Best Proximity Point for Generalized Rational α_s -Proximal Contraction

Amit Duhan^{* 1}, Manoj Kumar ¹, Savita Rathee ², and Monika Swami ³

¹Baba Mastnath University, Rohtak, 124001, India ^{2,3}Maharshi Dayanand University, Rohtak, 124001, India

Abstract

Best proximity point problem in S-M(S-metric) spaces is thought to be a generalization of a G- metric spaces. In this study, we provide proof a best proximity points theorem of α_S -Proximal mapping admissible and its several types by generalizing the theory of α -admissible mapping in S-M spaces. We present generalized rational α_S -Proximal contraction type mappings and investigate the best proximity point in S-M spaces. In addition, we provide an illustration to show how the result can beused.

MSC: 47H10;54H25

Keywords: Best Proximity Point, S-M space, Proximal contraction, Generalized rational α_s -Proximal contraction.

1 Introduction

The best approximation results offer an approximation solution to fixed point equation $T\zeta = \zeta$, when a nonself-mapping T has no fixed point. A well-known best approximation theorem in particular, due to Fan [6], reveals the fact that " if K is a non-empty compact convex subset of a Hausdorff locally convex topological vector space X and T : $K \rightarrow X$ is a continous mapping, then there exists an element x satisfying the condition $d(\zeta, T\zeta) = \inf\{d(\mu, T\zeta) : \mu \in K\}$, where d is a metric on X ".

As a generalization of the idea of the best approximation, the best proximity point theory has evolved. The best proximity point theorem is taken into consideration when addressing a complication to discover an approximate solution that is optimal since it ensures the existence of an approximate solution.

Banach Contraction principle is important for finding a fixed point. Due to its diversity, simplicity, and ease of application, many scholars consider it to be one of the most fascinating topics. In various

*Corresponding author amitduhan44@@gmail.com manojantil18@gmail.com dr.savitarathee@gmail.com monikaswami06@gmail.com ways, they tried to apply the Banach contraction principle. Samet et al. [18] introduced the concepts of α -admissible mapping and α - ψ -contractive mappings in metric spaces. Findings of Samet et al. [18] demonstrated that Banach's fixed point theorem and a number of other findings are immediate results of their findings. But on the other hand, Sedghi et al. [19] established the idea of S-M spaces as one outcome of the generalization of metric spaces.

Let B and C be two non-empty subsets of a metric space (X, d). Choose an element $\zeta \in B$ is referred to as a fixed point on a certain map. T : B \rightarrow C if T(b) = b. Certainly, T(B) \cap B/= ϕ is a necessary (but not sufficient) situation for the existence of a fixed point of T. If T(B) \cap B = ϕ , then $d(\zeta, T\zeta) \ge 0$ for all $\zeta \in B$ that is, the set of fixed points of T is empty. Under such circumstances, one frequently tries to find an element ζ which is in some sense closest to T ζ . Best proximity point analysis has been developed inthis direction.

Choose an element $b \in B$ is called a best proximity point of T if

d(b, TB) = d(B, C),

where

 $d(\mathsf{B},\mathsf{C}) = \inf\{d(\zeta,\mu): \zeta \in \mathsf{B}, \mu \in \mathsf{C}\}.$

The reason being that $d(\zeta, T\zeta) \ge d(B, C)$ for all $\zeta \in B$, the global minimum of the mapping $\zeta \to d(\zeta, T\zeta)$ is attained at the Best proximity point.

Hussain et al. [9] proved certain Best proximity point results in the setting of G-metric spaces. Mo- tivated by inspiration by Hussain et al. [9] and Sedghi et al. [19], In this paper, we prove some best proximity point results in S-M spaces.

2 **PRELIMINARIES**

Initially, we must remember a few crucial definition's, lemma's and results for this the notion of S-M spaces as described below.

Definition 2.1. [18] "Let $T : X \to X$ be a self-mapping on a metric space (X, d), and let $\alpha : X \times X \to [0, +\infty)$ be a function. It is said that T is α -admissible if $\zeta, \mu \in X$,

$$\alpha(\zeta,\mu) \ge 1 \implies \alpha(T\zeta,T\mu) \ge 1."$$

Example 2.2. "Consider $X = [0, +\infty)$, and define $T : X \to X$ and $\alpha : X \times X \to [0, +\infty)$ by $T\zeta = 5\zeta$ for all $\zeta, \mu \in X$

all $\zeta, \mu \in X$ Then T is α -admissible." $\alpha(\zeta, \mu) = \begin{array}{c} \zeta \\ e^{\mu} & \text{if } \zeta \ge \mu \ \zeta/= 0 \\ 0 & \text{if } \zeta < \mu \end{array}$

Definition 2.3. [17] "Let T be a self-mapping on a metric space (X, d), and let $\alpha, \eta : X \times X \rightarrow [0, +\infty)$ be two functions. T is said to be an α -admissible mapping with respect to η if $\zeta, \mu \in X, \alpha(\zeta, \mu) \ge \eta(\zeta, \mu)$

imply $\alpha(T\zeta, T\mu) \geq \eta(T\zeta, T\mu)$.

It can be noted that if we take $\eta(\zeta, \mu) = 1$, then this definition reduces to Definition 2.1. Also, if we take $\alpha(\zeta, \mu) = 1$, then T is said to be an η -subadmissible mapping."

Definition 2.4. [11] "Let $T : B \to C$, $\alpha : B \times B \to [0, +\infty)$. We say that T is α -Proximal admissible mapping if

$$\begin{aligned} \alpha(\zeta_1, \zeta_2) \geq 1, & \square & = \Rightarrow & \alpha(u_1, u_2) \geq 1 \\ d(u_2, \mathsf{T}\zeta_2) &= d(\mathsf{B}, \mathsf{C}), \\ for all \zeta_1, \zeta_2, u_1, u_2 \in A." \end{aligned}$$

Certainly if B = C then α -Proximal admissible map T converted to α -admissible map.

Definition 2.5. [8] "Let $T: B \to C$, and $\alpha, \eta : B \times B \to [0, +\infty)$ be functions. We say that T is α -proximal admissible with respect to η if, for all $\zeta_1, \zeta_2, u_1, u_2 \in B$,

 $\begin{aligned} d(u_1, T\zeta_1)^{(\underline{\zeta}_1, \underline{\zeta}_2)} &\longleftrightarrow \\ d(u_2, T\zeta_2) &= d(B, C), \end{aligned} \overset{(\underline{\zeta}_1, \, \underline{\zeta}_2)}{=} & \alpha(u_1, u_2) \geq \eta(u_1, u_2). \end{aligned}$

Note that if we take $\eta(\zeta, \mu) = 1$ for all $\zeta, \mu \in B$, then this definition reduces to Definition 2.4. In case $\alpha(\zeta, \mu) = 1$ for all $\zeta, \mu \in B$, then we shall say that T is η -Proximal subadmissible mapping."

 $G = \{g : [0, +\infty) \rightarrow [0, 1) \text{ that } wayg(t_n) \rightarrow 1 \text{ implies } t_n \rightarrow 0\}$

Definition 2.6. [13] "A mapping $T : B \to C$, is called Geraghty's proximal contraction of the first kind if,there exists $\beta \in G$ such that

for all $u, v, x, y \in A$."

Definition 2.7. [13] "A mapping $T: B \to C$, is called Geraghty's proximal contraction of the second kindif, there exists $\beta \in G$ such that

$$d(u, T\zeta) = d(B, C) \qquad) = d(Tu, Tv) \leq \beta(d(T\zeta, T\mu))d(T\zeta, T\mu)d(u, T\mu) = d(B, C)$$

for all $u, v, \zeta, \mu \in B$."

Definition 2.8. [19] "Let X be a non-empty set. An S-M on X is a function $S : X \times X \times X \rightarrow [0, +\infty)$ that satisfies the following conditions for each $\zeta, \mu, \varrho, b \in X$:

1. $S(\zeta, \mu, \varrho) \ge 0$, 2. $S(\zeta, \mu, \varrho) = 0$ if and only if $\zeta = \mu = \varrho$, 3. $S(\zeta, \mu, \varrho) \le S(\zeta, \zeta, b) + S(\mu, \mu, b) + S(\varrho, \varrho, b)$. The pair (X, S) is called S-M space."

This assertion is an emphasis of G-metric spaces [14] and D^* -metric spaces [20]. Realize that each S-Mon X induces a metric d_s on X as explained by

 $d_s(\zeta,\mu)=S(\zeta,\zeta,\mu)+S(\mu,\mu,\zeta),\,\text{for all }\zeta,\mu\in X.$

Example 2.9. [19] " Let X=R. Then

$$S(\zeta, \mu, \varrho) = |\zeta - \mu| + |\mu - \varrho|$$

for all $\zeta, \mu, \varrho \in \mathbb{R}$, is an S-M on X."

Example 2.10. [19]" Let $X = R^2$ and d is ordinary metric on X. Put

 $S(\zeta,\mu,\varrho)=d(\zeta,\mu)+d(\zeta,\varrho)+d(\mu,\varrho)$

for all $\zeta, \mu, \varrho \in \mathbb{R}$. Then S is an S-M on X."

