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1. Introduction

Split equilibrium problem (SEP), introduced by He [20] in 2012, which is defined as: find the
solution of equilibrium problem (EP) whose image is also a solution of another EP under a given
bounded linear operator. Let H; and H, be two real Hilbert spaces and C and Q be closed convex
subsets of H; and H),, respectively and B : H; — H, be a linear and bounded operator. Let f and F be
two functions from C x C and Q X Q to R, respectively, then SEP is to get a point ¢ € C such that

flc,c)=0V¥c" eC (1.1)
and
d = Bc e Qsolves F(d,d") >0V d" € Q. (1.2)
Equation (1.1) is named as classical Equilibrium Problem given by Blum [2] and its solution set is
denoted by EP(f).
SEP provides us a way to split the solution between two different subsets such that the solution of

one problem and its image implies the solution of another problem under the imposed bounded linear
operator. As the special case of SEP, split variational inequality problem (SVIP) was introduced by
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Censor et al. [17], in 2012. The SVIP is stated as: consider g and g’ be two operator for H; and Hb,
two Hilbert Spaces, respectively, B : H; — Hj be a linear and bounded operator, C and Q be the same
as defined above, then
¢ € C such that (g(c),c" —c)>0Vc" eC (1.3)
and
d = Bc € Q such that (g'(d),d" —d)y >0V d" € Q. (1.4)
and the equation (1.3) separately gives classical variational inequality (VI).

Split common fixed point problem (SCFPP) , introduced by Censor and Segal [18], in 2009. The
SCFPP problem is to find a point ¢ € Fix(S) gives Bc € Fix(T), where B : H; — H, is linear and
bounded operator with S : H; — H, and T : H, — H, are the general operators and Fix() denoted the
solution set of fixed point of the considered mapping. SCFPP is the generalization of Split Feasibility
Problem, given by Censor and Elfving [19], in 1994 and this problem formulate a point ¢ € C with
Bc € Q where C and Q are convex subsets of H; and Hj , respectively.

Korpelevich [3], in 1976, introduced the extragradient method for solving Eq (1.3) when g is mono-
tone and k-Lipschitz continuous in the finite dimensional Euclidean space . In 2003, Takahashi and

Toyoda [13] introduced the following method to calculate the common solution of VIP and fixed point
problem (FPP)

Xpi1 = ApXp + (1 - /?vn)SPC(xn - Ynfxn)’

where S : C — C is nonexpansive mapping and f : C — H, is a v-inverse strongly monotone mapping.
After that, in 2006 Nadezhkina and Takahashi [14] suggested the modified extragradient method to
prove the weak convergence of the defined iteration to the common solution of VIP and FPP:

Yn = PC(xn - yrzfxn)a
Xn+l = /ln-xn + (1 - /ln)SPC(-xn - Ynfyn)’

where § : C — C is nonexpansive mapping and f : C — H); is a monotone and k-Lipschitz continuous
mapping. Later on, in 2011, Kangtunyakarn [1] proved the convergence theorem for calculating the
common point of the three sets of solutions of equilibrium problem, variational inequality and the
fixed point problems by practicing with a newly developed mapping achieved by infinite family of real
numbers and of nonexpansive mappings.

In 2017, Tian et al. [11] proposed an algorithm for finding an element to solve the class of SVIP
by combining extragradient method with CQ algorithm. In 2018, Lohawech et al. [12] proved the
existence of common solution of the SVIP and FPP by the introduced iterative method which was
inspired from Nadezhkina and Takahashi’s [14] modified extragradient method and Xu’s [7] algorithm
and proved its weak convergence.

Inspired from work of Tian et al. [11] and Lohewech et al. [12], we extend results in the direction
of findings the common solution of SVIP and SEP with SCFPP.

2. Preliminaries
Lemma 2.1. [9] Given a € H and 7z € C, then the following statements are equivalent:
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(i) z= Pca;

(ii) (a—z,z-by >0V beC;
(iii) {a — Pca,b — Pca) <0VYa€H,b e C;
(iv) lla=bl* > lla—zl +lb—zF ¥ b eC.

Lemma 2.2. [2] Let the function f : C X C — R satisfy the following conditions:

(i) fu,u)y=0VY uceC;

(ii) f is monotone, i.e. f(u,v) + f(v,u) <0V u,v e C,;
(iii) for each u,v,w € C,lim,o f(tw + (1 — Hu,v) < f(u,v);

(iv) for each u € C, f(u,.) is convex and lower semicontinuous.

