triangular snake
D(T,) from a path P, with vertices v1,v2,--,v, by joining v; and v;y+1 to a new vertex w; for
i=1,2,3,---,n—1 and to a new vertex u; for i =1,2,--- ,n— 1.

If S is any packing set of G then it is obvious that v; must in S as dg(v1) = 2 = §(G).

We construct a set S of vertices as follows:
S = {U3i+1/0 <i< [%W - 1}

Then |S| = [E-‘ Moreover S is a packing set of G as N[v] N N[u] # ¢ for all v,u € S. For any
w € V(G) =S, N[v]N N[w] # ¢ and N[u] N N[w] # ¢. Thus, S is a maximal packing set of G.
Therefore any superset containing the vertices greater than that of |S| can not be a packing set of G.

Hence

p(GQ) = H . O

Theorem 2.2 Forn > 3, p°(G) = [g-‘ , where G is triangular snake T, and double triangular snake
D(Ty).

Proof The triangular snake T), is obtained from a path P, with vertices v1,v2, -+ , v, by joining
v; and v;11 to a new vertex w; for ¢ = 1,2,3,--- ;n — 1 while to construct double triangular snake
D(T,) from a path P, with vertices v1,v2,---,v, by joining v; and v;y+1 to a new vertex w; for
i=1,2,3,---,n—1 and to a new vertex u; for i =1,2,--- ,n — 1.

If S is any open packing set of G then it is obvious that v; must in S as dg(v1) = 2 = §(G).

We construct a set S of vertices as follows:
S = {U3i+1/0 <i< [%W - 1}

Then |S| = [g-‘ Moreover S is an open packing set of G as N(v) N N(u) # ¢ for all v,u € S. For any
we V(G)— S, N(v)NN(w) # ¢ and N(u) N N(w) # ¢. Thus, S is a maximal open packing set of G.

Therefore any superset containing the vertices greater than that of |S| can not be an open packing set
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of G. Hence
@=[2] :
P(G) = |3
Illustration 2.3 The graph 7% and its packing number and open packing number are shown Figure 1

while the graph D(T%) and its packing number and open packing number are shown in Figure 2.

Wi W, Ws Wy Ws I3

9,
%

=
=

¥ Y %

-

Figure 1 p(T7) = p°(T7) =3

W Wy Ws Wy Ws W

U 2] 23 Uy Us Us

Figure 2 p(D(17)) = p°(D(17)) =3

Theorem 2.4 Forn > 3, p(G) = [%W , where G is alternate triangular snake ATy, and double alternate
triangular snake D(AT,).

Proof An alternate triangular snake AT, is obtained from a path P, with vertices v1,v2, -, vp
by joining v; and v;41 (alternately) to a new vertex w;, i = 1,2,--- ,n — 1 while to construct a double
alternate triangular snake D(AT),) from a path P, with vertices vi,v2,- -+ ,vn by joining v; and vit1

(alternately) to a new vertex w;, ¢ = 1,2,--- ;n — 1 and to a new vertex u; for ¢ = 1,2,--- ;n — 1.
If S is any packing set of GG then it is obvious that v; must in S as
1, if nisodd,

da(v1) = 6(G) =
2, if nis even.

We construct a set S of vertices as follows:
. n
s={wmnp<i<|3] -1}

Then |S| = [E-‘ Moreover S is a packing set of G as N[v] N N[u] # ¢ for all v,u € S. For any
w € V(G) — S, NvJN N[w] # ¢ and N[u] N N[w] # ¢. Thus, S is a maximal packing set of G.
Therefore any superset containing the vertices greater than that of |\S| can not be a packing set of G.

Hence
wer = [2] m

Illustration 2.5 The graph AT7 and its packing number is shown Figure 3 while the graph D(AT%)
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and its packing number is shown in Figure 4.

r/W)l\r\ Wz W3
® \J ), 9, \
L L) L Y % % Y
Figure 3 p(AT7) =3
r/WIXW : W3
Y ) L Y % % Y
U U U

Figure 4 p(D(AT7)) =3

Theorem 2.6 For n > 3, p°(G) = [g-‘, where G is alternate triangular snake AT, and double
alternate triangular snake D(AT).

Proof An alternate triangular snake AT, is obtained from a path P, with vertices v1,v2, -, vp
by joining v; and v;41 (alternately) to a new vertex w;, i = 1,2,--- ,n — 1 while to construct a double
alternate triangular snake D(AT),) from a path P, with vertices vi,v2,--- ,vn by joining v; and vit1

(alternately) to a new vertex w;, ¢ = 1,2,--- ;n — 1 and to a new vertex u; for ¢ = 1,2,--- ;n — 1.

If S is any open packing set of GG then it is obvious that v1 must in S as

1, if nisodd,
da(v1) = 6(G) =
2, if nis even.

We construct a set S of vertices as follows:

{v4i+1,v4i+2/0 <3< [g-‘ } for nis odd

{v4i+2,v4i+3/0 <3< {gJ } for nis odd

Then |S| = E-‘. Moreover S is an open packing set of G as N(v) N N(u) # ¢ for all v,u € S. For any
we V(G)—S, Nlv)NN(w) # ¢ and N(u) N N(w) # ¢. Thus, S is a maximal open packing set of G.
Therefore any superset containing the vertices greater than that of |S| can not be an open packing set
of G. Hence

p°(G) = [Ew : O

Illustration 2.7 The graph AT7 and its open packing number is shown Figure 5 while the graph
D(AT~) and its open packing number is shown in Figure 6.
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W W, W
® G/ 8,
Y ) b % % % Y
Figure 5 p°(AT7) =4
Wy Wy
L Y ks % Y
U U

Figure 6 p°(D(AT7)) =4

§3. Concluding Remarks

The concept of packing number relates three important graph parameters - neighborhood of a vertex,
adjacency between two vertices and domination in graphs. We have investigated packing and open

packing numbers of triangular snakes.
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§1. Introduction

A topological index is a mathematical measure which correlates to the chemical structures of any simple
finite graph. They are invariant under the graph isomorphism. They play an important role in the study
of QSAR/QSPR. In theoretical chemistry, molecular structure descriptors (also called topological
indices) are used for modeling physicochemical, pharmacologic, toxicologic, nanoscience, biological and
other properties of chemical compounds. Wiener index is the first distance-based topological index
that were defined by Wiener [5]. For more details, see [9,10,11,12].

The status [2] of a vertex v € V(QG) is defined as the sum of its distance from every other vertex in

V(G) and is denoted by o (v), that is, cg(v) = > da(u,v), where dg(u,v) is the distance between
ueV(G)
uw and v in G. The status of vertex v is also called as transmisson of v [2].