Lemma 2.11. [19] "Let (X, S) be an S-M space. Then $S(\zeta, \zeta, \mu) = S(\mu, \mu, \zeta)$, for all $\zeta, \mu \in X$."

Lemma 2.12. [7] " Let (X, S) be an S-M space. Then

 $S(\zeta, \zeta, \varrho) \le 2S(\zeta, \zeta, \mu) + S(\mu, \mu, \varrho) \text{ and } S(\zeta, \zeta, \varrho) \le 2S(\zeta, \zeta, \mu) + S(\varrho, \varrho, \mu)$

for all $\zeta, \mu, \varrho \in X$."

Definition 2.13. [19] Let (X, S) be an S-M space.

1. "A sequence $\{\zeta_l\}$ in X converges to ζ if and only if $S(\zeta_l, \zeta_l, \zeta) \to 0$ as $l \to +\infty$. That is, for each $\epsilon > 0$, there exists $l_0 \in \mathbb{N}$ such that, for all $l \ge l_0$, $S(\zeta_l, \zeta_l, \zeta) < \epsilon$, and we denote this by $\lim_{l \to +\infty} \zeta_l = \zeta$." 2. "A sequence $\{\zeta_l\}$ in X is called a Cauchy sequence if for each $\epsilon > 0$ there exists $l_0 \in \mathbb{N}$ such that $S(\zeta_l, \zeta_l, \zeta_m) < \epsilon$ for each $l, m \ge l_0$." 3. "That S-M space (X, S) is said to be complete if every Cauchy sequence is convergent."

3. That S-M space (X, S) is said to be complete if every cauchy sequence is convergent.

We now consider the meaning of α_s -admissible mappings and their generalizations in S-M spaces. In this article, we present a number of concepts of α -admissible mappings in the context of S-M spaces and name them α_s -admissible.

Definition 2.14. [21] "Let $T: X \to X$ and $\alpha: X^3 \to [0, +\infty)$. Then T is said to be α -admissible if forall $\zeta, \mu, \varrho \in X$

 $\alpha(\zeta, \mu, \varrho) \ge 1$ implies $\alpha(T\zeta, T\mu, T\varrho) \ge 1$."

Definition 2.15. [21] "Let (X, S) be an S-M space, $T : X \to X$ and $\alpha_s : X \times X \times X \to [0, +\infty)$. Then T is called α_s - admissible if $u, v, w \in X$,

 $\alpha_s(u, v, w) \ge 1$ implies $\alpha_s(Tu, Tv, Tw) \ge 1$."

Example 2.16. [16] "Consider $X = [0, +\infty)$. Define $T: X \to X$ and $\alpha_s : X \times X \times X \to [0, +\infty)$ by Tu = 4u for all $u, v, w \in X$ and

$$\alpha_{s}(u, v, w) = \begin{cases} u v_{e}^{w} & \text{if } u \ge v \ge w \ v/= 0\\ 0 & \text{if } u < v < w \end{cases}$$

Then T is α_s -admissible."

Definition 2.17. [16] "Let (X, S) be an S-metric space, $T : X \to X$, and let $\alpha_s, \eta_s : X \times X \times X \to [0, +\infty)$ be two functions. We say that T is an α_s -admissible mapping with respect to η_s if $u, v, w \in X, \alpha_s(u, v, w) \ge \eta_s(u, v, w)$ implies $\alpha_s(Tu, Tv, Tw) \ge \eta_s(Tu, Tv, Tw)$.

Note that if we take $\eta_s(u, v, w) = 1$, then this definition reduces to Definition 2.15. "

Definition 2.18. [15] "Let (X, S) be an S-M space and let B and C be two non-empty subsets of X. Then C is said to be approximatively compact with respect to B if every sequence $\{\mu_l\}$ in C, satisfying the condition $d_s(\zeta, \mu_n) \rightarrow d_s(\zeta, C)$ for some ζ in B has a convergent subsequence."

3 Main Result

At first, we presume

 $\Xi = \{\xi : [0, \infty) \to [0, \infty) \text{ such that } \xi \text{ is non-decreasing and continous } \}$ where $\xi(x) = 0$ if and only if x = 0.

Definition 3.1. Let (X, S) be a S-M space and let B and C be two non-empty subset of X then $T : B \to C$ and $\alpha_s : B \times B \times B \to [0, +\infty)$. We say T is α_s -Proximal admissible if

for all $\zeta, \mu, \varrho, \vartheta, \nu, \kappa \in B$.

Define $\alpha_s : B \times B \times$

Example 3.2. Consider X = R and let a be any fixed positive real number, $B = \{(a, \mu, \varrho) : \mu, \varrho \ge 0\}$ and $C = \{(0, \mu, \varrho) : \mu, \varrho \ge 0\}$. Define $T : B \rightarrow C$ by

Then $S(\zeta, \mu, \varrho) = \frac{1}{4}(|\zeta-\varrho|+|\mu-\varrho|)$ is S-M on X, let $d_s(B, C) = |\zeta-\mu|$ and $\kappa_1 = (a, \mu_1, \varrho_1)$, $\kappa_2 = (a, \mu_2, \varrho_2)$, $\kappa_3 = (a, \mu_3, \varrho_3)$, $\kappa_4 = (a, \mu_4, \varrho_4)$, $\kappa_5 = (a, \mu_5, \varrho_5)$, $\kappa_6 = (a, \mu_6, \varrho_6)$ be arbitrary points from B satisfying,

 $\alpha_{s}(\kappa_{1}, \kappa_{2}, \kappa_{3}) = 2,$ so $\mu_{1}, \mu_{2}, \mu_{3}, \varrho_{1}, \varrho_{2}, \varrho_{3} \ge 0,$ $d_{s}(\kappa_{4}, \mathrm{T}\kappa_{1}) = a = d_{s}(\mathrm{B}, \mathrm{C}),$ $d_{s}(\kappa_{5}, \mathrm{T}\kappa_{2}) = a = d_{s}(\mathrm{B}, \mathrm{C}),$ $d_{s}(\kappa_{6}, \mathrm{T}\kappa_{3}) = a = d_{s}(\mathrm{B}, \mathrm{C}).$

So further we solve $\mu_4 \neq \frac{\mu_1}{2}$, $\varrho_4 = \varrho_{1,\mu_5} \neq \frac{\mu_2}{2}$, $\varrho_5 = \varrho_2$ and $\mu_6 \neq \frac{\mu_3}{2}$, $\varrho_6 = \varrho_3$ which implies $\mu_i, \varrho_i \ge 0$, where i = 1, 2, 3. Hence $\alpha_s(\kappa_4, \kappa_5, \kappa_6) = 2$. Therefore, T is α_s -Proximal admissible map.

Definition 3.3. Choose B and C be two non-empty subsets of an S-M space (X, S). A non-self mapping $T : B \rightarrow C$ is called generalized rational α_s -Proximal contraction mapping if $\alpha_s : B \times B \times B \rightarrow [0, +\infty)$ is a function and there exist $g \in G$ and $\xi \in X_i$ such that, for all $\zeta, \vartheta, \vartheta^*, \mu, \nu \in B$,

where

 $\Delta(\zeta, \vartheta, \mu) = \max S(\zeta, \zeta, \vartheta), S(\vartheta, \vartheta, \mu), S(\mu, \mu, \zeta), \underbrace{S(\zeta, \zeta, \vartheta)S(\vartheta, \vartheta, \mu)}_{I + S(\zeta, \zeta, \vartheta)S(\vartheta, \vartheta, \mu)}, \frac{S(\mu, \mu, \zeta)S(\zeta, \zeta, \vartheta)}{I + S(\vartheta, \vartheta, \mu)S(\mu, \mu, \zeta)}, \underbrace{S(\mu, \mu, \zeta)S(\zeta, \zeta, \vartheta)}_{I + S(\mu, \mu, \zeta)S(\zeta, \zeta, \vartheta)}$ (3.3)

Definition 3.4. Let (X, S) be an S-M space, $T : B \to C$, and $\alpha_s, \eta_s : B \times B \times B \to [0, +\infty)$. We say T is α_s -Proximal admissible with respect to η_s if for all $\zeta, \mu, \varrho, \vartheta, \nu, \kappa \in B$, we have

$$d_{s}(\vartheta, \mathsf{T}\zeta) \stackrel{\alpha(\zeta, \mu, \varrho)}{=} d_{s}(\mathsf{B}, \mathsf{C}), \quad \exists \Rightarrow \qquad \alpha \ (\vartheta, \nu, \kappa) \ge \eta \ (\vartheta, \nu, \kappa). \tag{3.4}$$

S

В

S

 $d_{s}(\nu, T\mu) = d_{s}(, C),$ $d_{s}(\kappa, T\varrho) = d_{s}(B, C),$ Recall that if we take $\eta_{s}(\vartheta, \nu, \kappa) = 1$, then this definition converted to Definition 3.2. Also, if we take $\alpha_{s}(\vartheta, \nu, \kappa) = 1$, then we say that T is an η_{s} - Proximal subadmissible mapping.

