Best Proximity Point for Generalized Rational *αs***-Proximal Contraction**

Amit Duhan* ¹, Manoj Kumar ¹, Savita Rathee ², and Monika Swami ³

¹Baba Mastnath University, Rohtak, 124001, India 2,3Maharshi Dayanand University, Rohtak, 124001, India

Abstract

Best proximity point problem in S-M(S-metric) spaces is thought to be a generalization of a G- metric spaces. In this study, we provide proof a best proximity points theorem of α_s [−]Proximal mapping admissible and its several types by generalizing the theory of *α−*admissible mapping in S-M spaces. We present generalized rational *αs−*Proximal contraction type mappings and investigate the best proximity point in S-M spaces. In addition, we provide an illustration to show how the result can beused.

MSC: 47H10;54H25

Keywords: Best Proximity Point, S-M space, Proximal contraction, Generalized rational *αs*−Proximal contraction.

1 Introduction

The best approximation results offer an approximation solution to fixed point equation $T\zeta = \zeta$, when a nonself-mapping T has no fixed point. A well-known best approximation theorem in particular, due to Fa[n \[6\],](#page-17-0) reveals the fact that " if K is a non-empty compact convex subset of a Hausdorff locally convex topological vector space *X* and T : K \rightarrow X is a continous mapping, then there exists an element x satisfying the condition $d(\zeta, T\zeta) = \inf\{d(\mu, T\zeta) : \mu \in K\}$, where *d* is a metric on X ".

As a generalization of the idea of the best approximation, the best proximity point theory has evolved. The best proximity point theorem is taken into consideration when addressing a complication to discover an approximate solution that is optimal since it ensures the existence of an approximate solution.

Banach Contraction principle is important for finding a fixed point. Due to its diversity, simplicity, and ease of application, many scholars consider it to be one of the most fascinating topics.. In various

*Corresponding author amitduhan44@@gmail.com [manojan](mailto:manojantil18@gmail.com)til18@gmail.com dr.savitarathee@gmail.com [monikasw](mailto:monikaswami06@gmail.com)ami06@gmail.com ways, they tried to apply the Banach contraction principle. Samet et al. [\[18\]](#page-18-0) introduced the concepts of *α*−admissible mapping and *α*-*ψ*-contractive mappings in metric spaces. Findings of Samet et al. [\[18\]](#page-18-0) demonstrated that Banach's fixed point theorem and a number of other findings are immediate results of their findings. But on the other hand, Sedghi et al. [\[19\] e](#page-18-1)stablished the idea of S-M spaces as one outcome of the generalization of metric spaces.

Let B and C be two non-empty subsets of a metric space (X, d) . Choose an element $\zeta \in B$ is referred to as a fixed point on a certain map. T : B \rightarrow C if T(b) = b. Certainly, T(B) \cap B/= ϕ is a necessary (but not sufficient) situation for the existence of a fixed point of T. If T(B) \cap B = ϕ , then $d(\zeta, T\zeta) \ge 0$ for all $\zeta \in B$ that is, the set of fixed points of T is empty. Under such circumstances, one frequently tries to find an element *ζ* which is in some sense closest to T*ζ*. Best proximity point analysis has been developed inthis direction.

Choose an element $b \in B$ is called a best proximity point of T if

d(*b, T*B) = *d*(B*,* C)*,*

where

 $d(B, C) = \inf\{d(\zeta, \mu) : \zeta \in B, \mu \in C\}.$

The reason being that $d(\zeta, T\zeta) \geq d(B, C)$ for all $\zeta \in B$, the global minimum of the mapping $\zeta \to d(\zeta, T\zeta)$ is attained at the Best proximity point.

Hussain et al. [\[9\]](#page-17-1) proved certain Best proximity point results in the setting of G-metric spaces. Mo- tivated by inspiration by Hussain et al. [\[9\]](#page-17-1) and Sedghi et al. [\[19\],](#page-18-1) In this paper, we prove some best proximity point results in S-M spaces.