Then EP(f) # ¢.

Lemma 2.3. [2] Let r > 0,u € H, and f satisfy the conditions (i)-(iv) in Lemma (2.2), then there exists
w € C such that f(w,v) + %(v—w,w—u) >0YveC.

Lemma 2.4. [2] Let r > O,u € H, and f satisfy the conditions (i)-(iv) in Lemma (2.2). Define a
mapping T, : H — Cas T,(u) ={we C: f(w,v) + %(v —w,w—uy >0V v e C}. Then the following
hold:

(i) T, is single-valued;

(ii) T, is firmly nonexpansive, i.e., ||T,u — T,v|| < (T,u — T,v,u — v) for all u,v € H;
(iii) EP(f) = F(T,), where F(T,) denotes the sets of fixed point of T,;
(iv) EP(f) is closed and convex.

Definition 2.1. [15] Let A : H — H be a set valued mapping with the effective domain D(A) = {x €
H:Ax # ¢} .

The set valued mapping A is said to be monotone if, for each x,y € D(A),u € Ax and v € Ay, we
have

(x—=y,u—v)y>0.

As, graph of A is defined by G(A) = {(x,y) : y € Ax} and the mapping A is maximal if its graph
G(A) is not appropriately contained in the graph of any other mapping which is of same type as A. The
accompanying nature of the maximal monotone mappings is advantageous and supportive to utilize:
A monotone mapping A is maximal if and only if, for (x,u) € H x H,

(x —y,u—v) >0 for each (y,v) € G(A) implies u € Ax.
For maximal monotone set-valued mapping A on H and r > 0, the operator

J.:=-rA)"" 1 H - D)
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is called the resolvent of A.
Consider f : C — H be a monotone and k-Lipschitz continuous mapping . In [5], normal cone to C is
specified by

Nex={zeH:{(z,y—x)<0,VyeC}forall x e C

is maximal monotone and resolvent of N¢ is Pc.

Lemma 2.5. [14] Let H, and H, be real Hilbert spaces. Let A : H, — H, be a maximal monotone
mapping and J, be the resolvent of A for r < 0. Suppose that T : H, — H, is a nonexpansive mapping
and B : H, — H, is a bounded linear operator. Assume that A~'0 N B~ 'Fix(T) # ¢. Let r,a > 0 and
z € Hjy. Then the following statements are equivalent:

(i) z=J,(I — aB(I - T)B)z:
(i) 0 € B*(I - T)Bz + Az;
(iii) z € A~'0 N B~'Fix(T).

Lemma 2.6. [16] Let {(,,} be a real sequence satisfying 0 < a <3, < b <1 foralln >0, and let {u,}
and {v,} be two sequences in H such that, for some n > 0,

r}igg supllull < 7,

lim supl{v,} <7,

and lim||Bu, + (1 = B)vall = 1.

Lemma 2.7. [6] Let {a,} be a sequence in H satisfying the properties:
(i) lim,_,.|la, — al| exists for each a € C;
(ii) wy(a,) C C, where w,(a,) represents the set of all weak cluster points of {a,}.

Then {a,} converges weakly to a point in C.
3. Main results

Throughout, we consider C and Q both are nonempty closed convex subsets of real Hilbert spaces
H, and H,, respectively. Suppose that B : H; — H, is a non-zero bounded linear operator,
f:CxXxC — Rand F : Q x QO — R be two functions satisfiy the conditions (i) to (iv) of Lemma
(2.2), g : C — H, is a monotone and k-Lipschitz continuous mapping and g’ : H, — H, is a d- inverse
strongly monotone mapping . Suppose T : H, — H, and S : C — C are nonexpansive mappings . Let
{ta): (@} € (0. 1), {y} € [a, b] for some a, b € (0, 71+) and {A,} C [c,d] where c,d € (0, 1).

Initially, we define an algorithm for solving VIP, SCFPP and SEP, the purpose of which is to dis-

cover an element a” in such a way that
a e VI(C,g) N Fix(S) N EP(f) and Ba" € Fix(T) N EP(F). (3.1)
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Theorem 3.1. Fix 7 = {u € VI(C,g) N Fix(S) N EP(f) : Bu € Fix(T) N EP(F)} and consider that

T # ¢. Let the sequences {u,},{v,},{a,}, {b,} and {c,} be defined by a; = a € C and

1
f(vm Z) + _<Z —Vn, Vi — an) > 0,
Ty

1
F(un’y) + _<y — Up, Uy — BVn) > 0,
Ty

Cn = UplUy + (1 - /Jn)PC(un - YnB*(I - T)Bun),
bn = PC(Cn - /lng(cn))’
ap+1 = QpCy + (1 - a’n)SPC(Cn - /lng(bn))’

(3.2)

for all n € N. Then, the sequence {a,} weakly converges to an element u € 7, where u = lim,,_,, P-a,.