Theorem 3.5. Let B and C be two non-empty subsets of an S-M space (X, S) such that (B, S) be acomplete S-M space and B₀ be non-empty set. B and C are approximatively compact with respect to B. Let $\alpha_s : B \times B \times B \rightarrow [0, +\infty)$ be a function and T : B \rightarrow C be a mapping then the following conditionshold:

- 1. T is a generalized rational α_s -Proximal contraction mapping.
- 2. There exists $\zeta_0 \in B$ such that $\alpha_s(\zeta_0, \zeta_1, T\zeta_1) \ge 1$.
- *3.* T is continuous.

4. If $\{\zeta_l\}$ is a sequence in B such that $\alpha_s(\zeta_l, \zeta_{l+1}, \zeta_{l+1}) \ge 1$ for all $l \in \mathbb{N} \cup \{0\}$ and $\zeta_l \to \varrho \in \mathbb{B}$ as $l \to +\infty$, then there exists a subsequence $\{\zeta_m\}$ of $\{\zeta_n\}$ such that $\alpha_s(\zeta_m, \varrho, \varrho) \ge 1$ for all k.

Suppose that $T(B_0) \subseteq C_0$. Then T has the unique best proximity point that is, $\varrho \in B$ such that $d_s(\varrho, T\varrho) = d_s(B, C)$.

Proof. Due to the subset B_0 is not empty, we choose ζ_0 in B_0 . Taking $T\zeta_0 \in T(B_0) \subseteq C_0$ into account, we can find $\zeta_1 \in B_0$ like that

$$d_s(\zeta_1, \mathrm{T}\zeta_0) = d_s(\mathrm{B}, \mathrm{C}).$$

Moreover, given $T\zeta_1 \in T(B_0) \subseteq C_0$, Hence, there are elements ζ_2 and ζ_3 in B_0 such that

 $d_s(\zeta_2, \mathrm{T}\zeta_1) = d_s(\mathrm{B}, \mathrm{C}),$ $d_s(\zeta_3, \mathrm{T}\zeta_2) = d_s(\mathrm{B}, \mathrm{C}).$

Repeating this process, we get a sequence $\{\zeta_i\}$ in B₀ satisfying

$$d_s(\zeta_{l+1}, \mathrm{T}\zeta_l) = d_s(\mathrm{B}, \mathrm{C}), \forall l \in \mathrm{N} \cup \{0\}.$$

By by taking $\vartheta = \zeta_l$, $\zeta = \zeta_{l-1}$, $\nu = \zeta_{l+1}$, $\mu = \zeta_l$, $\vartheta^* = \zeta_{l+1}$, Equation 3.2 gives

$$\alpha_{s}(\zeta_{l}, \zeta_{l+1}, \zeta_{l+1})\xi(S(\zeta_{l}, \zeta_{l+1}, \zeta_{l+1})) \leq g(\xi(\Delta(\zeta_{l-1}, \zeta_{l}, \zeta_{l})))(\xi(\Delta(\zeta_{l-1}, \zeta_{l}, \zeta_{l})).$$
(3.5)

By the assumption $\alpha_s(\zeta_0, \zeta_1, \zeta_1) \ge 1$ and T is α_s -Proximal admissible, we have

$$\alpha_{s}(\zeta_{l}, \zeta_{l+1}, \zeta_{l+1}) \geq 1 \text{ for all } l \in \mathbb{N} \cup \{0\},$$
and $\xi(S(\zeta_{l}, \zeta_{l+1}, \zeta_{l+1})) \leq g(\xi(\Delta(\zeta_{l-1}, \zeta_{l}, \zeta_{l})))\xi(\Delta(\zeta_{l-1}, \zeta_{l}, \zeta_{l})).$
(3.6)
where
$$\Delta(\zeta_{l-1}, \zeta_{l}, \zeta_{l}) = \max S(\zeta_{l-1}, \zeta_{l-1}, \zeta_{l}), S(\zeta_{l}, \zeta_{l}, \zeta_{l}, \zeta_{l}, \zeta_{l-1}),$$

$$\frac{S(\zeta_{l-1}, \zeta_{l-1}, \zeta_{l})S(\zeta_{l}, \zeta_{l}, \zeta_{l}, \zeta_{l})}{1 + S(\zeta_{l}, \zeta_{l}, \zeta_{l})S(\zeta_{l}, \zeta_{l}, \zeta_{l-1})},$$

$$\frac{S(\zeta_{l-1}, \zeta_{l-1}, \zeta_{l})S(\zeta_{l}, \zeta_{l}, \zeta_{l})}{1 + S(\zeta_{l}, \zeta_{l}, \zeta_{l})S(\zeta_{l}, \zeta_{l}, \zeta_{l-1})} = \max\{S(\zeta_{l-1}, \zeta_{l-1}, \zeta_{l}), S(\zeta_{l}, \zeta_{l}, \zeta_{l-1})\}.$$

If max { $S(\zeta_{l-1}, \zeta_{l-1}, \zeta_l), S(\zeta_l, \zeta_l, \zeta_{l-1})$ } = $S(\zeta_l, \zeta_l, \zeta_{l-1})$ then the Equation 3.6 becomes

$$\begin{aligned} \xi(S(\zeta_{l},\zeta_{l+1},\zeta_{l+1})) &\leq g(\xi(S(\zeta_{l},\zeta_{l},\zeta_{l-1})))\xi(S(\zeta_{l},\zeta_{l},\zeta_{l-1})) \\ &< \xi(S(\zeta_{l},\zeta_{l},\zeta_{l-1})), \end{aligned}$$
(3.7)

which is a contradiction.

So max { $S(\zeta_{l-1}, \zeta_{l-1}, \zeta_l)$, $S(\zeta_l, \zeta_l, \zeta_{l+1})$ } is $S(\zeta_{l-1}, \zeta_{l-1}, \zeta_l)$, implies

$$\xi(S(\zeta_l, \zeta_{l+1}, \zeta_{l+1})0)) < \xi(S(\zeta_{l-1}, \zeta_{l-1}, \zeta_l)) \text{ holds for all } l \in \mathbb{N} \cup \{0\}.$$

$$(3.8)$$

So, the sequence $\{S(\zeta_l, \zeta_{l+1}, \zeta_{l+1})\}$ is nonnegative and nonincreasing. Now, we prove that $\{S(\zeta_l, \zeta_{l+1}, \zeta_{l+1})\} \rightarrow \varrho$ {and we claim $\varrho = 0$ }. It is clear that $\{S(\zeta_l, \zeta_{l+1}, \zeta_{l+1})\}$ is a decreasing sequence. Therefore, there exists some positive number t such that $\lim_{n\to+\infty} \{S(\zeta_l, \zeta_{l+1}, \zeta_{l+1})\} = t$. From 3.7 we have,

$$\frac{\xi(S(\zeta_{l+1}, \zeta_{n+2}, \zeta_{n+2}))}{\xi(S(\zeta_{l}, \zeta - 1))} \leq g(\xi(S(\zeta_{l}, \zeta_{l+1}, \zeta_{l+1}))) \leq 1.$$

Now taking limit $n \to +\infty$ we have $1 \le g(\xi(S(\zeta_l, \zeta_{l+1}, \zeta_{l+1}))) \le 1$, that is,

 $g(\xi(S(\zeta_l,\zeta_{l+1},\zeta_{l+1}))) = 1.$

As $g \in G$, we get $\lim_{n \to +\infty} \xi(S(\zeta_l, \zeta_{l+1}, \zeta_{l+1})) = 0$, that is

$$\lim_{n \to +\infty} S(\zeta_k \zeta_{l+1}, \zeta_{l+1}) = 0.$$
(3.9)

Now, we present the sequence $\{\zeta_i\}$ is a Cauchy sequence. Suppose, however that $\{\zeta_i\}$ is not a Cauchy sequence. Then there exist $\epsilon > 0$ and sequences $\{\zeta_{mk}\}$ and $\{\zeta_{ik}\}$ such that, for all positive integers k, we have $m_i \ge m_i > k_i$

$$S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{m_l}) \ge \epsilon. \tag{3.10}$$

In addition, in accordance with m_l , we can choose m_l in such a way that it is the smallest integer with $l_l \ge m_l$ and satisfies 3.10. Hence

$$S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{lk-1}) < \epsilon. \tag{3.11}$$

Set $\delta_l = 2S(\zeta_l, \zeta_l, \zeta_{l-1})$. Using the lemma 2.4 and 2.5, we have

$$\epsilon \leq S(\zeta_{m_{l}}, \zeta_{m_{l}}, \zeta_{m_{l}}) = S(\zeta_{m_{l}}, \zeta_{m_{l}}, \zeta_{m_{l}})$$

$$\leq 2S(\zeta_{m_{l}}, \zeta_{m_{l}}, \zeta_{lk-1}) + S(\zeta_{m_{l}}, \zeta_{m_{l}}, \zeta_{lk-1})$$

$$\leq S(\zeta_{m_{l}}, \zeta_{m_{l}}, \zeta_{lk-1}) + \epsilon$$

$$\leq \delta_{m_{l}} + \epsilon.$$
(3.12)

Letting $k \to +\infty$ in Equation 3.12 we derive that

 $\lim_{n \to \infty} S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{m_l}) = \epsilon.$ (3.13)

