ORIGINAL RESEARCH

A Study on The Gamma Graph of Cycle C_{3K+1}

Rakhimol Iassc¹ and Krupali Bhatt²

Received: 17 October 2023/ Accepted: 20 October 2023/ Published online: 16 December 2023 ©Sacred Heart Research Publications 2017

Abstract

For a graph G = (V, E), a set $S \subseteq V$ is a dominating set if every vertex in V - S is adjacent to at least one vertex in S. The domination number $\gamma(G)$ of G equals the minimum cardinality of a dominating set in G. A dominating set is a γ -set in G if $|S = \gamma(G)|$. A gamma graph $\gamma.G$ of a garph G is a graph with S as a vertex set, if $S_1 S_2$ are adjacent iff there exist two vertices u and v of G suchthat . In this paper we initiate the study of gamma graph of cycle C_{3k+1}

Key words: Dominating Set, Gamma Set, Gamma Graph

AMS classification: 05C38, 05C69

1 Introduction

We consider only finite simple graphs G = (V, E). We use standard notations of graph theory, as in Balakrishnan and Ranganathan [2]. For an introduction to the theory of domination in graphs we refer to Haynes et al. [8] A set $S \subseteq v$ of vertices in a graph G = (V, E) is called a dominating set if every vertex $v \in V$ is either an element of S or is adjacent to an element of S. The domination number $\gamma(G)$ of G equals the minimum cardinality of a dominating set S in G and the set S is known as γ -set.

The concept of the gamma graph is introduced by Sridharan and Subramanian[9]. The γ graph of G, denoted by γG and defined as the graph with vertex set S where S is the collection of all γ -sets in a graph G and any two vertices s_1 and s_2 are adjacent if $|S_1 \cap S_2| = \gamma(G) - 1$. In 2011 G. H. Fricke et al. [7] inadvertently defined gamma graphs as $G(\gamma) = (V(\gamma), E(\gamma))$ of G to be the graph whose vertices $v(\gamma)$ corresponds 1-to-1 with the γ - sets of G, and two γ - sets, say S_1 and S_2 are adjacent in $E(\gamma)$ if there exists a vertex $V \in S_1$ and a vertex $W \in S_2$ such that v is adjacent to W and $S_1 = S_2 - \{w\} \cup \{v\}$ or equivalently, $S_2 = S_2 - \{v\} \cup \{w\}$. Note that both the definitions of gamma graphs are different from each other. Throughout the paper, we use the definition of gamma graphs given by Subramanian and Sridharan.

¹Department of Mathematics, faculty of Science, Atmiya University, rajkot, Gujarat, India.

Email: rakhimol.issac@ atmiyauni.ac.in

²Department of Mathematics, faculty of Science, Atmiya University, rajkot, Gujarat, India. Email:krupalibhatt1612@gmail.com

Many researchers have studied on gamma graphs. Gamma graphs of some special classes of trees are studied by Bien [3]. Modified γ graph- $G(\gamma_m)$ of some grid graphs is studied by Anusuya and Kala [1] while Sridharan et al. [10] discussed induced subgraph of gamma graphs and they used the definition provided in [9]. Also the gamma graphs of trees are studied by Finbow and Bommel [6]. Connelly et al. [5] have investigated when the gamma graph is disconnected. Bommel [4] is given the note on bipartite graph that is not the gamma graphs of cycles were determined by G. H. Fricke et al. [7] and that is, for $k \geq 2, C_{3k}(\gamma) \cong \overline{K}_3$ and $C_{3k+2}(\gamma) \cong C_{3k+2}$. As mentioned in [3] every graph $G(\gamma)$ is a spanning subgraph of $\gamma.G$. These existing results in the literature inspire us to characterize the order of $\gamma.C_{3k+1}$.

2. Construction of Gamma Graph of Cycle C_{3k+1}

We discuss the induction method of obtaining gamma graphs of C_{3k+1} . Method of obtaining gamma sets for C_{3k+1}

Let C_4 be the cycle with vertices v_1, v_2v_3 and v_4 since $\gamma(C_4) = \left\lceil \frac{4}{3} \right\rceil$, The γ -sets of C_4 will be of cardinality 2. The gamma sets of C_4 can be $S_1 = v_1, v_2, S_2 = v_2, v_3, S_3 = v_3, v_4, S_4 = v_1, v_4, S_5 = v_2, v_4, S_6 = v_1, v_3$. These γ -sets will be the vertices of $\gamma.C_4$ by defitions of gamma graphs. Hence $|V(\gamma.C_4)| = 6$