The Wiener index W (G) of a connected graph G is defined as the sum of the distances between

all pairs of vertices of GG, that is,

W(G):% 3 dg(u,v):% 3 o).

u,vEV(G) uweV (@)

The first Zagreb indez is defined as

Mi(G)= Y (de(w)’= Y (da(u)+dc(v))

ueV(QG) weE(G)

1Received May 9, 2017, Accepted March 10, 2018.
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and the second Zagreb index is defined as

My(G) = Y de(u)da(v).
uveE(G)
The Zagreb indices are found to have applications in QSPR and QSAR studies as well, see [7]. The
first and second Zagreb coindices were first introduced by Ashrafi et al. [8]. They are defined as follows:

Mi(@) = Y (de(u) +da(v))

uwvg E(G)

and the second Zagreb index is defined as

Ma(G)= Y da(wde(v).

wwg E(G)

Motivated by the invariants like Zagreb indices, Ramane et al.[1] proposed the first status connec-

tivity index S1(G) and first status connectivity coindex S1(G) of a connected graph G as

S1(G)= (Uc(u)+og(v)> and 51(G) = 3O (og(u)+og(v)).
uweE(G) w¢ E(G)

Similarly, the second status connectivity index So(G) and second status connectivity coindex S2(G)

of a connected graph G as

S (G)= Y og(u)oc(v) and S2(G) = Y.  og(u)oc(v).
wveE(G) w¢ E(G)

The bounds for the status connectivity indices are determined in [1]. Also they are discussed
the linear regression analysis of the distance-based indices with the boiling points of benzenoid hy-
drocarbons and the linear model based on the status index is better than the models corresponding
to the other distance based indices. In this sequence, here we obtain the exact formulae for second
status connectivity indices and its coindices of some composite graphs such as Cartesian product, join,

composition of two connected graphs.

§2. Main Results

In this section, we obtain the second status connectivity indices and its coindices of Cartesian product,

join and composition of two graphs.

Lemma 2.1 Let G be a connected graph on n vertices. Then

S2(G) =2W(G) — = Y (oa(w)® - S:(G).

ueV(G)
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Proof By the definition of S2, we obtain:

S2(G) = ) oclwoc(v)

uwvg E(G)
= Y sewoc) - > oa(uoa(v)

{u,v}CV(G) weEE(G)

1 2 5
_ 5(( > ew) - Y (Uc(u)))—Sg(G)

ueV(G) ueV(G)
= W@~ 5 O (ea) - 5:(G) o
ueV(G)

Let C,, and P, denote the cycle and path on n vertices, respectively. It is known that [1]

2 —
Sy (Py) = %n(n —1)2n—1) and W(P,) = %
and
3 . . 3 . .
ot if n is even, =, if n is even,
S1(Ch) = 2y and W(C,) = >,
%7 otherwise; %7 otherwise.

We therefore have that

Lemma 2.2 For cycle C,, and path P,, we get that

5
S e
5 if n is even

%671)2 if n is odd;

(1) Forn > 3, S2(Cr) =
_ 7L2(7L71)
2.1 Cartesian Product

The Cartesian product, GO H, of the graphs G and H has the vertex set V(GO H) = V(G) x V(H)
and (u,z)(v,y) is an edge of GOH if u = v and xy € E(H) or, wv € E(G) and z = y. To each
vertex u € V(Q), there is an isomorphic copy of H in GO H and to each vertex v € V(H), there is an
isomorphic copy of G in GOH.

Theorem 2.3 Let G and H be two connected graphs with ni,n2 vertices and mi1, ma edges, respectively.
Then

S2(GOH) = n3Sa(G) + niSa(H) 4 2nina(S1(G)W (H) 4+ S1(H)W(Q))
+nZma Z (UG(Ui))2+n§m1 Z (UH(US))2‘

w €V(G) vs €V (H)

Proof From the structure of GOH, the distance between two vertices (ui, vr) and (ux,vs) of GOH
is da(ui, ux) + du (vr, vs). Moreover, the degree of a vertex (u;, vy) in V(GOH) is da(ui) + du(vr). By
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the definition of o(u) for the graph GOH and a vertex (u;,v,) € V(GOH), we have

O—GDH((Uiva)) = Z dGDH((Uiva)v(Ukva))
(up,vs)EV(GOH)

Z Z (dG(Ui7Uk)+dG(vr,vs))

up€V(G) vs€V(H)

= mnoog(ui) +nioy(vr). (2.1)

Hence by the definitions of Sz and GOH, we have

S2(GOH) = Z ocon ((ui,vs))ocom ((uk, vs))
(ug,vs)(up,vs)EE(GOH)
+ > ocon((ui,vr))oaon ((us, vs))
(ui,vs)(up,vs)EE(GOH)
= A1—|—A2, (2.2)
where
A = > ocan ((ui,vs))ocon ((uk, vs))

(ui,vs)(up,vs)EE(GOH)

= Z Z (nzac(ui) + nlaH(vs)) (ngac(uk) + nla'H(vs)>7 by (2.1)

u;jup,€E(G)vs €V (H)

- Y ¥ (n%og(ui)og(uk) + ninsoc(ui)ow (vs)
u;up €E(G) vs €V (H)

+nineoy (US)O'G(Uk) + nf (O'H (US))2>

= nj Z oc(ui)oa(ur) + nina Z o (vs) Z (oc(us) + oc(uk))

u;up €E(G) vs €V (H) u;up €E(G)
+nimi Y (o (vs))®
vs€V(H)
= n58(G) + 2mnaS1(G)W (H) + nima > (om(vs))”.
vsEV(H)

and a similar argument of Ay, we obtain

Az

Z ocou((ui,vr))ocom ((wi,vs))

(ui,vs)(ug,vs)EE(GOH)

niSa(H) + 2nanaS1(H)W (G) + nima Y (oa(w))®.
u; EV(G)

From (2.2) and A1, A2, we obtain:

S2(GOH) = n3S2(G) + niSa(H) 4 2nina(S1(G)W (H) 4+ S1(H)W(Q))
+n3ma Z (oc(ui)* + nima Z (o (vs))?. =

u; EV(G) vs €V (H)
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Remark 2.4 For each vertex (ui,vr) in GOH,

2
UGDH((Ui,'Ur)))
(uq,vr)EV(GOH)

= Z Z (nzac(ui)+n10H(vr-)>27 by (2.1)

u; €V(G) vy €V (H)

> Y (e +nilon () + 2mimoc(uon(v))

u; €V(G) vreV(H)

ny Y (oau)’+nd Y (on(v)? +8nanaW(G)W (H).
u; €V(Q) v €V (H)

By Theorem 2.3, Lemma 2.1, Remark 2.4 and this fact that [3], W(GOH) = n3W (G) + niW (H),

the following theorem is straightforward.