Proof. Let a € 7 and consider {T,, } be a sequence of mapping as stated in Lemma (2.4), gives

a = Pc(a - A,Ba) = T},a, also a = TY Ba as a € EP(f) and Ba € EP(F).

From Theorem 3.1 of [11] that Pc(I — y,B*(I — T)B) is w averaged . It is clear to see from

1+7n|lB”

Lemma 2.2 of [10] that w,,I + (1 — w,)Pc(I —y,B*(I = T)B) is u,, + (1 — ) —5—
be written as
Cp = (1 _ﬂn)un +ﬂnVnun

where B, = u, + (1 — u,)—%— and V,, is a nonexpansive mapping for each n € N.
Let a € 7 and from Lemma (2 4), we obtain
Iva = al® = 1T} a, — T} al’
< (Tﬁ;an - TrJ;a, a, —a)

=(v, —a,a, —a)

1+7nHBII

2 2 2
= 5ve —all” + lla, = all” = lla, = vall")

and hence,
2 2 2
Ve —all” < |la, — all” = lla, — vall
2
< lla, — all*.
Also,
2 F F
letw — all” =T, v, — T, all
<{u,—a,v, —a)
1 2 2 2
= E(Hun —all* + v, = all” = [l = vall"),
2 2 2
e, — all” < v, — all” = [l — il
2 2
< llan — all” = |lu, — vill
2
< lla, —all.
From (3.5)

llew = all> < (1 = By — @) + Bu(Vutty, — a)’|l
= (1 = Bl — all® + Ball Vo, — all* = Bu(1 = Bl — Vyutll*
< lluy = all* = Bu(1 = B)lltty, — Vit
< llu, —all’

averaged. So, ¢, can

(3.3)

(3.4)

(3.5)
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<lla, — all*,
implies
Bu(1 = Bl = Vauayl* < llan — all* = llc, — all*.
Now, set z,, = Pc(c, — 4,g(b,)) for all n > 0. It pursue from Lemma (2.1) that
llzn — all* < llen = Aug(ba) — all* = llc, — 2,2(by) — zall®
<llew = all” = llcy = zall® + 24u(g(Bn), a — 2,

(3.6)

(3.7

< llew = all* = lic = 2l + 22,42(b,) = g(@), @ = by) + 24,((a), a = b,) + 2(2(by), by = 2)-

Using the monotonicity of g and a is solution of VIP(g, C), we have
(g(bn) — g(a),a — by) < 0 and (g(a),a — by) < 0.
From Eqgs (3.8) and (3.9), we obtain
20 = all® < llew = all® = llew = zall* + 2,(2(bn), bn = z)

= ”cn - a”2 - ”Cn - bnllz - ”bn - anlz - 2<Cn - bnabn - Zn) + 2/ln<g(bn),bn - Zn)

= llew = all* = llen = ball* = 11by = 2l + 2{c = by = Au8bns 20 = ba)-
Using condition (iii) of Lemma (2.1) again, this yields

<Cn - bn - /lng(bn), in — bn> = <cn - /lng(cn) - bn’ in — bn> + </lng(cn) - ﬂng(bn)a in — bn>

< <)~ng(cn) - /lng(bn)a in — bn>
< /lnkllcn - bn” ' ”Zn - bn”

and so,

(3.8)

(3.9)

2 2 2 2
llzn — all” < licw = all” = llep = ball™ = lbn = 2ull” + 2A,kllcy = Dyll - llzn — bl

for each n € N, we obtain that
0 < (Ilzn = ball = Aukllc, — bul)?
= |12y = ball* = 2klIzs = Bullllcw = ball + 4K NI, — byl
that is,
20,K1z0 = ball - lew = bl < llzu = ball® + 4282 = ball,
implies
llzn = all* < llea = all® = licw = ball® = 116y — zall?
+ LK lcy = Ball® + Nz = ball®
<llew — alP + (22K = 1)lle, — byl
<llex — all*.
Now, by Egs (3.6) and (3.10), we have
ldns1 = all* = l(@ucy + (1 = @,)Sz,) — all’
= llan(c, — @) + (1 — @,)(Sz, — @)l
< ayliey — al’ + (1 = @)l1Sz, — all* — ax(1 = @licy — a = (Sz, — @)
< a,lle, — all* + (1 — @ISz, — Sall®
< aylle, —all* + (1 = a)llz, — all’
< aylle, —all” + (1 = allic, — all* + (k> = Dlic, — byll]