Since $\gamma(C_7) = \lceil \frac{7}{3} \rceil = 3$, We need γ -sets with cardinality 3. We obtain γ -sets of C_7 from $\gamma.C_4$ by the following procedure:

- 1. Include v_5, v_6 and v_7 in S_1, S_2 and S_3 respectively. We got distinct gamma sets of order 3 say, $P_1 = v_1, v_2, v_5, P_2 = v_2, v_3, v_6, P_3 = v_3, v_4, v_7$.
- 2. By keeping the vertex v_5 and one of its adjacent vertex fix in C_7 we get $P_4 = \{v_1, v_4, v_5\}$ and $P_5 = \{v_2, v_5, v_6\}$ respectively. Similarly, by keeping the vertex v_6 and its adjacent vertex fix in C_7 we get $P_7 = \{v_1, v_4, v_7\}$.
- 3. Fix non adjacent vertices of above γ -sets P_i ; (i = 1, 2, ..., 7) to obtain other γ -sets. Thus the γ -setsare $P_8 = v_1, v_3, v_5, P_9 = v_1, v_3, v_6, P_{10} = v_2, v_4, v_6, P_{10} = v_2, v_4, v_6, P_{11} = v_2, v_4, v_7, P_{12} = v_1, v_4, v_6, P_{13} = v_2, v_5, v_7$ and $P_{14} = v_3, v_5, v_7$ respectively.

Thus , we get 14 γ -sets with cardinally 3 and hence, $|V(\gamma,C_7)| = 14$. since $\gamma(C_{10}) = 4$ we obtain γ -sets of C_{10} with cardinality 4 by the following ways:

1. Include v_8, v_9 and v_{10} in P_1, P_2 and P_3 as well as in P_4, P_5 and P_6 respectively, We

get gamma sets of order 4 say, $T_1 = v_1, v_2, v_5, v_8, T_2 = v_2, v_3, v_6, v_9, T_3 = v_3, v_4, v_7, v_{10}, T_4 = v_1, v_4, v_5, v_8, T_5 = v_2, v_5, v_6, v_9, T_6 = v_3, v_6, v_7, v_{10}.$

- 2. In C_{10} keep the vertex v_8 and one of its adjacent vertices fix we get $T_7 = \{v_1, v_4, v_7, v_8\}$ and $T_8 = \{v_2, v_5, v_8, v_9\}$ respectively. By keeping the vertex v_9 and v_{10} fix we get $T_9 = \{v_3, v_6, v_9, v_{10}\}$, Similarly, keep the vertex v_{10} and v_1 fix we get $T_{10} = \{v_1, v_4, v_7, v_{10}\}$,
- 3. Fix any three non-adjacent vertices of above γ -sets (T_i) to obtain other γ -sets. Thus the γ -sets are $T_{11} = v_1, v_3, v_5, v_8, T_{12} = v_3, v_5, v_8, v_{10}, T_{13} = v_2, v_4, v_6, v_9, T_{14} = v_1, v_3, v_6, v_9, T_{15} = v_2, v_4, v_7, v_{10}, T_{16} = v_3, v_5, v_7, v_{10}, T_{17} = v_1, v_4, v_6, v_8, T_{18} = v_2, v_5, v_8, v_{10}, T_{19} = v_3, v_6, v_8, v_{10}, T_{20} = v_1, v_4, v_7, v_9$ and $T_{21} = v_2, v_5, v_8, v_{10}$.
- 4. Fix any two non-adjacent vertices of above γ -sets (T_i) to obtain other γ -set. Thus the γ -sets are $T_{22} = v_2, v_4, v_7, v_9, T_{23} = v_1, v_4, v_6, v_9, T_{24} = v_1, v_3, v_6, v_8$ and $T_{25} = v_2, v_5, v_7, v_{10}$.

Thus , we get 25γ -sets of C_{10} with cardinality 4. so, $|V(\gamma . C_{10})| = 25$.

Proceeding in this way we can obtain γ -sets for C_{3k+1} .

Theorem 2.1 $|V(\gamma . C_{3k+1})| = \frac{(3k+1)(k+2)}{2}; k \ge 1.$

proof:Let $v_1, v_2, \dots, v_{3k+1}$ be the vertex set of C_{3k+1} . Since $\gamma(C_{3k+1}) = \left\lceil \frac{3k+1}{3} \right\rceil = k+1$ we obtain γ -sets of C_{3k+1} with cardinality k+1,

As per the procedure mentioned earlier, we can obtain γ -sets for C_{3k+1} in the following ways:

- 1. With one adjacent pair of vertices; As the cycle is of length 3k+1.
- 2. with alternate pair of vertices; As there are 3k + 1 choice for the first pair of alternate vertices and each γ -sets have k choices for other pair where some γ -sets occurs twice. So, the total number of γ -sets with alternate vertices is $\frac{(3k+1)k}{2}$.