2 PRELIMINARIES

Initially, we must remember a few crucial definition's, lemma's and results for this the notion of S-M spaces as described below.

Definition 2.1. [\[18\]](#page-18-0) "Let T: X \rightarrow X be a self-mapping on a metric space (X, d), and let α : X \times X \rightarrow [0, + ∞] *be a function. It is said that* T *is α-admissible if ζ, µ* ∈ X*,*

$$
\alpha(\zeta,\mu) \ge 1 \implies \alpha(T\zeta,T\mu) \ge 1.
$$

Example 2.2. *"Consider* $X = [0, +\infty)$ *, and define* $T: X \to X$ *and* $\alpha: X \times X \to [0, +\infty)$ *by* $T\zeta = 5\zeta$ *for all ζ, µ* ∈ X \overline{C}

Then ^T *is ^α-admissible." α*(*ζ,µ*) = *ζ* $e^{\overline{\mu}}$ *if* $\zeta \ge \mu$ ζ /= 0 0 *if* $\zeta < \mu$

Definition 2.3. [\[17\]](#page-18-2) "Let T be a self-mapping on a metric space (X, d) , and let $\alpha, \eta : X \times X \to [0, +\infty)$ be two functions. T is said to be an α -admissible mapping with respect to η if $\zeta, \mu \in X$, $\alpha(\zeta, \mu) \geq \eta(\zeta, \mu)$ *imply α*(T*ζ,* T*µ*) ≥ *η*(T*ζ,* T*µ*)*.*

It can be noted that if we take $\eta(\zeta,\mu) = 1$, then this definition reduces to Definition 2.1. Also, if wetake $\alpha(\zeta, \zeta)$ *µ*) = 1*, then* T *is said to be an η-subadmissible mapping."*

Definition 2.4. [\[11\]](#page-18-3) "Let T : B \rightarrow C, α : B \times B \rightarrow [0, + ∞). We say that T is α -Proximal admissiblemapping if

$$
\alpha(\zeta_1, \zeta_2) \ge 1, \quad \square
$$
\n
$$
d(u_2, T\zeta_2) \ge d(\mathbf{B}, \mathbf{C}),
$$
\n
$$
d(u_2, T\zeta_2) = d(\mathbf{B}, \mathbf{C}),
$$
\nfor all $\zeta_1, \zeta_2, u_1, u_2 \in A$."

\nfor all $\zeta_1, \zeta_2, u_1, u_2 \in A$."

Certainly if $B = C$ then α -Proximal admissible map T converted to α -admissible map.

Definition 2.5. [\[8\]](#page-17-2) "Let T : B → C, and $α, η$: B × B → [0, +∞) *be functions. We say that* T *is α*-proximal *admissible with respect to* η *if,* for all $\zeta_1, \zeta_2, u_1, u_2 \in B$,

 $d(u_1, T\zeta_1^{\alpha}(\zeta_1, \zeta_2), \zeta_2^{\alpha})$ $(d(u_1, u_2) \ge \eta(u_1, u_2))$. $d(u_2, T\zeta_2) = d(B, C)$, ^[2]

Note that if we take $\eta(\zeta,\mu) = 1$ for all $\zeta,\mu \in B$, then this definition reduces to Definition 2.4. In case $\alpha(\zeta,\mu) = 1$ *for all* $\zeta,\mu \in B$ *, then we shall say that* T *is <i>η-Proximal subadmissible mapping."*

 $G = \{g : [0, +\infty) \to [0, 1] \text{ that } \text{way}(f_n) \to 1 \text{ implies } t_n \to 0\}$

Definition 2.6. *[\[13\]](#page-18-4) "A mapping* T : B → C*, is called Geraghty's proximal contraction of the first kind if,there exists β* ∈ G *such that*

$$
d(u, Tx) = d(A, B)
$$

\n
$$
\Rightarrow \qquad d(u, v) \leq \beta(d(x, y))d(x, y)d(v, Ty) = d(A, B)
$$

for all u, *v*, *x*, *y* ∈ *A*."