Theorem 2.5 Let G and H be two connected graphs with n1,ne vertices and mi1, ma edges, respectively.
Then

S2(GOH) = 2[mW(G) +niW (H)J* — n3S2(G) — niSa(H)
—2n1n2[S1 (G)W (H) + Sy (H)W (G) + 2W (G)W (H)]

n2(ns 4+ 2m ni(n1 +2m
_w Dy (aG(ui)f—% > (om(vn)™
wEev(a) vr V()

2.2 Join

The join G + H of two graphs G and H is the union G U H together with all the edges joining V(G)
and V(H). From the structure of G + H, the distance between two vertices u and v of G + H is

0, if u =,
det+u(u,v) = {1, if uwv € E(G) or wv € E(H) or (u € V(G) and v € V(H)),

2, otherwise.

Moreover, the degree of a vertex v in V(G + H) is

de() + |V(H)|,if veV(Q),

1O = o)+ V@) if ve v,

Theorem 2.6 Let G and H be two connected graphs with n1,ne vertices and m1, mo edges, respectively.
Then

So(G+H) = M(G)+ Ma(H) — (2n1 +na2 — 2)M1(G)
—(2n2 +n1 — 2)M,(H)
+(2n1 +n2 — 2)
—(2n2 +mn1 —2)

[(2n1 + n2 — 2)m1 — 2nima]
[(2712 +ny — 2)m2 — 2noma

—|—n1n2(2n1 + n2 — 2)] + 4dmimeo.



Second Status Connectivity Indices and its Coindices of Composite Graphs 109

Proof Let u be a vertex in V(G). Then from the structure of G + H, we obtain:

oayu(u) = > darn((u,v))
veV(G+H)
S S T SRRt o
veEV(G) u#v,uvg E(G) veV(Q), u#v,uveE(G) veV (H)

= 2n1+n2 —2—dg(u).

Similarly, if v is a vertex of H, then ogym(v) = 2nz + n1 — 2 — dg(v).

The edge set of G + H can be partitioned into three subsets, namely,

Ei ={uw € E(G+ H)|uv € E(G)},

E; ={uv € E(G+ H)|uw € E(H)} and

Es={we E(G+ H)lue V(G), ve V(H)}.

The contribution of the edges in E; is given by

S:G+H) = Y ocru(wocin(v)
= Z <2n1 +ng—2— dg(u)) (2n1 +ng —2— dG(v))
uwveE(G)
= Z [(2n1 +n2 — 2)* — (2n1 + n2 — 2)da(v)
weE(G)
—(2n1 + n2 — 2)dg(u) + de(u)da (v)]
= (2n1 4 n2 — 2)*m1 — (201 + n2 — 2) M1 (G) + M2 (G). (2.3)

Similarly, the contribution of the edges in Ej5 is given by

S2(G+H) = Y ocrn(uw)ocrn(v)
= (2n2 +ny — 2)2TI’L2 — (2n2 +ni — 2)M1 (H) =+ MQ(H) (24)

The contribution of the edges in E3 is given by

S2(G+ H)

Z oc+u(u)oct+u(v)

uvEE3

= Z Z (2711 +ng—2— dc(u)> (2n2 +n—-2- dH(”U))

weV (G) veEV (H)

- >y ¥ [(in oy —2)(2n2 + 11— 2) — (201 + o — 2)dir(v)
weV(G) veV (H)

—(2na + 11 — 2)de () + da (u)dH(v)]
= (2n1 —+ no — 2)(2n2 +ni — 2)n1n2 — inTI’LQ(in + ng — 2)
—2nom (Qng +ny — 2) + 4dmimeo. (2.5)
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The total contribution of the edges in G + H and its S2(G + H) is given by

S2(G+H) = M(G)+ Mz(H) — (2n1 + n2 — 2)M:1(G)
—(2n2 +n1 — 2)M:1(H)
+(2n1 + n2 — 2)[(2n1 + n2 — 2)m1 — 2n1m2]
—(2n2 + n1 — 2)[(2n2 + n1 — 2)ma

—2nami + ninz(2n1 + n2 — 2)] + dmima. O
Remark 2.7 For each vertex v in G + H,

SN (oern@)? = Y (oern@)?+ Y. (0arm(v))?

veV(G+H) veV(G) veEV(H)
= > @u4n-2-de)’+ Y (2n2+mn—2—dev))?
vEV(G) vEV (H)
- ¥ <(2n1 s —2)? 1 (de()? — 2(2n1 + n2 — 2)dg(v)>
veV(G)
+ Y ((2n2 = 2)% 4 (da(0)? — 2(2n2 + n1 — 2)dH(v)>
vEV(H)

= (2n1 + ngo — 2)2711 =+ Ml(G) — 4m1(2n1 —+ ng — 2)
+(2n2 +ny — 2)2n2 + Ml(H) — 4m2(2n2 +ny — 2).

According to [3], we know that

W(GE+H) = [VIQIIVG)] =1+ [V(H)(V(H) 1)
+IVGIIV(H)| - |EG)| - [E(H)|.

By this formula, Theorem 2.6, Lemma 2.1 and Remark 2.7, we obtain the following theorem.

Theorem 2.8 Let G and H be two connected graphs with ni,ne vertices and mi1, ma edges, respectively.
Then

S2(G+H) = M12(G) (4n1 +on, — 5) + % <4n2 +on, — 5)
~Ms(G) — May(H) + 2<n1(n1 —1) + na(nz — 1) + nana — my — m2>
—(2n1 +na — 2)<(2n1 s — 2)(% +ma) — 2(ma + n1m2)>
—(2ns + 11 — 2)<(2n2 - 2)(% — m2) — 2(ma — nama1)

—n1n2(2n1 + ng — 2)) — 4dmims.

2.3 Composition

The composition of two graphs G and H is denoted by G[H]. The vertex set of G[H] is V(G) x V(H)
and any two vertices (us;,v-) and (ug,vs) are adjacent if and only if w;ur € E(G) or u; = uy and
vrvs € E(H).