Hence, the no of γ -sets for

$$C_{3k+1} = (3k+1) + \frac{(3k+1)k}{2}$$

= $\frac{(6k+2)+(3k^2+k)}{2}$
= $\frac{3k^2+7k+2}{2}$
= $\frac{(k+2)(3k+1)}{2}$.

Thus, $|V(\gamma.C_{3k+1})| = \frac{(k+2)(3k+1)}{2}; k \ge 1.$

Journal of Computational Mathematica

Theorem 2.2 The gamma graph of C_{3k+1} is 4-regular.

proof. Let $v_1,v_2,...,v_{3k+1}$ be the vertex set of cycle $C_{3k+1}.$ By the method of obtaing γ sets we observe:

- 1. The set $S_1 = v_1, v_4, v_7, \dots, v_{3k-2}, v_{3k+1}$ is the γ -set with one pair of adjacent vertices.
- 2. The set $S_1 = v_1, v_2, v_6, \dots, v_{3k-3}, v_{3k+1}$ is the γ -set with alternate pair of vertices of 4.
- 3. The γ -set S_1 is adjacent to

$$s_{3} = \{v_{1}, v_{4}, v_{7}, \dots, v_{3k-2}, v_{3k-1}\},\$$

$$s_{4} = \{v_{3}, v_{4}, v_{7}, \dots, v_{3k-2}, v_{3k+1}\},\$$

$$s_{5} = \{v_{2}, v_{4}, v_{7}, \dots, v_{3k-2}, v_{3k+1}\},\$$

$$s_{6} = \{v_{1}, v_{4}, v_{7}, \dots, v_{3k-2}, v_{3k}\}$$

4. The γ -set S_2 is adjacent to

$$s_{7} = \{v_{1}, v_{3}, v_{6}, \dots, v_{3k-3}, v_{3k}\},\$$

$$s_{8} = \{v_{1}, v_{3}, v_{5}, \dots, v_{3k-3}, v_{3k-1}\},\$$

$$s_{9} = \{v_{3}, v_{6}, v_{7}, \dots, v_{3k-1}, v_{3k+1}\},\$$

$$s_{10} = \{v_{1}, v_{4}, v_{6}, \dots, v_{3k-3}, v_{3k-1}\}.$$

In this way each γ -set is adjacent with 40ther γ -sets. Hence $\gamma . C_{3k+1}$ is 4-regular.

3 Conclusion

Gamma graph of C_{3k+2} is isomorphic to itself and that of C_{3k} is isomorphic to complement of K_3 . We have taken the initiative to study on the nature of gamma graph of cycle C_{3k+1} and observed that it is a regular graph.

References

- [1] Anusuya V and Kala R, Modified γ graph- $\mathrm{G}(\gamma_m)$ of some grid graphs, Palestine Journal of Mathematics, 9(2) , 691-697(2020).
- [2]Balakrishnan R and Ranganathan K , A text book of graph theory, Springer, 1999.
- [3] Bien A, Gamma graphs of some special classes of trees, Annales Mathematicae Silesianae, 29, 25-34(2015).

- [4] Christopher M. van Bommel, A bipartite graph that is not the γ -graph of a bipartite graph,2020.
- [5] Connelly E, Hedetniemi ST and Huston KR, A Note on γ -Graphs, AKCE International Journal of Graphs and Combinatorics, 8, 23-31(2011).
- [6] Finbow S and van Bommel CM, γ -Graphs of Trees, Algorithms, 12(8) , 153(2019) . doi.org/10.3390/a12080153.
- [7] Fricke GH, Hedetniemi SM, Hedetniemi ST and Huston KR, γ -graphs of graphs, Discussiones Mathematicae Graph Theory, 31, 517-531(2011).
- [8] Haynes TW, Hedetniemi ST and Slater PJ, Fundamentals of domination in graphs, Marcel Dekker, Inc., 1998.
- [9] Lakshmanan SA and Vijayakumar A, The gamma graph of a graph, AKCE International Journal of Graphs and Combinatorics, 7, 53-59(2010).
- [10] Sridharan N, Amutha S and Rao SB, Induced Subgraph of Gamma Graphs, World Scientific, Discrete Mathematics, Algorithms and Applications, 5(3) (2013).