Also, by Lemma 2.5 we obtain the following inequalities:

$$S(\zeta_{m_{l}}, \zeta_{m_{l}}, \zeta_{m_{l}}) \leq 2S(\zeta_{m_{l}}, \zeta_{m_{l}}, \zeta_{n_{k}-1}) + S(\zeta_{m_{l}}, \zeta_{m_{l}}, \zeta_{l_{k}-1})$$

$$\leq 2S(\zeta_{m_{l}}, \zeta_{m_{l}}, \zeta_{l_{k}-1}) + S(\zeta_{l_{k}-1}, \zeta_{l_{k}-1}, \zeta_{m_{l}})$$

$$= \delta_{m_{l}} + S(\zeta_{l_{k}-1}, \zeta_{l_{k}-1}, \zeta_{m_{l}}).$$
(3.14)

$$S(\zeta_{nk-1}, \zeta_{nk-1}, \zeta_{m_{l}}) \leq 2S(\zeta_{lk-1}, \zeta_{lk-1}, \zeta_{m_{l}}) + S(\zeta_{m_{l}}, \zeta_{m_{l}}, \zeta_{m_{l}})$$

= $\delta_{lk-1} + S(\zeta_{m_{l}}, \zeta_{m_{l}}, \zeta_{m_{l}}).$ (3.15)

Letting $k \rightarrow \infty$ in Equation 3.15 and applying Equation 3.14 we get

$$\lim_{\substack{k \to + \\ \infty }} S(\zeta_{lk-1}, \zeta_{lk-1}, \zeta_{m_l}) = \epsilon,$$

$$\lim_{\substack{k \to + \\ k \to + }} S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{lk-1}) = \epsilon.$$
Now,
$$\lim_{\substack{k \to + }} S(\zeta_{lk-1}, \zeta_{lk-1}) = \epsilon.$$
(3.16)

 ∞

$$\begin{split} S(\zeta_{m_{l}}, \zeta_{m_{l}}, \zeta_{m_{l}}) &\leq 2S(\zeta_{m_{l}}, \zeta_{m_{l}}, \zeta_{m_{k}-1}) + S(\zeta_{m_{l}}, \zeta_{m_{l}}, \zeta_{m_{k}-1}) \\ &\leq 2S(\zeta_{m_{l}}, \zeta_{m_{l}}, \zeta_{m_{k}-1}) + 2S(\zeta_{m_{l}}, \zeta_{m_{l}}, \zeta_{n_{k}-1}) + S(\zeta_{m_{k}-1}, \zeta_{m_{k}-1}, \zeta_{n_{k}-1}) \\ &= \delta_{m_{\ell}} + \delta_{m_{\ell}} + S(\zeta_{m_{k}-1}, \zeta_{m_{k}-1}, \zeta_{n_{k}-1}). \end{split}$$
(3.17)

$$S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{lk-1}) \leq 2S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{m_{l}}) + S(\zeta_{m_{l}}, \zeta_{m_{l}}, \zeta_{lk-1})$$

$$\leq 2S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{m_{l}}) + 2S(\zeta_{lk-1}, \zeta_{lk-1}, \zeta_{m_{l}}) + S(\zeta_{m_{l}}, \zeta_{m_{l}}, \zeta_{m_{l}})$$

$$= \delta_{mk-1} + \delta_{lk-1} + S(\zeta_{m_{l}}, \zeta_{m_{l}}, \zeta_{m_{l}}).$$
(3.18)
Letting $k \to \infty$ in Equation 3.18 and applying Equation 3.17 we get,
$$\lim_{k \to +\infty} S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{lk-1}) = \epsilon.$$
(3.19)

$$S(\zeta_{m_{l}}, \zeta_{m_{l}}, \zeta_{m_{l}}, \zeta_{m_{l}}, \zeta_{m_{l}}, \zeta_{m_{l}}, \zeta_{m_{k-1}}) + S(\zeta_{m_{l}}, \zeta_{m_{l}}, \zeta_{m_{k-1}})$$

$$= \delta_{m_{l}} + S(\zeta_{m_{k-1}}, \zeta_{m_{l}}, \zeta_{m_{l}}).$$

$$(3.20)$$

$$S(\zeta_{mk-1}, \zeta_{ml}, \zeta_{ml}) = S(\zeta_{ml}, \zeta_{mk-1})$$

$$S(\zeta_{ml}, \zeta_{ml}, \zeta_{mk-1}) \leq 2S(\zeta_{ml}, \zeta_{ml}, \zeta_{lk-1}) + S(\zeta_{lk-1}, \zeta_{lk-1}, \zeta_{mk-1})$$

$$\leq 2S(\zeta_{ml}, \zeta_{ml}, \zeta_{lk-1}) + 2S(\zeta_{lk-1}, \zeta_{lk-1}, \zeta_{ml}) + S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{ml})$$

$$\leq \delta_{ml} + \delta_{lk-1} + 2S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{ml}) + S(\zeta_{ml}, \zeta_{ml}, \zeta_{ml})$$

$$= \delta_{ml} + \delta_{lk-1} + \delta_{mk-1} + S(\zeta_{ml}, \zeta_{ml}, \zeta_{ml}).$$
(3.21)

Letting $k \rightarrow \infty$ in Equation 3.21 and applying Equation 3.20 we get

$$\lim_{k \to +\infty} S(\zeta_{mk-1}, \zeta_{m_l}, \zeta_{m_l}) = \epsilon.$$
(3.22)

$$S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{ml}) = \delta_{mk-1},$$

Letting $k \to \infty$, we obtain

$$\lim_{k \to +\infty} S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{ml}) = 0.$$
(3.23)

Consider Equation 3.6 with $\vartheta = \zeta_{m_l}$, $\zeta = \zeta_{m_{k-1}}$, $\nu = \zeta_{m_l}$, $\mu = \zeta_{l_{k-1}}$, $\vartheta^* = \zeta_{m_l}$,

$$S(\zeta_{mk-1}, \zeta_{ml}, \zeta_{ml}) \le g[(\Delta(\zeta_{mk-1}, \zeta_{ml}, \zeta_{lk-1})][\Delta(\zeta_{mk-1}, \zeta_{ml}, \zeta_{lk-1})],$$
(3.24)
where

 $\Delta(\zeta_{mk-1}, \zeta_{ml}, \zeta_{lk-1}) = \max S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{ml}), S(\zeta_{ml}, \zeta_{ml}, \zeta_{lk-1}), S(\zeta_{lk-1}, \zeta_{lk-1}, \zeta_{mk-1}),$

$$S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{ml})S(\zeta_{ml}, \zeta_{ml}, \zeta_{lk-1}) = S(\zeta_{ml}, \zeta_{ml}, \zeta_{lk-1}) = S(\zeta_{ml}, \zeta_{ml}, \zeta_{lk-1}) = S(\zeta_{ml}, \zeta_{ml}, \zeta_{lk-1}) = S(\zeta_{mk-1}, \zeta_{ml}, \zeta_{lk-1}, \zeta_{lk-1}, \zeta_{lk-1}) = S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{mk-1}) = S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{mk-1}, \zeta_{mk-1}, \zeta_{mk-1}) = S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{mk-1}, \zeta_{mk-1}, \zeta_{mk-1}, \zeta_{mk-1}) = S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{mk-1}, \zeta_{mk-1}, \zeta_{mk-1}, \zeta_{mk-1}) = S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{mk-1}, \zeta_{mk-1}, \zeta_{mk-1}) = S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{mk-1}, \zeta_{mk-1}, \zeta_{mk-1}, \zeta_{mk-1}) = S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{mk-1$$

$$1 + S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{m_l})S(\zeta_{lk-1}, \zeta_{lk-1}, \zeta_{mk-1})$$

$$\Delta(\zeta_{mk-1}, \zeta_{ml}, \zeta_{lk-1}) = \max S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{ml}), S(\zeta_{ml}, \zeta_{ml}, \zeta_{lk-1}), S(\zeta_{lk-1}, \zeta_{lk-1}, \zeta_{mk-1})$$
(3.25)
Using the Equations 3.16,3.19,3.23 in 3.25 we obtain,
 $\delta_1(\zeta_{mk-1}, \zeta_{ml}, \zeta_{lk-1}) = \max\{0, \epsilon, \epsilon\}$
 $= \epsilon.$
(3.26)

Now taking limit $k \rightarrow \infty$ in Equation 3.24 and using Equations 3.2,3.26, we obtain,

$$\xi(\epsilon) \leq g(\xi(\epsilon)).\xi(\epsilon)\xi(\epsilon) = 1.$$

This contradicts itself by implying that $\epsilon = 0$. Hence,

$$\lim_{k \to +\infty} \left(S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{m_{k+1}}) \right) = 0.$$
(3.27)

Thus $\{\zeta_l\}$ is a Cauchy sequence. Since (B, S) is complete S - metric space, so there exists $\varrho \in B$ such that $\{\zeta_l\} \to \varrho$ as $l \to \infty$.