Theorem 2.9 Let G and H be two connected graphs with n1,ne vertices and m1, mo edges, respectively.
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Then

SQ(G[H]) = TZ%SQ(G) + 271%(712(712 — 1) — mz)Sl(G) + 8n2m2(n2 — 1)W(G)
—2712W(G)M1(H) — 2n1 (le — 1)M1 (H) + nle(H)

tnime Y (oa(w))® +4(na — 1)* (mima + man3)
u; EV(GQ)

+4mima(ma — 2n2(n2 — 1)).

Proof For the composition of two graphs, the degree of a vertex (u,v) of G[H] is given by
dga)((u,v)) = neda(u) + du (v). Moreover, the distance between two vertices (ui,v-) and (ux,vs) of
G[H] is

da(ui,uk) u; # ug
darm (ui, vr), (g, vs)) = € 2w = ug, vevs ¢ E(H)
1 wu; =ug, vevs € E(H).

Let (us,vr) be a vertex of G[H]. Then

o ((wi,vr)) = > dem (i, vr), (uk, vs))

(up,vs)€V(G[H])

- > de (ui, ur) + > dora ((uis vr), (i, vs))

(ug,vs)EV(G[H]), u;jFug (ui,vs)EV(G[H])
= ngog(ui) + dH(’UT) + 2(712 -1 dH(’UT))
= ngog(ui) + 2(712 — 1) — dH('UT). (26)

From the structure of G[H] and definition of Sz, we have

S:(GH]) = > > oo (s, ve)ogrm ((ui,vs))

u; EV(G) vrvs EE(H)

+ ) YooY oo ((ui,v)ocm((ui,vs))
ujup€E(G) v €V (H) vs €V (H)

A, +A27 (27)

where,

A Z Z oara (wi, vr))oam ((ui, vs))

u, €V(G) vrvs €E(H)

= > Y (meoo(w) + 2 — 1) — du(vn)) (n2oc(w) + 2z — 1) = da ()

u; €V(G) vrvs EE(H)

= Z Z [ng(ac(ui))2 + 2(n2 — 1)naoa(ui) — neog(ui)du (vs) + 2(n2 — V)n2oa(us)
u; €V(G) vrvs €E(H)

+4(ng — 1)* = 2(na — 1)du (vs) — naoe (wi)de (v,) — 2(na — 1)dm (v,) + dH(fur)dH(vs)]

= Z Z [n%(ac(ui))z + 4712(77,2 — 1)UG(7.LZ') + 4(712 — 1) — TIQO'G('LLi)(dH('UT) =+ dH(’US))
u; €V(G) vrvs EE(H)
—2(n2 — 1)(du(vr) + du(vs)) + da (vr)da (vs)

= ngmg Z (a'g(ui))2 + 8n2(n2 — 1)7)’L2W(G) + 77,1M2(H)
u; EV(G)
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—QnQW(G)M1 (H) — Q(ng — 1)n1M1 (H)

Az

> Yo D> oo ((uivn)ocim ((ur, vs))

ujup, €V(G) v EV(H) vsEV(H)

— Z Z Z (anG(Ui) +2(n2 —1) — dH(vr)) (ngac(uk) +2(nz—1) — dH(vs)>

u;up€V(G) vreV(H)vs€V(H)

= Z Z Z [nch(m)ac(uk) +2(n2 — V)ne(oa(us) + oc(ug)) + 4(na — 1)?

uup€V(G) vreV(H)vs€V(H)
—ngoa(ui)dg(vs) — nedu (vr)og(uk) — 2(n2 — 1)(du (vr) + du(vr)) + dH(vT)dH(vs)]
n552(G) + 2n3(na(na — 1) — ma)S1(G) — 8namima(nz — 1) + 4mam3 + 4(n2 — 1)%man3.

Hence

SQ(G[H]) = n%Sz(G) + 2n§(n2(n2 — 1) — mz)Sl(G) + 8n2m2(n2 — 1)W(G)
—QnQW(G)M1 (H) — 2 (nz — 1)M1 (H) + nle(H)

+n3ma Z (o (ui))® + 4(n2 — 1)*(nimsa + min3)
u; EV(G)
+4m1m2(m2 — 2n2(n2 — 1)) O

Remark 2.10 Let (u;,v,) be a vertex of G[H]. Then

> (Oaum((ui,v)® = D> Y (neoc(w)+2(ne — 1) — du(vr))’

(us,vr) EV(G[H]) u; €V(G) vreV(H)

= Y Y (nBloa)? + A~ 1P+ (@n ()

u; €V(G) vr €V (H)
Fna(ns — Dog(u:) — 2n206 (ui)da (vr) — 2(na — 1)dH(v,n)>

= ny Y (o6(w))?+niM(H)
u; EV(G)

+4n2(n2(n2 — 1) — ma) Z oc(us)
u; EV(G)
+4(n2 — 1)(nin2(n2 — 1) — ma).
Recall from [3] that
W(GIH]) = [V(H)[* (W(G) + [V(G)]) = V(G| (IV(H)| + | E(H))).

In the next theorem, we obtain a formula for S1(G[H]) according to W(G[H]), S2(G[H]) and
Remark 2.10.

Theorem 2.11 Let G and H be two connected graphs with ni, na vertices and m1, ma edges, respectively.
Then

Sy (G[H]) = <2n2W(G) oni(ng — 1) — %)Ml(H) — i Ms(H) — n3S2(G)

—2n3(na(na — 1) — ma)S1(G) — <8n2m2(n1 1)+ 2n§)W(G)
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_%(nz —2ms) Y (oa(w))? = 2na(na(ne — 1) —ma) Y oa(u)

w EV(G) W EV(G)
+nin2(2ng — 1) — nimo — 2(n2 — 1)2(n1n2 + 2n1me + 2m1n§)

+2ma(n2 — 1)(dminz + 1) — 4m1m§.
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§1. Introduction

For standard terminology and notion in graph theory, we refer the reader to the text-book of Harary
[2]. The non-standard will be given in this paper as and when required.

Let G = (V, E) be a connected graph.For any two vertices u,v € V(G), the detour distance D(u,v)
is the length of the longest u — v path in G. The eccentricity e(u) of a vertex u is the distance to a
vertex farthest from u. The radius r(G) of G is defined by

r(G) = min{e(u) : u € G}.

For any vertex u in G, the detour eccentricity D.(u) of u is the detour distance to a vertex
farthest from w. The detour radius D,(G) of G is defined by D,(G) = min{D.(u) : u € G}. The
diameter d(G) of G is defined by d(G) = max{e(u) : u € G} and the detour diameter Dy4(G) of G is
max{De(u) : u € G}.