(3.10)
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< llew = all + (1 = @)k = Dlle, = byl
< lley = all®
< lla, —all®.

Hence, there exists a constant s > 0 such that

lim||a, —a|| = s,
n—oo

implies {a,} is bounded. This gives us that, {b,}, {c,}, {u#,} and {v,} are all bounded.

From Eqgs (3.7) and (3.11), we deduce
Bu(1 = Bty = Vataul* < lla, — all® = llcy — all?
< llay = al* = llan — all.
By using Eq (3.12), we find
(u, — Vyu,) > 0asn — oo,
From Eq (3.3), we calculate
u, — ¢, = Bu(u, — Vyu,) - 0asn — oo.
Using Eqgs (3.5), (3.6) in (3.11), we get
lldne1 = all” < llew — al?
< llan = all® = lluy = vall
= lup = vall® < llaw = all® = llans — al?
< llan = an1lllla, — all + llan+1 — all}
—0asn — o
= u,—v, > 0asn — oo.
Again, using Eqgs (3.4), (3.5), (3.6) in (3.11), we obtain
lldns1 = all® < lla, = all* < llu, - alf
< v = al?
< llay = all* = lla, = vall®
= lay = vall® < llan — al® = llan — al?
= a,—v, > 0asn — oo.
By triangle inequality, we find
llan — uall < llan = vall + |Ivy — wall
— 0asn — oo.
Also,
llan = call < llan = vall + 1V = unll + ||t — il
— Qasn — oo.
Equations (3.6), (3.11) and (3.17), implies
(1 = )1 = LkDley = ball® < llew — al® = llaner — all®

and so

c,—b, > 0asn — oo.

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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Thus,

“an - bn” < ”an - Vn” + ”Vn - un” + ”un - Cn” + ”cn - bn”

— 0asn — oo. (3.18)

Also, by definition of {b,}, we have
1bn = zall* = I1Pc(Cn = An&(cn)) = Pelen — AugBa))II?
< lI(en = Auglcn)) = (cn = Aug(B)IP
= [14,8(cn) = Aug(bn)IP
< LK lle, = bl
implies, b, — z, — 0 as n — co. Again using triangle inequality, we have
llew = zall < llew = ball + 116y = zall
and
WV = zull <MV = tall + et = call + llen = 2all
gives, when n — oo
llew = zull and [[v, = zll — 0. (3.19)
From the definition of {c,}, we implies

(1 - ,un)(un - PC(“n - 'ynB*(I - T)Bun)) = Cp — Up.
Thus, Equation (3.13) gives
u, — Pc(u, —y,B*(I = T)Bu,) —» 0 as n — oo. (3.20)

Let z € w,(u,). Then there exists a subsequence {u,,} of {u,} which weakly convergent to z. We acquire
that {B*(/ — T)Bu,} is bounded, reason being B*(/ — T)B is Tll?HZ inverse strongly monotone. From the
firm nonexpansive nature of Pc, we have

\Pc(I =y, B*(I = T)B)u,, — Pc(I = ¥B*(I — T)B)u,||
< h’n; - ’j\/| : ”B*(l - T)Banl”

Without loss of generality, we assume that y,, — ¥ € (0, ﬁ) and so,
Pc(I =y, B*(I -T)B)u,, — Pc(I - yB*(I - T)B)u,, - 0 as i — oo. (3.21)