Conversely, for all $l \in N_{l,l}$

 $\begin{aligned} d_{s}(\varrho, \mathsf{C}) &\leq d_{s}(\varrho, \mathsf{T}\zeta_{l}) \\ &\leq d_{s}(\varrho, \zeta_{l+1}) + d_{s}(\zeta_{l+1}, \mathsf{T}\zeta_{l}) \\ &= d_{s}(\varrho, \zeta_{l+1}) + d_{s}(\mathsf{B}, \mathsf{C}). \end{aligned} \tag{3.28}$ Taking limit as $l \to \infty$ in above inequality, we discover lim $d_{s}(\varrho, \mathsf{T}\zeta_{l}) = d_{s}(\varrho, \mathsf{C}) = d_{s}(\ , \mathsf{C}). \\ l \to \infty \end{aligned}$

Since C is approximatively compact with respect to B so the sequance $\{T\zeta_i\}$ has a subsequence $\{T\zeta_{m_l}\}$ that converges to some $\mu^* \in C$. Hence, B

$$d_{s}(\varrho, \mu^{*}) = \lim_{l \to \infty} d_{s}(\zeta_{lk+1}, T\zeta_{m_{l}}) = d_{s}(B, C), \qquad (3.29)$$

and so $\varrho \in B_0$. Now since $T\varrho \in TB_0 \subseteq C_0$, so there exist $\kappa \in B_0$ such that

$$d_s(\kappa, T\varrho) = d_s(B, C).$$

By Equation 3.6 with $\vartheta = \zeta_{l+1}$, $\zeta = \zeta_l$, $\nu = \kappa$, $\mu = \varrho$, $\vartheta^* = \zeta_{n+2}$ we have

$$\begin{split} \xi(S(\zeta_{l+1}, \zeta_{l+2}, \kappa)) &\leq g(\xi(\Delta(\zeta_{l}, \zeta_{l+1}, \varrho)))\xi(\Delta(\zeta_{l}, \zeta_{l+1}, \varrho)), \end{split} \tag{3.30} \\ \text{where} \\ \Delta(\zeta_{l}, \zeta_{l+1}, \varrho) &= max\{S(\zeta_{l}, \zeta_{l}, \zeta_{l+1}), S(\zeta_{l+1}, \zeta_{l+1}, \varrho), S(\varrho, \varrho, \zeta_{l}), \\ & \underbrace{S(\zeta_{l}, \zeta_{l}, \zeta_{l+1})S(\zeta_{l+1}, \zeta_{l+1}, \varrho)}_{1 + S(\zeta_{l}, \zeta_{l}, \zeta_{l}, \zeta_{l+1})S(\zeta_{l+1}, \zeta_{l+1}, \varrho) + S(\zeta_{l+1}, \zeta_{l+1}, \varrho)S(\varrho, \varrho, \zeta_{l})}_{1 + S(\zeta_{l}, \zeta_{l}, \zeta_{l}, \zeta_{l}, \zeta_{l}, \zeta_{l}, \zeta_{l+1})}, \\ 1 + S(\varrho, \varrho, \zeta)S(\zeta, \zeta, \zeta, \zeta) + \underbrace{S(\zeta_{l}, \zeta, \zeta, \zeta)}_{1 + I + I} + I + I + I \end{split}$$

 $\Delta(\zeta_l,\zeta_{l+1},\varrho)=max\{S(\zeta_l,\zeta_l,\zeta_{l+1}),S(\zeta_{l+1},\zeta_{l+1},\varrho),S(\varrho,\varrho,\zeta_l)\}.$

Taking the limit $l \rightarrow \infty$

 $\lim_{l \to \infty} \Delta(\zeta_{l}, \zeta_{l+1}, \varrho) = \lim_{n \to \infty} \max\{S(\zeta_{l}, \zeta_{l}, \zeta_{l+1}), S(\zeta_{l+1}, \zeta_{l+1}, \varrho, S(\varrho, \varrho, \zeta_{l})\} = 0.$

Taking the limit $l \to \infty$ in equation(3.28) and using $\lim_{l\to\infty} \Delta(\zeta_l, \zeta_{l+1}, \varrho) = 0$, we get

$$\xi(S(\varrho, \varrho, \kappa)) \leq g(\xi(0))\xi(0) = 0.$$

Then $S(\varrho, \varrho, \kappa) = 0$. That is $\varrho = \kappa$, so $d_s(\varrho, T\varrho) = d_s(B, C)$. Consequently, T has the "best proximity point".

Now we prove the uniqueness of "best proximity point" Suppose that p q such that $d_s(p, Tp) = d_s(B, C)$

and $d_s(q, Tq) = d_s(B, C)$. Now by 3.6, with $\zeta = \vartheta = \vartheta^* = p$ and $\mu = \nu = q$ we get

$$\xi(S(p, p, q)) \le g(\xi(\Delta(p, p, q)))\xi(\Delta(p, p, q)), \tag{3.31}$$

where

$$\begin{split} \Delta(p, p, q) &= \max \quad S(p, p, p), S(p, p, q), S(q, q, p), \underbrace{S(p, p, p)S(p, p, q)}_{1 + S(p, p, p)S(p, p, q)} \\ \underline{S(p, p, q)S(q, q, p)}_{1 + S(p, p, q)S(q, q, p) 1 + S(q, q, p)S(p, p, p)}_{1 + S(p, p, q), S(q, q, p)} \end{split}$$

If max $\{S(p, p, q), S(q, q, p)\} = S(p, p, q)$ then from Equation 3.31, we get

$$\begin{split} \xi(S(p,\,p,\,q\,)) &\leq g(\xi(S(p,\,p,\,q\,)))\xi(S(p,\,p,\,q\,)), \\ &< \xi(S(p,\,p,\,q\,)) \end{split}$$

which is a contradiction. Thus max $\{S(p, p, q), S(q, q, p)\} = S(q, q, p)$, again Equation 3.31 implies

$$\begin{split} \xi(S(p, p, q)) &\leq g(\xi(S(q, q, p)))\xi(S(q, q, p)), \\ &< \xi(S(q, q, p)). \end{split}$$

As ξ is non decreasing, then q = p.

Example 3.6. Let $X = [0, +\infty)$. It's simple to observe that $S(\zeta, \mu, \varrho) = {}^{1} \left[|\zeta - \varrho| + |\mu - \varrho| \right]$ is an S-M on X. Then also, let $d_{s}(B, C) = {}_{2} |\xi - \mu|$. Let $B = \{1, 2, 3, 4\}$ and $C = \{6, 7, 8, 9\}$ Define $T : B \to C$

$$\begin{array}{c} \mathbf{C} \\ \mathbf{T} = & 6 \quad \zeta = 4, \\ \zeta + 4 \quad otherwise. \end{array}$$

Also define ,

$$(\vartheta, v, \kappa) = \begin{pmatrix} 1 & if \ \vartheta, v, \kappa \in B, \\ otherwise. \end{pmatrix}$$

0

Also consider $g : [0, +\infty) \rightarrow [0, 1)$ and $\xi : [0, \infty) \rightarrow [0, \infty)$ defined by $\xi(\zeta) = \zeta, g(\zeta) = \frac{\zeta}{2}$ respectively. Clearly $d_s(B, C) = 1$, $B_0 = \{4\}$, $C_0 = \{6\}$ and $T(B_0) \subseteq T(C_0)$. Let $d_s(\vartheta, T\zeta) = d_s(B, C)$ and $d_s(\nu, T\mu) = d_s(B, C) = 1$. Then $(\vartheta, \zeta), (\nu, \mu) \in \{(4, 4), (4, 2)\}$. Also, if $d_s(\vartheta^*, T\vartheta) = d_s(B, C) = 1$, then $\vartheta^* = 4$. Therefore, if

 $d_{s}(\vartheta, \mathrm{T}\zeta) = d_{s}(\mathrm{B}, \mathrm{C}),$ $d_{s}(\vartheta^{*}, \mathrm{T}\vartheta) = d_{s}(\mathrm{B}, \mathrm{C}),$ $d_{s}(\nu, \mathrm{T}\mu) = d_{s}(\mathrm{B}, \mathrm{C}),$

then

 $(\vartheta, \vartheta^*, \nu, \zeta, \mu) \in \{(4, 4, 4, 4, 4), (4, 4, 4, 2, 2), (4, 4, 4, 2, 4), (4, 4, 4, 4, 2)\}.$

α

Now $\vartheta = \vartheta^* = v = 4$ so, $\xi(S(\vartheta, \vartheta^*, v)) = 0$. Hence,

$$\xi(S(\vartheta,\vartheta^*,\nu))=0\leq \frac{1}{x} \leq g(\xi(\Delta(\zeta,\vartheta,\mu)))\xi(\Delta(\zeta,\vartheta,\mu)),$$

where

$$\Delta(\zeta, \vartheta, \mu) = \max \quad S(\zeta, \zeta, \vartheta), S(\vartheta, \vartheta, \mu), S(\mu, \mu, \zeta), \frac{S(\zeta, \zeta, \vartheta)S(\vartheta, \vartheta, \mu)}{1 + S(\zeta, \zeta, \vartheta)S(\vartheta, \vartheta, \mu)}$$

$$\frac{S(\vartheta, \vartheta, \mu)S(\mu, \mu, \zeta)}{1 + S(\vartheta, \vartheta, \mu)S(\mu, \mu, \zeta)} = \frac{S(\mu, \mu, \zeta)S(\zeta, \zeta, \vartheta)}{1 + S(\vartheta, \vartheta, \mu)S(\mu, \mu, \zeta)}$$

Let $\zeta = 2, \vartheta = 1, \mu = 4$, we obtained

 $\begin{array}{c} S(1, 1, 4)S(4, 4, 1) \\ 1 + S(1, 1, 4)S(74, 4, 1)' \\ S(1, 1, 4)S(74, 4, 1)' \\ = \max \begin{array}{c} 1 \\ 3 \\ 4 \\ 4 \end{array} \begin{array}{c} 2 \\ 1 \\ 1 \end{array} \begin{array}{c} S(4, 4, 1)S(2, 2, 1) \\ 1 + S(4, 4, 1)S(2, 1)S(2, 1) \\ 1 + S(4, 1)S(2, 1)S(2, 1) \\ 1 + S(4, 1)S(2, 1)S(2,$

Thus T is a generalized rational α_s -Proximal contraction mapping. All the conditions of Theorem 3.2 are true and T has a unique best proximity point. Here, $\varrho = 4$ is the unique best proximity point in T

If in Theorem 3.2 we take $\xi(s) = s$, $g(t) = t^r$ where 0 < r < 1 and $r \in (0, \infty)$ then we deduce the following corollary.