The detour radial graph DR(G) of G = (V, E) is a graph with V(DR(G)) = V(G) and any two
vertices u and v in DR(G) are joined by an edge if and only if D(u,v) = D,(G). This concept were
introduced by Ganeshwari and Pethanachi Selvam [1].

To model individuals’ preferences towards each other in a group, Harary [3] introduced the concept
of signed graphs in 1953. A signed graph S = (G, o) is a graph G = (V, E') whose edges are labeled with
positive and negative signs (i.e., o : E(G) — {4, —}). The vertexes of a graph represent people and an
edge connecting two nodes signifies a relationship between individuals. The signed graph captures the
attitudes between people, where a positive (negative edge) represents liking (disliking). An unsigned

graph is a signed graph with the signs removed. Similar to an unsigned graph, there are many active

1Received August 27, 2018, Accepted June 6, 2019.
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areas of research for signed graphs. For more new notions on signed graphs refer the papers.

The sign of a cycle (this is the edge set of a simple cycle) is defined to be the product of the signs
of its edges; in other words, a cycle is positive if it contains an even number of negative edges and
negative if it contains an odd number of negative edges. A signed graph S is said to be balanced if
every cycle in it is positive. A signed graph S is called totally unbalanced if every cycle in S is negative.
A chord is an edge joining two non adjacent vertices in a cycle.

A marking of S is a function ¢ : V(G) — {4, —}. Given a signed graph S one can easily define a

marking ¢ of S as follows:

For any vertez v € V(S),

uveE(S)
the marking ¢ of S is called canonical marking of S.

The following are the fundamental results about balance, the second being a more advanced form

of the first. Note that in a bipartition of a set, V = V; U V4, the disjoint subsets may be empty.

Theorem 1.1 A signed graph S is balanced if and only if either of the following equivalent conditions
is satisfied:

(i) Its vertex set has a bipartition V. = Vi U Va such that every positive edge joins vertices in Vi
or in Va, and every negative edge joins a vertex in Vi and a vertezx in Vz; (Harary [3])

(i) There exists a marking p of its vertices such that each edge uv in I satisfies o(uv) = ((u){(v).
(Sampathkumar [4])

Switching S with respect to a marking ¢ is the operation of changing the sign of every edge of
S to its opposite whenever its end vertices are of opposite signs. The resulting signed graph S¢(S) is
said switched signed graph. A signed graph S is called to switch to another signed graph S’ written
S ~ 8', whenever their exists a marking ¢ such that S¢(S) = S’, where 2 denotes the usual equivalence
relation of isomorphism in the class of signed graphs. Hence, if S ~ S’, we shall say that S and S’ are
switching equivalent. Two signed graphs S1 and S are signed isomorphic (written S1 =2 .S5) if there is
a one-to-one correspondence between their vertex sets which preserve adjacency as well as sign.

Two signed graphs S1 = (G1,01) and Sz = (G2,02) are said to be weakly isomorphic (see [21])
or cycle isomorphic (see [22]) if there exists an isomorphism ¢ : G1 — G2 such that the sign of every
cycle Z in S1 equals to the sign of ¢(Z) in S2. More results on signed graphs can be found in references

[4-22]. For example, the following result is well known.

Theorem 1.2 (T. Zaslavsky, [22]) Given a graph G, any two signed graphs in ¥(G), where ¥(G)
denotes the set of all the signed graphs possible for a graph G, are switching equivalent if and only if

they are cycle isomorphic.

§2. Detour Radial Signed Graphs

Motivated by the existing definition of complement of a signed graph, we now extend the notion of
detour radial graphs to signed graphs as follows: The detour radial signed graph DR(S) of a signed
graph S = (G, o) is a signed graph whose underlying graph is DR(G) and sign of any edge uv is DR(S)
is {(u)¢(v), where ( is the canonical marking of S. Further, a signed graph S = (G, o) is called detour
radial signed graph, if S = DR(S’) for some signed graph S’. The following result restricts the class
of detour radial graphs.
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Theorem 2.1 For any signed graph S = (G, o), its detour radial signed graph DR(S) is balanced.

Proof Since sign of any edge ¢ = uv in DR(S) is {(u){(v), where ( is the canonical marking of S,
by Theorem 1.1, DR(S) is balanced. O

For any positive integer k, the k** iterated detour radial signed graph, DK* (S) of S is defined as
follows:

DRY(S) = S, DR*(S) = DR(DR*1(S)).

Corollary 2.2 For any signed graph S = (G, o) and for any positive integer k, DR*(S) is balanced.

The following result characterize signed graphs which are detour radial signed graphs.

Theorem 2.3 A signed graph S = (G, 0) is a detour radial signed graph if, and only if, S is balanced
signed graph and its underlying graph G is a detour radial graph.

Proof Suppose that S is balanced and G is a detour radial graph. Then there exists a graph G’
such that DR(G’) = G. Since S is balanced, by Theorem 1.1, there exists a marking ¢ of G such that
each edge uv in S satisfies o(uv) = ((u)((v). Now consider the signed graph S’ = (G’,¢’), where for
any edge e in G’, o’(e) is the marking of the corresponding vertex in G. Then clearly, DR(S’) = S.
Hence S is a detour radial signed graph.

Conversely, suppose that S = (G, o) is a detour radial signed graph. Then there exists a signed
graph S’ = (G, ¢’) such that DR(S’) = S. Hence, G is the detour radial graph of G’ and by Theorem
2.1, S is balanced. a

In [1], the authors characterizes the graphs G = (V, F) such that G = DR(G).

Theorem 2.4 Let G = (V, E) be a graph with atleast one cycle which covers all the vertices of G.
Then G and the detour radial graph DR(G) are isomorphic if and only if G is isomorphic to either K,

or Cpn, or K n with m = n.

In view of the above result, we now characterize the signed graphs such that the detour radial

signed graph and its corresponding signed graph are switching equivalent.

Theorem 2.5 For any signed graph S = (G, o) and its underlying graph G contains atleast one cycle
which covers all the vertices. Then S and the detour radial signed graph DR(S) are cycle isomorphic

if and only if the underlying of S satisfies the conditions of Theorem 2.4 and S is balanced.

Proof Suppose RD(S) ~ S. This implies, DR(G) = G and hence by Theorem 2.4, we see that
the graph G satisfies the conditions in Theorem 2.4. Now, if S is any signed graph with underlying
graph contains at least one Hamilton cycle and satisfies the conditions of Theorem 2.4. Then DR(S)
is balanced and hence if S is unbalanced and its detour radial signed graph DR(S) being balanced can
not be switching equivalent to S in accordance with Theorem 1.2. Therefore, S must be balanced.