Definition 2.7. [\[13\]](#page-18-4) "A mapping T: B \rightarrow C, is called Geraghty's proximal contraction of the second kindif, *there exists* $\beta \in G$ *such that*

$$
d(u, T\zeta) = d(B, C)
$$

\n
$$
\Rightarrow \qquad d(Tu, Tv) \leq \beta(d(T\zeta, T\mu))d(T\zeta, T\mu)d(u, T\mu) = d(B, C)
$$

for all u, v, ζ, μ ∈ *B.*"

Definition 2.8. [\[19\]](#page-18-1) " Let X be a non-empty set. An S-M on X is a function $S: X \times X \times X \rightarrow [0, +\infty)$ *that satisfies the following conditions for each ζ, µ, ϱ, b* ∈ X*:*

1. S(ζ, μ , ϱ) ≥ 0, *2. S*(*ζ, µ, ϱ*) = 0 *if and only if ζ* = *µ* = *ϱ, 3. S*(*ζ, µ, ϱ*) ≤ *S*(*ζ, ζ, b*) + *S*(*µ, µ, b*) + *S*(*ϱ, ϱ, b*)*.* *The pair* (X*, S*) *is called S-M space."*

This assertion is an emphasis of G-metric spaces [\[14\]](#page-18-5) and *D*[∗] -metric spaces [\[20\].](#page-18-6) Realize that each S-Mon X induces a metric d_s on X as explained by

 d_s (ζ, μ) = *S*(ζ, ζ, μ) + *S*(μ, μ, ζ), for all ζ, μ ∈ X.

Example 2.9. *[\[19\]](#page-18-1) " Let* X*=*R*. Then*

$$
S(\zeta, \mu, \varrho) = |\zeta - \mu| + |\mu - \varrho|
$$

for all $ζ, μ, ρ ∈ R$ *, is an S-M on X.*"

Example 2.10. [\[19\]"](#page-18-1) Let $X = R^2$ and *d* is ordinary metric on X. Put

S(ζ, μ, ϱ) = *d*(ζ, μ) + *d*(ζ, ϱ) + *d*(μ, ϱ)

for all $ζ, μ, ρ ∈ R$ *. Then S is an S-M on X*.

Lemma 2.11. [\[19\]](#page-18-1) " Let (X, S) be an S-M space. Then $S(\zeta, \zeta, \mu) = S(\mu, \mu, \zeta)$, for all $\zeta, \mu \in X$."

Lemma 2.12. *[\[7\]](#page-17-3) " Let* (X*, S*) *be an S-M space. Then*

 $S(\zeta,\zeta,\varrho)\leq 2S(\zeta,\zeta,\mu)+S(\mu,\mu,\varrho)$ and $S(\zeta,\zeta,\varrho)\leq 2S(\zeta,\zeta,\mu)+S(\varrho,\varrho,\mu)$

for all $ζ, μ, ρ ∈ X."$

Definition 2.13. *[\[19\]](#page-18-1) Let* (X*, S*) *be an S-M space.*

1. "A sequence $\{\zeta_l\}$ in X converges to ζ if and only if $S(\zeta_l, \zeta_l, \zeta) \to 0$ as $l \to +\infty$. That is, for each $\epsilon >$ 0, there exists $l_0 \in N$ such that, for all $l \ge l_0$, $S(\zeta, \zeta, \zeta) < \epsilon$, and we denote this by $\lim_{l \to +\infty} \zeta_l = \zeta$. 2. "A sequence $\{\zeta_i\}$ in X is called a Cauchy sequence if for each $\epsilon > 0$ there exists $l_0 \in \mathbb{N}$ such that $S(\zeta_k, \zeta_k, \zeta_m) \leq \epsilon$ *for each l, m* $\geq l_0$ *."*

3. " That S-M space (X*, S*) *is said to be complete if every Cauchy sequence is convergent."*

We now consider the meaning of αs-admissible mappings and their generalizations in S-M spaces.In this article, we present a number of concepts of α-admissible mappings in the context of S-M spaces and name them αs-admissible.