Consider
lan, — Pc(I = yB*(I — T)B)ay,|l
< |(an, — un) + (U, = Pc(I = yB*(I = T)B)uy,)
+(Pc(I —yB"(I = T)B)uy, — Pc(I = ¥B*(I — T)B)ay, )|
< llan;, = un |l + luy, = Pc(I = ¥B*(I = T)B)uy, || + llt, — |- (3.22)
In particular
luy, — Pc(I = yB*(I = T)B)uy,|l
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< lt, = Pe(I =y, B"(I = T)B)u, ||
+|[Pc( =y, B"(I = T)B)uy, — Pc(I = ¥B*(I — T)B)u,||. (3.23)
From Egs (3.18), (3.20) and (3.21) in (3.23), we obtain

u,, — Pc(I —yB*(I - T)B)u,, - 0 as i — oo. (3.24)
Now, using Eq (3.16), (3.24) in (3.22), we find

an, — Pc(I —yB*(I - T)B)a,, —» 0 as i — co. (3.25)
By the demiclosedness principle [8], (3.24) and (3.25), respectively, implies

z € Fix(Pc(I — 9B*(I - T)B)),
z € Fix(Pc(I — 7B*(I — TF)B)).

From Corollary 2.9 [11] and Lemma (2.4), we obtain

z€ CN B '(Fix(T)),
z€ CNB Y (Fix(TE)) = z € C N B (EP(F))).

Now we claim that z € VI(C, g). From Eqgs (3.13), (3.14), (3.17), (3.18) and (3.19), we obtain b,, — u,
Cn, = U, Zy, — U, Uy, — u and v,, — u. Interpret the set-valued mapping A : H — H by

A gv)+ Ncev, ifVveC
V=
b, ifYvegC

In 2006, Takahashi [14] suggested that A is maximal monotone and for this 0 € Av iff v € VI(C, g).
For (v,w) € D(A) we have w € Av = g(v) + Ncv and implies w — g(v) € N¢v. Therefore, for any x € C,
we get

v=x,w—gW)=>0. (3.26)
As v € C. The explanation of b, and Lemma (2.1) implies that

<Cn - /lng(cn) - bn’ bn - V> > 0.

Continuing

<C" — by +g(cy), v — bn> > 0.
An
By Equation (3.25) with {b,,}, we obtain
(w—-gW),v->b,)=>0.
Thus,
Wy =by) = (gv),v = by,)

>(gv),v—"b,,) - <

Cni — D

A,

1

+ g(cn,-)’ 1 bl’l,‘>
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ni — D,
=(2(v) = &(bn), v — by, +(g(by) — glcy), v = b)) = <c - V- bn,->

Cn, — by,
= <g(bn,) - g(cn,-)’ V= bn,> - 1 V= bni .

n;

By considering i — oo, we have

w,v—2y >0.
By maximal monotonicity of A, we obtain O € Az and then z € VI(C, g).
Now, we will exhibit that z € Fix(S).
From Eqgs (3.6), (3.10) and the nonexpansive nature of S, we get

IS(zy) —all = lIS(zy) = S|l < [z — all < lle, = all < lla, — all.
By taking limit superior
lim||S(z,) —all <c¢

and o

lim||c, —a|| <c.
Further o

limlla,(c, — @) + (1 = @)(S(z) — @)l = lim[la,c, + (1 — @,)Sz, — dll
= limlla,,; — al
=c.
Thus, Lemma (2.6), implies
lim||Sz, — c,l| = 0. (3.27)
Again from the fact of o
IS(cn) = call = 11(S(cn) = S(z4)) + (S(zn) — €l

< IS(en) = SN+ 11S(z0) = call

< llew = zall + [1S(z0) — call-
By Egs (3.19) and (3.27), we find

lim|IS(c,) —eall = 0.
This infers that
lim||(Z - S)c, |l = limllc,, — Sc, || = 0.

Thus, we have z € Fix(S).H00 o
Now, we prove z € EP(f). As u, = Tf a, and

1
S, 2) + =z =y, uy — a,) 20V z € C.
r
From monotonicity of f, we have

%(Z — Uy, Uy — Cln> > _f(un’ Z) = f(Z’ u”)

and hence

Uy, — Ay,
<= uni’ B > f(Z’ Mn,-)-
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Since @ — 0 as u,, = 0 weakly lower semicontinuity of f(a,y) on second variable y, we have
fz,u) <0V zeC.
ForkwithO<k<landzeC,letz;=kz+ (1 —-1tu

0=fznz) <tf(z,2)+ A =Df(z,u) <tf(z,2)
= f(z,,2) =0
= f(u,z) 20

u € EP(f).