Conversely, suppose that S balanced signed graph with the underlying graph G satisfies the
conditions of Theorem 2.4. Then, since DR(S) is balanced as per Theorem 2.1 and since DR(G) = G
by Theorem 2.4, the result follows from Theorem 1.2 again. O

In [5], P.S.K.Reddy introduced the notion radial signed graph of a signed graph and proved some

results.



A Note on Detour Radial Signed Graphs 117

Theorem 2.6 For any signed graph S = (G, o), its radial signed graph R(S) is balanced.

In [1], the authors remarked that DR(G) and R(G) are isomorphic, if G is any cycle of odd length.
We now characterize the signed graphs S such that DR(S) ~ R(S).

Theorem 2.7 For any signed graph S = (G, o), DR(S) ~ R(S) if, and only if, G = Cy, where n is
odd.

Proof Suppose that DR(S) ~ R(S). Then clearly, DR(G) ~ R(G). Hence, G is any cycle of odd
length.

Conversely, suppose that S is a signed graph whose underlying graph G is Cy, where n is odd.
Then, DR(G) = R(G). Since for any signed graph S, both DR(S) and R(S) are balanced, the result
follows by Theorem 1.2. m|
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Abstract: Let G be a (p,q) graph. Let f be a function from V(G) to the set {1,2,--- k}
where k is an integer 2 < k < |V(G)|. For each edge uv assign the label r where r is
the remainder when f(u) is divided by f(v) (or) f(v) is divided by f(u) according as
flw) > f(v) or f(v) > f(u). The function f is called a k-remainder cordial labeling of
Gif lvp (i) —vs(§)| <1,4,5 € {1, -, k} where vs(z) denote the number of vertices labeled
with 2 and |n.(0) — no(1)] < 1 where 7.(0) and 7,(1) respectively denote the number of
edges labeled with even integers and number of edges labeled with odd integers. A graph
with admits a k-remainder cordial labeling is called a k-remainder cordial graph. In this
paper we investigate the 3-remainder cordial labeling behavior of dumbbell graph, butterfly
graph, umbrella graph, C3 © Ki n.

Key Words: Dumbbell graph, butterfly graph, umbrella graph, C3 ® K ,, Smarandache

k-remainder cordial labeling.

AMS(2010): 05C78.

§1. Introduction

All graphs considered here are finite and simple. The origin of graph labeling is graceful labeling which
was introduced by Rosa (1967). The concept of cordial labeling was introduced by Cahit [1]. Motivated
by this Ponraj et al. [4, 6], introduced remainder cordial labeling of graphs and investigate the remainder
cordial labeling behavior of several graphs. Also the notion of k-remainder cordial labeling introduced in
[5] and investigate the k—remainder cordial labeling behavior of grid, subdivision of crown, subdivision
of bistar, book, Jelly fish, subdivision of Jelly fish, mongolian tent, flower graph, sunflower graph and
subdivision of ladder graph, L, ® K1, L, ® 2K1, L, ® K2. Recently [9, 10] they investigate the 3-
remainder cordial labeling behavior of the subdivision of the star, wheel, subdivision of the path, cycle,
star, complete graph, comb, crown, wheel, subdivision of the comb, armed crown, fan, square of the
path, K1, ® K2. In this paper we investigate the 3-remainder cordial labeling behavior of dumbbell
graph, butterfly graph, umbrella graph, Cs ® K1 ,,, etc. Terms are not defined here follows from Harary
[3] and Gallian [2].

1Received August 28, 2018, Accepted June 8, 2019.



120 R.Ponraj, K.Annathurai and R.Kala

§2. Preliminary Results

Definition 2.1 The corona of Gi1 with G2, G1 ® G2 is the graph obtained by taking one copy of G1

and py copies of G and joining the i*" vertex of G1 with an edge to every vertex in the i'" copy of Ga.

Definition 2.2 The graph obtained by joining two disjoint cycles, uirusz - - - upui and v1vz ...v,v1 wWith

an edge uiv1 s called dumbbell graph Db,,.

Definition 2.3 The butterfly graph BFy, n is a two even cycles of the same order say Cy, sharing a

common vertexr with m pendant edges attached at the common vertex is called a butterfly graph.

Definition 2.4 The umbrella graph Uy, is obtained from a fan F,, = P,+ K1 where Py, : ui,u2, -+ , Un
and V(K1) = {u} by pasting the end vertex of the path Py, : v1,v2,- - ,vm to the vertex of K1 of the
fan F,.

§3. k-Remainder Cordial Labeling

Definition 3.1 Let G be a (p,q) graph. Let f be a function from V(G) to the set {1,2,--- ,k} where k
is an integer 2 < k < |V(G)|. For each edge wv assign the label v where r is the remainder when f(u)
is divided by f(v) (or) f(v) is divided by f(u) according as f(u) > f(v) or f(v) > f(u). The function
f is called a k-remainder cordial labeling of G if |vs(i) —vs(§)| < 1, 4,5 € {1,---,k}, otherwise,
Smarandachely if |vs (i) —vp(5)| > 1 or |ef(0) — es(1)| > 1 for integers i,j € {1,--- ,k}, where vy(z)
denote the number of vertices labeled with x and |ne(0) — no(1)] < 1 where n.(0) and 1n,(1) respectively
denote the number of edges labeled with even integers and number of edges labeled with odd integers. A

graph with a k-remainder cordial labeling is called a k-remainder cordial graph.

Now, we investigate the 3—remainder cordial labeling behavior of the dumbbell graph Db,.

Theorem 3.2 The dumbbell graph Dby, is 3-remainder cordial for all n.

Proof Let C) : uiuz---u,ur and C’;L s vive -+ - vpv1 be two disjoint cycles of the same order n.
Let V(Db,) = V(Cn) UV (C,) and E(Db,) = E(C) U E(C,)U{uiv:}. Then the order and size of the
dumbbell graph are 2n and 2n + 1 respectively.

Case 1. n=0 (mod 3).