Definition 2.14. [\[21\]](#page-18-7) "Let T: X \rightarrow X and α : X³ \rightarrow [0, + ∞). Then T is said to be α -admissible if forall ζ , μ , $\rho \in X$

α(*ζ, µ, ϱ*) ≥ 1 *implies α*(T*ζ,* T*µ,* T*ϱ*) ≥ 1*."*

Definition 2.15. [\[21\]](#page-18-7) " Let (X, S) be an S-M space, $T: X \rightarrow X$ and $\alpha_s: X \times X \rightarrow [0, +\infty)$ *. Then* T *is called* α_s – *admissible if* $u, v, w \in X$,

 $\alpha_s(u, v, w) \geq 1$ *implies* $\alpha_s(Tu, Tv, Tw) \geq 1$."

Example 2.16. [\[16\]](#page-18-8) " *Consider* X = [0*,* +∞)*. Define* T : X \rightarrow X *and* α_s : X \times X \rightarrow [0*,* +∞) *by* $Tu = 4u$ *for all u, v, w* \in *X and*

$$
\alpha_s(u, v, w) = \begin{cases} \n\delta v_e & \text{if } u \ge v \ge w \ \nu = 0 \\
0 & \text{if } u < v < w \n\end{cases}
$$

Then T *is αs*−*admissible."*

Definition 2.17. [\[16\]](#page-18-8) "Let (X, S) be an S-metric space, $T: X \to X$, and let $\alpha_s, \eta_s: X \times X \times X \to [0, +\infty)$ be two functions. We say that T is an α_s -admissible mapping with respect to η_s if $u, v, w \in X$, $\alpha_s(u, v, w) \geq \eta_s(u, v, w)$ *w*) *implies* $α_s$ (T*u*, T*v*, T*w*) ≥ $η_s$ (T*u*, T*v*, T*w*).

Note that if we take ηs(*u, v, w*) = 1*, then this definition reduces to Definition 2.15. "*

Definition 2.18. *[\[15\]](#page-18-9) "Let* (X *, S*) *be an S-M space and let* B *and* C *be two non-empty subsets of* X *.Then* C *is said to be approximatively compact with respect to B if every sequence* $\{\mu_l\}$ *in C, satisfying the condition* $d_s(\zeta,\mu_n)$ → *ds*(*ζ,* C) *for some ζ in* B *has a convergent subsequence."*

3 Main Result

At first, we presume

Ξ = {*ξ* : [0*,* ∞) → [0*,* ∞) such that *ξ* is non-decreasing and continous } where *ξ*(*x*) = 0 if and only if *x* = 0.

Definition 3.1. Let (X, S) be a S-M space and let B and C be two non-empty subset of X then $T: B \to C$ *and* α_s : $B \times B \times B \rightarrow [0, +\infty)$ *. We say* T *is* α_s *-Proximal admissible if*

$$
d_s(\vartheta, T\zeta) = d_s(\beta, C)/\mu(\mathbb{R}) \ge 1, \quad \Rightarrow \quad \alpha_s(\vartheta, \nu, \kappa) \ge 1,
$$

\n
$$
d(\nu, T\mu) = d(\beta, C), \quad d_s(\kappa, T\varrho) = d_s(\beta, C),
$$

\n(3.1)

for all $ζ, μ, ρ, ∂, γ, κ ∈ B.$

Define $\alpha_s : B \times B \times B$

Example 3.2. Consider X = R and let a be any fixed positive real number, B = $\{(a, \mu, \rho) : \mu, \rho \ge 0\}$ and C = { $(0, \mu, \varrho)$: μ, ϱ ≥ 0}*. Define* T : B → C *by*

$$
T(a, \mu, \varrho) = \begin{cases} 4_{(0, \mu, \varrho)} & \text{if } \mu, \varrho \ge 0, \\ (0, 4\mu, \varrho) & \text{if } \mu, \varrho < 0. \end{cases}
$$