Corollary 3.6.1. Suppose B, C be two non-empty subsets of a S-M space (X, S) such that (B, S) is a complete S-M space, B₀ is non-empty, and C is approximatively compact with respect to B. Assume that $T : B \rightarrow C$ is a non-self-mapping such that $T(B_0) \subseteq C_0$ and, for $\zeta, \mu, \vartheta, \vartheta^*, \nu \in B$

$$\begin{split} & d_{s}(\vartheta, \mathsf{T}\zeta) = d_{s}(\mathsf{B}, \mathsf{C}), \\ & d_{s}(\vartheta^{*}, \mathsf{T}\vartheta) = d_{s}(\mathsf{B}, \mathsf{C}), \\ & d_{s}(\vartheta^{*}, \mathsf{T}\vartheta) = d_{s}(\mathsf{B}, \mathsf{C}), \\ & d_{s}(v, \mathsf{T}\mu) = d_{s}(\mathsf{B}, \mathsf{C}), \\ & holds \ where \ 0 < r < 1. \\ & and \ \Delta(\zeta, \vartheta, \mu) = \max \\ & 1 + S(\zeta, \zeta, \vartheta)S(\vartheta, \vartheta, \mu) \\ & \frac{S(\zeta, \zeta, \vartheta), S(\vartheta, \vartheta, \mu), S(\mu, \mu, \zeta)}{1 + S(\vartheta, \vartheta, \mu)S(\mu, \mu, \zeta)} \underbrace{ \begin{array}{c} = \\ S(\zeta, \zeta, \vartheta) \\ S(\mu, \mu, \zeta) \\ 1 + S(\xi, \zeta, \vartheta) \\ S(\zeta, \zeta, \vartheta) \\ S(\zeta, \zeta, \vartheta) \\ \end{array} \right], \\ & \frac{S(\psi, \vartheta, \mu)S(\mu, \mu, \zeta)}{1 + S(\mu, \mu, \zeta)S(\zeta, \zeta, \vartheta)} . \end{split}$$

Then T has unique best proximity point, that is, there exists unique $\varrho \in B$ such that $d_s(\varrho, T\varrho) = d_s(B, C)$ If in

Theorem 3.2 we take $\xi(s) = s$, g(t) = 1 then we conclude the following corollary.

Corollary 3.6.2. Suppose B, C be two non-empty subsets of an S-M space (X, S) such that (B, S) is a complete S-M space, B_0 is non-empty, and C is approximatively compact with respect to B. Assume that

 $T: B \to C$ is a non-self-mapping such that $T(B_0) \subseteq C_0$ and for $\zeta, \mu, \vartheta, \vartheta^*, \nu \in B$

 $\begin{aligned} &d_{s}(\vartheta, \mathrm{T}\zeta) = d_{s}(\mathrm{B}, \mathrm{C}), \\ &d_{s}(\vartheta^{*}, \mathrm{T}\vartheta) = d_{s}(\mathrm{B}, \mathrm{C}), \\ &d_{s}(\nu, \mathrm{T}\mu) = d_{s}(\mathrm{B}, \mathrm{C}), \end{aligned} \qquad \Longrightarrow \qquad \alpha_{s}(\vartheta, \vartheta^{*}, \nu) S(\vartheta, \vartheta^{*}, \nu) \leq \quad \frac{1}{1 + \Delta(\zeta, \vartheta, \mu)} (\zeta, \vartheta, \mu) \\ \end{aligned}$

where $\Delta(\zeta, \vartheta, \mu) = \max S(\zeta, \zeta, \vartheta), S(\vartheta, \vartheta, \mu), S(\mu, \mu, \zeta), \frac{S(\zeta, \zeta, \vartheta)S(\vartheta, \vartheta, \mu)}{1 + S(\zeta, \zeta, \vartheta)S(\vartheta, \vartheta, \mu)}$,

$$\frac{S(\vartheta, \vartheta, \mu)S(\mu, \mu, \zeta)}{1 + S(\vartheta, \vartheta, \mu)S(\mu, \mu, \zeta)} = \frac{S(\mu, \mu, \zeta)S(\zeta, \zeta, \vartheta)}{1 + S(\vartheta, \vartheta, \mu)S(\mu, \mu, \zeta)}$$

holds for $0 \le r < 1$. Then T has unique best proximity point that is, there exists unique $\varrho \in B$ such that $d_s(\varrho, T\varrho) = d_s(B, C)$.

In Theorem 3.2 we can have another result.

Let (X, S) be a S-M space, and let α_s , $\eta_s : B \times B \times B \to [0, +\infty)$ be a function. Mapping $T : B \to C$ is called generalized rational α_s -Proximal contraction type mapping with respect to η_s if there exist $g \in G$ such that, for all $\zeta, \vartheta, \vartheta^*, \mu, \nu \in B$. $\alpha_s(\vartheta, \vartheta^*, \nu) \ge \eta_s(\vartheta, \vartheta^*, \nu)$

$$\begin{split} &=\Rightarrow S(\vartheta, \vartheta^*, \nu) \leq g(\xi(\Delta(\zeta, \vartheta, \mu)))\xi(\Delta(\zeta, \vartheta, \mu)) \text{where,} \\ &\Delta(\zeta, \vartheta, \mu) = \max \quad S(\zeta, \zeta, \vartheta), S(\vartheta, \vartheta, \mu), S(\mu, \mu, \zeta), \underbrace{-S(\zeta, \zeta, \vartheta)S(\vartheta, \vartheta, \mu)}_{1 + S(\zeta, \zeta, \vartheta)S(\vartheta, \vartheta, \mu)}, \\ &1 + S(\zeta, \zeta, \vartheta)S(\vartheta, \vartheta, \mu) \\ \underbrace{-S(\vartheta, \vartheta, \mu)S(\mu, \mu, \zeta)}_{1 + S(\mu, \mu, \zeta)S(\zeta, \zeta, \vartheta)} \underbrace{-S(\mu, \mu, \zeta)S(\zeta, \zeta, \vartheta)}_{1 + S(\vartheta, \vartheta, \mu)S(\mu, \mu, \zeta)} \end{split}$$

Theorem 3.7. Let (X, S) be a CS-M space. Let T be an α_s -Proximal admissible mapping with respect o η_s such that the following hold:

- 1. T is a generalized rational α_s Proximal contraction type mapping.
- 2. There exists $\zeta_0 \in X$ such that $\alpha_s(\zeta_0, \zeta_0, T\zeta_0) \ge \eta_s(\zeta_0, \zeta_0, T\zeta_0)$.

3. This continuous.

4. If $\{\zeta_l\}$ is a sequence in X such that $\alpha_s(\zeta_l, \zeta_l, \zeta_{l+1}) \ge \eta_s(\zeta_l, \zeta_l, \zeta_{l+1})$ for all $l \in \mathbb{N} \cup \{0\}$ and $\zeta_l \to \varrho \in \mathbb{B}$ as $l \to +\infty$, then there exists a subsequence $\{\zeta_{m_{\boldsymbol{\ell}}}\}$ of $\{\zeta_l\}$ such that $\alpha_s(\zeta_{m_{\boldsymbol{\ell}}}, \zeta_{m_{\boldsymbol{\ell}}}, \varrho) \ge \eta_s(\zeta_{m_{\boldsymbol{\ell}}}, \zeta_{m_{\boldsymbol{\ell}}}, \varrho)$ for all k.

Then T has best proximity point.