Assign the labels 2,3 and 1 respectively to the vertices ui,u2 and wus. Next assign the labels
1,2 and 3 to the vertices u4,us and ug respectively. Then assign the labels 2,3 and 1 respectively
to the vertices ury, us and ug. Then next assign the labels 1,2 and 3 to the vertices uio,u11 and w12
respectively. Proceeding like this until we reach the vertex w,. If n is odd then assign the labels 2,3
and 1 respectively to the vertices up—2,un—1 and u,. If n is even then assign the labels 1,2 and 3
respectively to the vertices up—2,un—1 and u, of C,. On the other hand assign the labels 3,2 and 1
respectively to the vertices vi1,v2 and vs. Next assign the labels 1,3 and 2 to the vertices v4,vs and
ve respectively. Then assign the labels 3,2 and 1 respectively to the vertices vr,vs and vg. Then next
assign the labels 1,3 and 2 to the vertices vip,v11 and vi2 respectively. Continuing like this until we
reach the vertex v,,. If n is odd then assign the labels 3,2 and 1 respectively to the vertices vn—2, vyn—1
and v,. If n is even then assign the labels 1,3 and 2 respectively to the vertices v,,—2,vn—1 and v,

of C,/I. Table 1 shows that this vertex labeling is called 3-remainder cordial labeling of the dumbbell



A Note on 3- Remainder Cordial Labeling Graphs 121

graph for n =0 (mod 3).

Nature of n | vs(1) | vr(2) | vs(3) Ne Mo
n is odd % % % n+1 n
n is even 27" 27" 27" n n+1

Table 1

Case 2. n=1 (mod 3).
Subcase 2.1 n is even.

Assign the labels to the vertices u;, 1 < i < n in the following way.

2, ifi=1,35-,i+2 - ,n—1,

flui) = o .
3, ifi=24,6,---,i+2--- n.
we consider the vertices v;, 1 < ¢ < n of the cycle C,;. Assign the label 1 to the first 2”,;1 vertices
V1,V2, - ,V2nt1. Next assign the label 2 to the vertices Uzntl 1, VU2ndl o, " Usntd. Finally assign
3 3 3 6

the label 3 to the remaining vertices of the cycle C’;.
Subcase 2.2 n is odd.
Assign the labels to the vertices u;, 1 < i < n in the following ways.

3, ifi=1,3,5,--,i+2,m,
2, ifi=246-,i+2 - ,n—1

Jlus) =

Next assign the labels to the vertices v;,1 < i < n of the cycle C’; in the following way. As-

sign the label 1 to the first 2”3¢ vertices vi,v2,...,V2n+1. WNext assign the label 2 to the vertices
3

V2nt1 ,V2n41 o, ., Usnt1. Finally assign the label 3 to the remaining vertices of the cycle C;. Ta-
3 3 6

ble 2 shows that this vertex labeling is called 3-remainder cordial labeling of the dumbbell graph for

n=1 (mod 3).

Nature of n,n =1 (mod 3) | v(1) | v#(2) | v(3) Ne o
n is odd 2"_3+1 27L_3+1 % n+1 n
n is even 2”_;1 2n_3+1 % n n41
Table 2

Case 3. n =2 (mod 3).

Fix the labels in the following pattern : 3,2,1,1 and 2 to the vertices ui,uz2,us, un—1 and un,
respectively and 2,3,2,1 and 3 to the vertices vi,v2,v3,v,—1 and v, respectively. Next assign the

labels to the remaining vertices u;, and v;, (4 < i < n — 2) in the following two cases.

Subcase 3.1 First assign the labels to the vertices u;,4 < ¢ < n —2. Assign the labels 1,2 and 3
to the vertices u4, us and ug respectively. Then assign the labels 2,3 and 1 respectively to the vertices
u7,us and ug. Then next assign the labels 1,2 and 3 to the vertices w10, w11 and w12 respectively. Then

assign the labels 2,3 and 1 respectively to the vertices uis,u14 and uis. Proceeding like this until we
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reach the vertex un—2. When n is odd then the vertices un—4, un—3 and un—2 are receive the labels 2,3
and 1 respectively. When n is even then the vertices un—4,un—3 and u,—_2 are receive the labels 1,2

and 3 respectively.

Subcase 3.2 We consider the vertices v;, (4 <4 < n —2). Assign the labels to the vertices v; for
(4 <1i <n—2) as in subcase(i). Table 3 shows that this vertex labeling is called 3-remainder cordial
labeling of the dumbbell graph for n =2 (mod 3).

Nature of n,n =2 (mod 3) | vs(1) | vr(2) | vs(3) Ne Mo
n is odd % 2”—;2 %Tfl n+1 n
n is even 2n;1 27L3+2 27L371 n n+ 1
Table 3
This completes the proof. a

Theorem 3.3 The umbrella U, ., is 3-remainder cordial for all n.

Proof Let F,, = P, + K1 where P, : ui,u2, -+ ,un, and V(K1) = {u}. Let P;Z D v1,V2,0 0, Up be
another path. Identify v; with u. Clearly the umbrella graph has 2n vertices and 3n — 2 edges.

Case 1. n =0 (mod 3).
Subcase 1.1 7 is odd.
Assign the labels to the vertices u;, (1 <7 < n) as follows:

2, ifi=1,3,5,...,i+2.,n

flui) = . ‘
3, ifi=246,...,i+2---,n—1

Next assign the labels to the vertices v;, 1 < ¢ < n. Assign the label 3 to the first ”TH vertices

V1, V2, vn+a and assign the label 1 consecutively to the vertices vnHH, vn+e+2, -+ ,Usnt3. Next
6
assign the label 2 to the remaining vertices.
Subcase 2. n is even.
Assign the labels to the vertices u;, (1 <7 < n) as follows:
2, ifi=1,3,5,---,i+2...,n—1,
flui) = . ,
3, ifi=246,---,i+2...,n
Next we consider the vertices v;, 1 <4 < n. Assign the label 3 to the first F vertices v1, vz, - - - Un
and assign the label 1 consecutively to the vertices VB 1, VR g9, Usn Next assign the label 2 to the
remaining vertices Vsn 1,VUsn o5« Un. Table 4 shows that this vertex labeling is called 3-remainder

cordial labeling of U, for n =0 (mod 3).

Nature of n,n =0 (mod 3) | vp(1) | vp(2

~

vr(3) | me Mo

. 2n 2n 2n 3n—3 3n—1
n is odd 3 3 3 5 5

: 2n 2n 2n 3n—2 3n—2
n 1S even 3 3 3 | "3 | T3

Table 4
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Case 2. n=1 (mod 3).
Subcase 2.2 n is odd.
Assign the labels to the vertices u;, (1 <7 < n) as follows:

2, ifi=1,35-,i+2 - ,n
3, ifi=246-,i+2 - ,n—1

Next assign the labels to the vertices v;, 1 < ¢ < n. Assign the label 3 to the first ”25 vertices

V1, V2, vn+) and assign the label 1 consecutively to the vertices vn+-s+1, vn+5+2, e ,vsnfw. Next
%

assign the label 2 to the remaining vertices.