3 \rightarrow [0, + ∞) by

$$
s \alpha \left((\varrho, \mu_1, \varrho_1), (\varrho, \mu_2, \varrho_1), (\varrho, \mu_3, \varrho_2) \right) = \begin{cases} 2 & \text{if } \mu_1, \varrho_1 \ge 0 \text{ where } i = 1, 2 \\ 0 & \text{otherwise.} \end{cases}
$$

 μ_3 , ρ_3), $\kappa_4 = (a, \mu_4, \rho_4)$, $\kappa_5 = (a, \mu_5, \rho_5)$, $\kappa_6 = (a, \mu_6, \rho_6)$ be arbitrary points from B satisfying, Then $S(\zeta,\mu,\varrho) = \frac{1}{2}(|\zeta-\varrho|+|\mu-\varrho|)$ is S-M on X, let $d_S(B,C) = |\zeta-\mu|$ and $\kappa_1 = (a,\mu_1,\varrho_1)$, $\kappa_2 = (a,\mu_2,\varrho_2)$, $\kappa_3 = (a,\mu_1,\varrho_1)$

αs(*κ*1*, κ*2*, κ*3) = 2*, so µ*1*, µ*2*, µ*3*, ϱ*1*, ϱ*2*, ϱ*³ ≥ 0*,* $d_s(\kappa_4, T\kappa_1) = a = d_s(B, C)$ $d_s(\kappa_5, T\kappa_2) = a = d_s(B, C)$ *,* $d_s(\kappa_6, T\kappa_3) = a = d_s(B, C)$.

So further we solve $\mu_4 \in \mu^1$, $\varrho_4 = \varrho_1$, $\mu_5 = \mu^2$, $\varrho_5 = \varrho_2$ and $\mu_6 = \mu^3$, $\varrho_6 = \varrho_3$ which implies μ_i , $\varrho_i \ge 0$, where $i = 1, 2, 3$. Hence $\alpha_s(\kappa_4, \kappa_5, \kappa_6) = 2$. Therefore, T is α_s -Proximal admissible map.

Definition 3.3. Choose B and C be two non-empty subsets of an S-M space (X, S) . A non-self mapping $T : B \rightarrow$ C is called generalized rational α_s -Proximal contraction mapping if $\alpha_s : B \times B \to [0, +\infty)$ is a function and *there exist* $g \in G$ *and* $ξ \in X_i$ *such that, for all* $ζ, ∅, ∅^*, μ, ν \in B$ *,*

ds(*ϑ,* T*ζ*) = *ds*(B*,* C)*,* $d_s(\vartheta^*, \mathrm{T}\vartheta) = d_s(\mathrm{B}, \mathrm{C})$ *,* $d_s(v, T\mu) = d_s(B, C)$ *,* $\Rightarrow \alpha_s(\vartheta, \vartheta^*, \nu) \xi(S(\vartheta, \vartheta^*, \nu)) \leq g(\xi(\Delta(\zeta, \vartheta, \mu))) \xi(\Delta(\zeta, \vartheta, \mu)),$ (3.2)

where

 $1 + S(\vartheta, \vartheta, \mu)S(\mu, \mu, \zeta)$ $1 + S(\mu, \mu, \zeta)S(\zeta, \zeta, \vartheta)$ $\Delta(\zeta, \vartheta, \mu)$ = max $S(\zeta, \zeta, \vartheta)$, $S(\vartheta, \vartheta, \mu)$, $S(\mu, \mu, \zeta)$, $S(\zeta, \zeta, \vartheta)S(\vartheta, \vartheta, \mu)$ *,* $1 + S(\zeta, \zeta, \vartheta)S(\vartheta, \vartheta, \mu)$ *S*(*ϑ, ϑ, µ*)*S*(*µ, µ, ζ*) *, S*(*µ, µ, ζ*)*S*(*ζ, ζ, ϑ*) (3.3)