Proof. Since subset B_0 is not empty, we take ζ_0 in B_0 . Taking $T\zeta_0 \in T(B_0) \subseteq C_0$ into account, we can find $\zeta_1 \in B_0$ such that

$$d_s(\zeta_1,\,\mathrm{T}\zeta_0)\,=\,d_s(\mathrm{B},\,\mathrm{C}).$$

Further, since $T\zeta_1 \in T(B_0) \subseteq C_0$, it follows that there are element ζ_2 and ζ_3 in B_0 such that

$$d_s(\zeta_2, \mathrm{T}\zeta_1) = d_s(\mathrm{B}, \mathrm{C}), d_s(\zeta_3, \mathrm{T}\zeta_2) = d_s(\mathrm{B}, \mathrm{C}).$$

Recursively, we obtain a sequence $\{\zeta_l\}$ in B₀ satisfying

$$d_s(\zeta_{l+1},\mathsf{T}\zeta_l)=d_s(\mathsf{B},\mathsf{C}),\forall l\in\mathsf{N}\cup\{0\}.$$

By taking $\vartheta = \zeta_l$, $\zeta = \zeta_{l-1}$, $\nu = \zeta_{l+1}$, $\mu = \zeta_l$, $\vartheta^* = \zeta_{l+1}$, Equation 3.2 gives

$$\alpha_{s}(\zeta_{l}, \zeta_{l+1}, \zeta_{l+1})\xi(S(\zeta_{l}, \zeta_{l+1}, \zeta_{l+1})) \leq g(\xi(\Delta(\zeta_{l-1}, \zeta_{l}, \zeta_{l})))(\xi(\Delta(\zeta_{l-1}, \zeta_{l}, \zeta_{l})).$$
(3.32)

By condition (3), we have $\alpha_s(\zeta_0, \zeta_1, \zeta_1) \ge \eta_s(\zeta_0, \zeta_1, \zeta_1)$

 $\eta_s(\zeta_l,\zeta_{l+1},\zeta_{l+1})\xi(S(\zeta_l,\zeta_{l+1},\zeta_{l+1})) \leq g(\xi(\Delta(\zeta_{l-1},\zeta_l,\zeta_l)))(\xi(\Delta(\zeta_{l-1},\zeta_l,\zeta_l)).$

By the assumption $\eta_s(\zeta_0, \zeta_1, \zeta_1) \ge 1$ and T is α_s - Proximal admissible, we have $\eta_s(\zeta_l, \zeta_{l+1}, \zeta_{l+1}) \ge 1$ for all $l \in \mathbb{N} \cup \{0\}$.

If max { $S(\zeta_{l-1}, \zeta_{l-1}, \zeta_l), S(\zeta_k, \zeta_k, \zeta_{l-1})$ } = $S(\zeta_k, \zeta_k, \zeta_{l-1})$ then the Equation 3.33 becomes

$$\begin{aligned} \xi(S(\zeta_{l},\zeta_{l+1},\zeta_{l+1})) &\leq g(\xi(S(\zeta_{l},\zeta_{l},\zeta_{l-1})))\xi(S(\zeta_{l},\zeta_{l},\zeta_{l-1})) \\ &< \xi(S(\zeta_{l},\zeta_{l},\zeta_{l-1})), \end{aligned} \tag{3.34}$$

which is a contradiction.

So max { $S(\zeta_{l-1}, \zeta_{l-1}, \zeta_l)$, $S(\zeta_l, \zeta_l, \zeta_{l+1})$ } is $S(\zeta_{l-1}, \zeta_{l-1}, \zeta_l)$. This implies

$$\xi(S(\zeta_l, \zeta_{l+1}, \zeta_{l+1})0)) < \xi(S(\zeta_{l-1}, \zeta_{l-1}, \zeta_l)) \text{ holds for all } l \in \mathbb{N} \cup \{0\}.$$

$$(3.35)$$

In a similar way Theorem 3.2, we can prove that T has a best proximity point.

Theorem 3.8. Let B, C be two non-empty subsets of an S-M space (X, S) such that (B, S) is a complete S-M space, B₀ is non-empty, and C is approximatively compact with respect to B. Assume that $T: B \rightarrow C$

is a non-self-mapping such tha $T(B_0) \subseteq C_0$ and, for $\zeta, \mu, \vartheta, \vartheta^*, \nu \in B$

$$d_{s}(\vartheta, T\zeta) = d_{s}(B, C),$$

$$d_{s}(\vartheta, T\vartheta) = d_{s}(B, C),$$

$$S(\vartheta, \vartheta^{*}, \nu) \leq \alpha S(\zeta, \zeta, \vartheta) + \beta \frac{\sqrt{S(\zeta, \zeta, \vartheta)S(\zeta, \zeta, \mu)}}{(1 + S(\vartheta, \vartheta^{2}))}$$

$$(3.36)$$

$$S(\vartheta, \vartheta^{*}, \nu) \leq \alpha S(\zeta, \zeta, \vartheta) + \beta \frac{\sqrt{S(\zeta, \xi, \vartheta)S(\zeta, \zeta, \mu)}}{(1 + S(\zeta, \vartheta))}$$

$$S(\vartheta, \vartheta^{*}, \nu) \leq \alpha S(\zeta, \zeta, \vartheta) + \beta \frac{\sqrt{S(\zeta, \xi, \vartheta)S(\zeta, \xi, \mu)}}{(1 + S(\zeta, \vartheta))}$$

holds where $\alpha, \beta, \gamma, \delta \ge 0$ and $\alpha + \beta + \gamma + \delta < 1$. Then T has the unique best proximity point.

Proof. Following the same lines in the proof of Theorem 3.2, we can construct a sequences $\{\zeta_i\}$ in B_0 satisfying

$$d_s(\zeta_{l+1}, \mathrm{T}\zeta_n) = d_s(\mathrm{B}, \mathrm{C}); \forall l \in \mathrm{N} \cup \{0\}.$$

From (3.36) with $\zeta = \zeta_{l-1}$, $\vartheta = \zeta_l$, $\mu = \zeta_l$, $\nu = \zeta_{l+1}$, $\vartheta^* = \zeta_{l+1}$, we obtain

 $S(\zeta, \zeta , \zeta , \zeta) \leq \alpha S(\zeta , \zeta , \zeta) + \beta \frac{\sqrt{S(\zeta_{l-1}, \zeta_{l-1}, \zeta_{l})S(\zeta_{l-1}, \zeta_{l-1}, \zeta_{l})}}{S(\zeta_{l-1}, \zeta_{l-1}, \zeta_{l})}$

$$\leq (\alpha+\beta+\gamma+\delta)S(\zeta_{l-1},\zeta_{l-1},\zeta_l),$$

for all $l \in \mathbb{N} \cup \{0\}$. This implies

$$S(\zeta_{l}, \zeta_{l+1}, \zeta_{l+1}) \le k^{l} S(\zeta_{0}, \zeta_{0}, \zeta_{1}),$$
(3.37)

where $k = \alpha + \beta + \gamma + \delta < 1$. Now, for all $m, l \in N, n < m$, by Lemma 2.4 and Equation 3.36, we have

$$S(\zeta_{l}, \zeta_{m}, \zeta_{m}) \leq 2S(\zeta_{l}, \zeta_{l}, \zeta_{l+1}) + S(\zeta_{m}, \zeta_{m}, \zeta_{l+1})$$

$$= 2S(\zeta_{l}, \zeta_{l}, \zeta_{l+1}) + S(\zeta_{l+1}, \zeta_{l+1}, \zeta_{m})$$

$$n$$

$$\leq 2k \quad S(\zeta_{0}, \zeta_{0}, \zeta_{1}) + 2S(\zeta_{l+1}, \zeta_{l+1}, \zeta_{l+2}) + S(\zeta_{m}, \zeta_{m}, \zeta_{l+2})$$

$$= 2k^{n}S(\zeta_{0}, \zeta_{0}, \zeta_{1}) + 2S(\zeta_{l+1}, \zeta_{l+1}, \zeta_{l+2}) + S(\zeta_{l+2}, \zeta_{l+2}, \zeta_{m})$$

$$:$$

$$\leq 2[k^{l} + \dots + k^{m-1}]S(\zeta_{0}, \zeta_{0}, \zeta_{1})$$

$$\leq 1 - k^{S(\zeta_{0}, \zeta_{0}, \zeta_{1})}.$$

Taking limit as $n, m \to \infty$, we get $S(\zeta_l, \zeta_h, \zeta_m) \to 0$. This gives that $\{\zeta_l\}$ is a Cauchy sequence in S-M space (X, S). Due to the completeness of (B, S), there exists $\rho \in B$ such that $\{\zeta_l\}$ converges to ρ . As in the proof of Theorem 3.2, we have $d_s(\kappa, T\rho) = d_s(B, C)$ for some $\kappa \in B_0$. From Equation 3.36 with

 $\zeta = \zeta_{l-1}, \vartheta = \zeta_l, \vartheta^* = \zeta_{l+1}, \mu = \varrho$ and $\nu = \kappa$, we deduce

$$S(\zeta, \zeta , \kappa) \leq \alpha S(\zeta , \zeta , \zeta) + \beta^{S(\zeta_{l-1}, \zeta_{l-1}, \zeta_{l})S(\zeta_{l-1}, \zeta_{l-1}, z)}$$

$$l \quad l+1 \qquad \qquad l-1 \ l-1 \ l \ 1 + S(\zeta_{l+1}, \zeta_{l-1})$$

+ $\gamma S(\varrho, \varrho, \zeta)$ $l = 1 + \delta$ $1 + S(\zeta_{l-1}, \zeta_{l-1}, \zeta_{l})$ 1

By taking limit as $l \to \infty$ in the inequality mentioned above, we obtain $S(\varrho, \varrho, \kappa) = 0$; that is $\varrho = \kappa$. Hence, $d_s(\varrho, T\varrho) = d_s(\kappa, T\varrho) = d_s(B, C)$; that is, T has the best proximity point. To prove uniqueness, suppose that p = q, $d_s(\rho, Tp) = d_s(B, C)$ and $d_s(q, Tq) = d_s(B, C)$. Now by Equation 3.36 with $\zeta = \vartheta = \vartheta^* = p$ and $\mu = \nu = q$ we have,

$$S(p, p, q) \qquad \stackrel{\sqrt{}}{\leq} \alpha S(p, p, p) + \beta \underbrace{\overline{S(p, p, p)S(p, p, q)}}_{S(q, q, p)}$$

 $+\gamma S(q,q,p) + \delta$

$$1 + S(p, p, p)$$

 $\leq (\gamma + \delta)S(q, q, p) \\ = (\gamma + \delta)S(p, p, q),$

which implies S(p, p, q) = 0. Hence p = q, that is T has the unique best proximity point.