Subcase 2.2 n is even.

Assign the labels to the vertices u;, (1 <7 < n) as follows:

2, ifi=1,35-,i+2 - ,n—1,
3, ifi=24,6-,i+2 - .,n

Assign the label 3 to the first ”TH vertices

Next we consider the vertices v;,1 < ¢ < n.
vm+4 consecutively. Next

vn+z and assign the label 1 to the vertices vn+z+1, vn+z 4o

7_)17 1)27 e
. Table 5 shows that this vertex

assign the label 2 to the remaining vertices Usndd g, Usndd oy 0,V
labeling is called 3-remainder cordial labeling of Unmn for n=1 (mod 3).

Nature of n,n =0 (mod 3) | v(1) | v£(2) | v#(3) Ne Mo
: 2n4+1 | 2n—2 | 2n41 | 3n=3 | 3n—1
n is Odd 7L3 "'LS 7L3 "'L2 "'L2
: 2n4+1 | 2n—2 | 2n41 | 3n—2 | 3n—2
n is even N i B i B
Table 5

Case 3. n =2 (mod 3).
Subcase 3.1 n is odd.

Assign the labels to the vertices u;, (1 <7 < n) as follows:

2, ifi=1,35-,i+2 - ,n
3, ifi=24,6,-,i+2 - ,n—1

Next assign the labels to the vertices v;, 1 < ¢ < n. Assign the label 3 to the first ”TH vertices
vn+1 and assign the label 1 to the vertices vn+1+1,vn+1+2, cee

V1,02,
*5) vertices.

VUsnts consecutlvely Next assign the label 2 to the remaining (*

Subcase 3.2 n is even.

Assign the labels to the vertices u;, (1 < i < n) as follows:

2, ifi=1,35-,i+2 - ,n—1,
3, ifi=24,6,,i+2 - ,n

Next we consider the vertices v;,1 < i < n. Assign the label 3 to the first "sz vertices
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v1,v2, - ,Un—2 and assign the label 1 to the vertices vn—2 ,,vn_2 ,Usn+2 consecutively. Next
6 6 6

JUSERE .
assign the label 2 to the remaining "sz vertices Usnt2 1, Vsnt2 o, " Un. Table 6 shows that this
6 6

vertex labeling is called 3-remainder cordial labeling of U, for all n = 2 (mod 3).

Nature of n,n =2 (mod 3) | ve(1) | vs(2) | ve(3) Ne o
n is odd 2"—3“ % % % %
n is even 2"—3*2 % % % %
Table 6
This completes the proof. 0

Theorem 3.4 The butterfly graph BF, , is 3-remainder cordial for all n.

Proof Let C : uiuz -« - unur and C; 1 v1v2 - - - vpv1 be two cycles of the same order n. Identify
the vertex u; with the vertex vi. Let w1, w2 -+ ,w, be the n-pendant vertices adjacent to the vertex
u1. Then the given graph has 3n — 1 vertices and 3n edges.

First assign the labels to the vertices u;, (1 <147 < n) as follows:

2, ifi=1,35,i+2 - ,n—1,
3, ifi=24,6,,i+2 - ,n.

flui) =

Next assign the labels to the vertices v, (2 < ¢ < n). Assign the label 1 to the vertices v, vs, ..., Un.

Finally assign the labels to the vertices w;, (1 < i < n) as follows:

2, ifi=1,3,5---,i+2---,%,
3, fi=2+1,2+42-,i4+2 ,n

flwi) =

Thus vs(1) = n — 1, v4(2) = v4(3) = n and ne = 3 = n,. Hence this vertex labeling is called

3-remainder cordial labeling of butterfly graph for all n. a

Theorem 3.5 The graph Cs ® Ki,n is 3-remainder cordial for all n.

Proof Let V(Cs ® Ki,n) = {u,v,w,us,vi,w; : 1 < i < n}, E(Cs® Ki,n) = {uww, vw, wu, uu;,
vv, ww; : 1 < i < n}. Clearly the order and size of the given graph are 3n + 3 and 3n + 3 respectively.
Fix Tables 1,2 and 3 respectively to the central vertices u,v and w of C3 ® K1, and also fix the

label 3 to the vertices v1,v2,v3,- -+ , v, into the following two cases.
Case 1. n is even.

First we consider the vertices u;, (1 < i < m). Assign the label 1 consecutively to the vertices
U1, U2, ,Uns1. Next assign the label 2 to the remaining vertices wnt1 4, Unt1 oy, Un.
2 2 2
Next we consider the vertices w;, (1 < i < n). Assign the label 2 consecutively to the vertices

wi, W2, ,Wn+1. Next assign the label 1 to the remaining vertices wn+1 s W,
2

Wn+1
> T

4o

Case 2. n is odd.

Assign the label 1 to the first (5) vertices ui,uz,- - yun and assign the label 2 to the remain-

ing (3) vertices uzii,unys,...,un. Next we consider the vertices wi, (1 < ¢ < n). Assign the

label 2 consecutively to the vertices w1, w2, - ywa and assign the label 1 to the next (%) vertices
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Wg41, W2, Wn. Table 7 shows that this vertex labeling is called 3-remainder cordial labeling of
C3 ® K1, for all n.

Nature of n | vs(1) | ve(2) | v#(3) Ne To
n is odd n+l1|n+1|n+1 ‘3n_2+3 %
n is even n+1l|n+1|n+1 % %
Table 7
This completes the proof. O

Example 3.6 A 3-remainder cordial labeling of C3 ® K9 is shown in Figure 1.
11 2,

Figure 1
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Famous Words

Could a special solutions of Einstein’s gravitational equations be applied to the whole universe?
The answer is obviously negative! However, the Schwarzschild spacetime is its a special solution in an
assumption that all matters are spherically symmetric distributed in the universe of vacuum, which
results the Big Bang hypothesis and the standard model on universe. So, we are applying a special
solution for the universe and believe it without a shadow of doubt in any place of the universe. Why it
happened because we are all fond of the symmetry, the uniformity on space and we are firmly believing
the spacetime structure of the universe should be so by observed datum of humans, at least in the nearby
airspace of the earth. But, it is only an understanding of humans ourself on the unverse, partially or
locally. (Extracted from the paper: Science’s Dilemma - a Review on Science with Applications,
Progress in Physics, Vol.15 (2019), 78-85.)

By Dr.Linfan MAQO, a Chinese mathematician, philosophical critic.
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