Definition 3.4. Let (X, S) be an S-M space, T: B \rightarrow C, and α_s , η_s : B \times B \times B \rightarrow [0, $+\infty$]. We say T is α_s -Proximal admissible with respect to η_s if for all $\zeta, \mu, \rho, \vartheta, \nu, \kappa \in B$, we have

$$
d_s(\vartheta, T\zeta)^{\alpha} = d_s(\beta, C), \quad \text{(if, } \mu, \varrho), \quad \square \implies \qquad \alpha \ (\vartheta, \nu, \kappa) \ge \eta \ (\vartheta, \nu, \kappa).
$$

B

s s

ds(*ν,* T*µ*) = *ds*(*,* C)*,* $d_s(\kappa, T\rho) = d_s(\text{B}, \text{C})$ Recall that if we take $\eta_s(\theta, \nu, \kappa) = 1$, then this definition converted to Definition 3.2. Also, if we take *αs*(*ϑ, ν, κ*) = 1*, then we say that* T *is an ηs*− *Proximal subadmissible mapping.*

Theorem 3.5. Let B and C be two non-empty subsets of an S-M space (X, S) such that (B, S) be acomplete S-M space and B₀ be non-empty set. B and C are approximatively compact with respect to B. Let α_s : $B \times B \times B \rightarrow [0,$ +∞) *be a function and* T : B → C *be a mapping then the following conditionshold:*

- *1.* T *is a generalized rational αs*−*Proximal contraction mapping.*
- *2. There exists* $\zeta_0 \in B$ *such that* $\alpha_s(\zeta_0, \zeta_1, T\zeta_1) \geq 1$ *.*
- *3.* T *is continuous.*

4. If $\{\zeta_i\}$ is a sequence in B such that $\alpha_s(\zeta_i,\zeta_{i+1},\zeta_{i+1}) \geq 1$ for all $l \in \mathbb{N} \cup \{0\}$ and $\zeta_l \to \varrho \in B$ as $l \to +\infty$, then there exists a subsequence $\{\zeta_{m_l}\}$ of $\{\zeta_n\}$ such that $\alpha_s(\zeta_{m_l}, \varrho, \varrho) \ge 1$ for all k.

Suppose that $T(B_0) \subseteq C_0$. Then T has the unique best proximity point that is, $\rho \in B$ such that $d_s(\rho, T\rho) =$ *ds*(B*,* C)*.*

Proof. Due to the subset B₀ is not empty, we choose ζ_0 in B₀. Taking T $\zeta_0 \in T(B_0) \subseteq C_0$ into account, wecan find $\zeta_1 \in B_0$ like that

$$
d_s(\zeta_1,\mathrm{T}\zeta_0)=d_s(\mathrm{B},\mathrm{C}).
$$

Moreover, given $T\zeta_1 \in T(B_0) \subseteq C_0$, Hence, there are elements ζ_2 and ζ_3 in B₀ such that

ds(*ζ*2*,* T*ζ*1) = *ds*(B*,* C), $d_s(\zeta_3, T\zeta_2) = d_s(B, C).$

Repeating this process, we get a sequence $\{\zeta_l\}$ in B₀ satisfying

$$
d_s(\zeta_{l+1},\mathrm{T}\zeta_l)=d_s(\mathrm{B},\mathrm{C}),\forall l\in\mathrm{N}\cup\{0\}.
$$

By by taking $\theta = \zeta_l$, $\zeta = \zeta_{l-1}$, $\nu = \zeta_{l+1}$, $\mu = \zeta_l$, $\theta^* = \zeta_{l+1}$, Equation 3.2 gives

$$
\alpha_{s}(\zeta_{l},\zeta_{l+1},\zeta_{l+1})\xi(S(\zeta_{l},\zeta_{l+1},\zeta_{l+1}))\leq g(\xi(\Delta(\zeta_{l-1},\zeta_{l},\zeta_{l})))(\xi(\Delta(\zeta_{l-1},\zeta_{l},\zeta_{l}))).
$$
\n(3.5)