Consequently, w,(a,) C 7. From the Lemma (2.7), the sequence {a,} converges weakly to an element
u € Tand Lemma 3.2 [13] satisfies u = lim,,_,, P-a,. O

The successive result gives us the suitable conditions to obtain the presence of a common solution
of the split variational inequality problems, fixed point problems and split equilibrium problems , that
is, to discover an element a* in such a way that

a" € VI(C,g) N Fix(S) N EP(f) and Ba® € VI(Q,g') N EP(F).
Theorem 3.2. Set 7 = {u € VI(C,g) N Fix(S) N EP(f) : Bu € VI(Q,g") N EP(F)} and consider that
T # ¢. Let the sequences {u,},{v,},{a,}, {b,} and {c,} be defined by a, = a € C and

1
f(vn’ Z) + _<Z —Vn,Vn — an) > 0’
Vn

1
F(un’y) + _<y — Up, Uy — an> > O,
Ty

Cp = MplUp + (1 _,un)PC(un - ’)/nB*(I - PQ(I - le))Bl/ln),
bn = PC(Cn - /lng(cn))’
Ap+1 = @pCy + (1 - an)SPC(Cn - /lng(bn)),

for all n € N. Then, the sequence {a,} weakly converges to an element u € 7, where u = lim,_,, P-a,.

Proof. From the d-inverse strongly monotonicity of g’, it is %— Lipschitz continuous and so, 6 € (0, 26),
we find that / — 6g’ is nonexpansive . Also, P is firmly nonexpansive, implies Po(/ — 6g’) is nonex-
pansive . With replacement of T = Py(I — 6g’) in Theorem (3.1), we get that {a,} is weakly convergent
to an element u € VI(C,g) N Fix(S) N EP(f) and Bu € Fix(Po(I — 6g') N TZ). We pursue from
Bu = Py(I — 6g')Bu and Bu € EP(F) and Lemma (2.1) that Bu € VI(Q, g') N EP(F). This completes

the proof. O
The following results are the direct consequences of Theorem (3.1).

Theorem 3.3. Let A : H, — H, be a maximal monotone mapping with D(A) # ¢. Consider 7 =
{u € VI(C,g) N Fix(S) N EP(f) : Bu € A7'0 N EP(F)} and assume 7 # ¢. Let the sequences
{u,}, {vn}, {a,}, {b,} and {c,} be defined by a; = a € C and

1
f(vn’ Z) + _<Z - Vl’h Vn - an> Z 0’
r}’l

1
F(un’y) + _<y — Uy, Uy — an> > Oa
Tn
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Cp = Uplp + (1- ,un)PC(un - ’)/nB*(I - Jr)Bun)’

b, = Pc(c, — /lng(cn))a

Anr1 = @pCy + (1 — @,)SPc(c, — /lng(bn))’
forall n € N, where J — r is resolvent of A for r > 0. Then, the sequence {a,} weakly converges to an
element u € 7, where u = lim,_,., P-a,.

Proof. From the firmly nonexpansive nature of J, and Fix(J,) = A~'0, the proof remains the same as
of Theorem (3.1) by considering J, = T. O

Theorem 3.4. Let A : Hy — H, be a maximal monotone mapping with D(A) # ¢ and G : H, — H, be
a §-inverse strongly monotone mapping . Set 7= {u € VI(C,g) N Fix(S)N EP(f) : Bue (A+G)™'0n
EP(F)} and assume 7 # ¢. Let the sequences {u,},{v,},{a,}, {b,} and {c,} be defined by a; = a € C
and

1
S+ —z2=Vvy,v,—a,) 20,
rl’l

1
F(Mn,y) + _<y — Up, Uy — an> > 0,
Ty

Cp = UplUp + (1 - ,un)PC(un - )/nB*(I - Jr(l - I”G))Bl/tn),
b, = Pc(c, — /lng(cn))’
Qne1 = @pCy + (1 = @,)SPe(c, — /lng(bn))a
for all n € N, where J — r is resolvent of A for r > 0. Then, the sequence {a,} weakly converges to an

element u € 7, with u = lim,_,, P-a,,.

Proof. From the 6— strongly inverse monotone nature of G implies that I — rG is nonexpansive. Also,
from the nonexpansive nature of J,, we get that J,(I — rG) is also nonexpansive . As u € (A + G)™'0
if and only if u = J,(I — rG)u. Thus, the proof remains the same as of Theorem (3.1) by considering
J.(I-rG)=T. m]
4. Conclusions

We obtained the weak convergence of the defined algorithm for solving variational inequality, split
common fixed point and split equilibrium problems, by extending the results of Tian et al. [11] and
Lohewech et al. [12].
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