By taking $\beta = \gamma = \delta = 0$ in Theorem (3.5), we obtain the following Corollary:

Corollary 3.8.1. Suppose B, C be two non-empty subsets of an S-M space (X, S) such that (B, S) is a complete S-M space, B_0 is non-empty, and C is approximatively compact with respect to B. Assume that $T : B \rightarrow C$ is a non-self-mapping such that $T(B_0) \subseteq C_0$ and, for $\zeta, \mu, \vartheta, \nu \in B$

holds where $0 \le \alpha < 1$. Then T has the unique best proximity point.

4 Application to Fixed Point Theory

In this section, as an application of our best proximity results, we will derive certain new fixed point results

Note that if

 $\begin{aligned} d_{s}(\vartheta, \mathrm{T}\zeta) &= d_{s}(\mathrm{B}, \mathrm{C}), \\ d_{s}(\vartheta^{*}, \mathrm{T}\vartheta) &= d_{s}(\mathrm{B}, \mathrm{C}), \\ d_{s}(\nu, \mathrm{T}\mu) &= d_{s}(\mathrm{B}, \mathrm{C}), \end{aligned}$ $\begin{aligned} &= \Rightarrow \qquad \alpha_{s}(\vartheta, \vartheta^{*}, \nu)\xi(S(\vartheta, \vartheta^{*}, \nu)) \leq g(\xi(\Delta(\zeta, \vartheta, \mu)))\xi(\Delta(\zeta, \vartheta, \mu)), \\ (4.1) \end{aligned}$

where

$$\Delta(\zeta, \vartheta, \mu) = \max S(\zeta, \zeta, \vartheta), S(\vartheta, \vartheta, \mu), S(\mu, \mu, \zeta), \underbrace{S(\zeta, \zeta, \vartheta)S(\vartheta, \vartheta, \mu)}_{I + S(\zeta, \zeta, \vartheta)S(\vartheta, \vartheta, \mu)},$$

$$\underbrace{S(\vartheta, \vartheta, \mu)S(\mu, \mu, \zeta)}_{I + S(\vartheta, \vartheta, \mu)S(\mu, \mu, \zeta)} \underbrace{S(\mu, \mu, \zeta)S(\zeta, \zeta, \vartheta)}_{I + S(\psi, \eta, \mu, \zeta)S(\zeta, \zeta, \vartheta)}$$

$$(4.2)$$

and B = C = X, then ϑ = T ζ , ϑ ^{*} = T ϑ , and ν = T μ . That is, ϑ ^{*} = T² ζ . Therefore, if in Theorem 3.5 wetake B = C = X, we deduce the following recent result.

Theorem 4.1. Let B be non-empty subsets of an S-M space (X, S) such that (B, S) be a complete S-Mspace and B_0 be non-empty set. B is approximatively compact with respect to B.

- 1. T is a generalized rational α_s -Proximal contraction mapping.
- 2. There exists $\zeta_0 \in B$ such that $\alpha_s(\zeta_0, \zeta_1, T\zeta_1) \ge 1$.
- *3.* T is continuous.

Then T has a fixed point $\varrho \in B$, and T is a Picard operator, that is, $\{T^n\zeta_0\}$ converges to a.

Theorem 4.2. Let B be non-empty subsets of an S-M space (X, S) such that (B, S) be a complete S-Mspace and B_0 be non-empty set. B is approximatively compact with respect to B.

- 1. T is a generalized rational α_s -Proximal contraction mapping.
- 2. There exists $\zeta_0 \in B$ such that $\alpha_s(\zeta_0, \zeta_1, T\zeta_1) \ge 1$.
- 3. T is continuous.

4. If $\{\zeta_l\}$ is a sequence in B such that $\alpha_s(\zeta_l, \zeta_{l+1}, \zeta_{l+1}) \ge 1$ for all $l \in \mathbb{N} \cup \{0\}$ and $\zeta_l \to \varrho \in \mathbb{B}$ as

 $l \rightarrow +\infty$, then there exists a subsequence $\{\zeta_{m_l}\}$ of $\{\zeta_n\}$ such that $\alpha_s(\zeta_{m_l}, \varrho, \varrho) \ge 1$ for all k.

Then T has a fixed point $\varrho \in B$, and T is a Picard operator, that is, $\{T^n\zeta_0\}$ converges to a.

References

[1] Abdeljwad, T. Meir-Keeler α -contractive fixed and common fixed point theorems. Fixed Point The- ory Appl. 2013, 19(2013)

[2] Alghamdi, M. A., and Karapınar, E. $G-\beta - \psi$ - contractive-type mappings and related fixed point theorems. Journal of Inequalities and Applications, 2013(1), 1-16.

[3] Ansari, A.H., Changdok, S., Hussain, N., Mustafa, Z., Jaradat, M.M.M. Some common fixed point theorems for weakly α -admissible pairs in G-metric spaces with auxiliary functions. J. Math. Anal. 8(3), 80–107 (2017)

[4] Arshad, M., Hussain, A., Azam, A. Fixed point of α -geraghaty contraction with application. UPB Sci. Bull., Ser. A 78(2),67–78 (2016)

[5] Cho, S., Bae, J., Karapinar, E. Fixed point theorems of α -geraghaty contraction type in metric space. Fixed Point Theory Appl. 2013, 329 (2013)

[6] Fan, K. Extensions of two fixed point theorems of FE Browder. Mathematische zeitschrift, 112(3),(1969). 234-240.

[7] Hieu, N. T., Thanh Ly, N. T., and Dung, N. V. A generalization of Ciric quasi-contractions for maps on S-M spaces. Thai Journal of Mathematics, 13(2), (2014).369-380.

[8] Hussain, N., Kutbi, M. A., and Salimi, P. Best proximity point results for modified $\alpha - \psi$ -proximal rational contractions. In Abstract and Applied Analysis (Vol. 2013). Hindawi.

[9] Hussain, N., Khaleghizadeh, S., Salimi, P. and Abdou, A. A. A new approach to fixed point results in triangular intuitionistic fuzzy metric spaces. In Abstract and Applied Analysis (Vol. 2014). Hindawi.

[10] Hussain, N., Parvaneh, V., Golkarmanesh, F.: Coupled and tripled coincidence point results under (F, g)-invariant sets in G_b -metric spaces and G – α -admissible mappings. Math. Sci. 9, 11–26 (2015)

[11] Jleli, M., and Samet, B. Best proximity points for $\alpha - \psi$ --proximal contractive type mappings and applications. Bulletin des Sciences Mathématiques, 137(8),(2013). 977-995.

[12] Karapinar, E., Kumam, P., Salimi, P. On $\alpha - \psi$ -Meir-Keeler contractive mappings. Fixed Point Theory Appl. 2013, 94(2013)

[13] Mongkolkeha, C., Cho, Y. J., and Kumam, P. Best proximity points for Geraghty's proximal contraction mappings. Fixed Point Theory and Applications, 2013(1), 1-17.

[14] Mustafa, Z., and Sims, B. A new approach to generalized metric spaces. Journal of Nonlinear and convex Analysis, 7(2), (2006) 289.

[15] Nantadilok, J. Best proximity point results in S-M spaces. International Journal of Mathematical Analysis, 10(27), (2016). 1333-1346.

[16] Ningthoujam, P., Yumnam, R., Thounaojam, S.,]and Stojan, R. Some remarks on α -admissibility in S-M spaces. Journal of Inequalities and Applications, 2022(1).

[17] Salimi, P., Latif, A., Hussain, N. Modified $\alpha - \psi$ -contractive mappings with applications. Fixed Point Theory Appl. 2013,151 (2013)

[18] Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for α - ψ -contractive type mappings. Nonlinear Anal. 75,2154–2165 (2012)

[19] Sedghi, S., Shobe, N., Aliouche, A. A generalization of fixed point theorems in S-M spaces. Mat. Vesn. 64(3),258–266 (2012)

[20] Sedghi, S., Shobe, N., and Zhou, H. (2007). A common fixed point theorem in-metric spaces. Fixed point theory and Applications, 2007, 1-13.

[21] Zhou, M., Liu, X.L., Radenovi c, S. S $-\gamma-\phi-\psi-$ contractive type mappings in S-M spaces. J. Nonlinear Sci. Appl. 10,1613–1639 (2017)