By the assumption *αs*(*ζ*0*, ζ*1*, ζ*1) ≥ 1 and T is *αs*−Proximal admissible, we have

$$
\alpha_{s}(\zeta_{l}, \zeta_{l+1}, \zeta_{l+1}) \ge 1 \text{ for all } l \in \mathbb{N} \cup \{0\},
$$
\n
$$
\text{where}
$$
\n
$$
\Delta(\zeta_{l-1}, \zeta_{l}, \zeta_{l+1}) \le g(\xi(\Delta(\zeta_{l-1}, \zeta_{l}, \zeta_{l})) \xi(\Delta(\zeta_{l-1}, \zeta_{l}, \zeta_{l})). \tag{3.6}
$$
\n
$$
\Delta(\zeta_{l-1}, \zeta_{l}, \zeta_{l}) = \max \ S(\zeta_{l-1}, \zeta_{l-1}, \zeta_{l}), S(\zeta_{l}, \zeta_{l}, \zeta_{l}), S(\zeta_{l}, \zeta_{l}, \zeta_{l-1}),
$$
\n
$$
\frac{S(\zeta_{l-1}, \zeta_{l-1}, \zeta_{l}) S(\zeta_{l}, \zeta_{l}, \zeta_{l})}{1 + S(\zeta_{l-1}, \zeta_{l-1}, \zeta_{l}) S(\zeta_{l}, \zeta_{l}, \zeta_{l})} \frac{S(\zeta_{l}, \zeta_{l}, \zeta_{l}) S(\zeta_{l}, \zeta_{l}, \zeta_{l-1})}{1 + S(\zeta_{l-1}, \zeta_{l-1}, \zeta_{l}) S(\zeta_{l}, \zeta_{l}, \zeta_{l})} = \max \{S(\zeta_{l-1}, \zeta_{l-1}, \zeta_{l-1}, \zeta_{l}), S(\zeta_{l}, \zeta_{l}, \zeta_{l-1})\}.
$$
\n(3.6)

If max $\{S(\zeta_{l-1}, \zeta_{l-1}, \zeta_l), S(\zeta_l, \zeta_l, \zeta_{l-1})\} = S(\zeta_l, \zeta_l, \zeta_{l-1})$ then the Equation 3.6 becomes

$$
\xi(S(\zeta_l,\zeta_{l+1},\zeta_{l+1})) \leq g(\xi(S(\zeta_l,\zeta_l,\zeta_{l-1})))\xi(S(\zeta_l,\zeta_l,\zeta_{l-1}))
$$

$$
< \xi(S(\zeta_l,\zeta_l,\zeta_{l-1})),
$$
 (3.7)

which is a contradiction.

So max $\{S(\zeta_{l-1}, \zeta_{l-1}, \zeta_l), S(\zeta_l, \zeta_l, \zeta_{l+1})\}$ is $S(\zeta_{l-1}, \zeta_{l-1}, \zeta_l)$, implies

$$
\xi(S(\zeta_l,\zeta_{l+1},\zeta_{l+1})0)) < \xi(S(\zeta_{l-1},\zeta_{l-1},\zeta_l)) \text{ holds for all } l \in \mathbb{N} \cup \{0\}. \tag{3.8}
$$

So, the sequence $\{S(\zeta_i, \zeta_{i+1}, \zeta_{i+1})\}$ is nonnegative and nonincreasing. Now, we prove that $\{S(\zeta_i, \zeta_{i+1}, \zeta_{i+1})\} \to \varrho$ {and we claim $\varrho = 0$ }. It is clear that $\{S(\zeta_k \zeta_{l+1}, \zeta_{l+1})\}$ is a decreasing sequence. Therefore, there exists some positive number t such that $\lim_{n\to\infty} {S(\zeta_i,\zeta_{i+1},\zeta_{i+1})} = t$. From 3.7 we have,

$$
\xi(S(\zeta_{l+1}, \zeta_{n+2}, \zeta_{n+2}))
$$
\n
$$
\xi(S(\zeta_{l}, \zeta_{l+1}, \zeta_{l+1}))) \leq g(\xi(S(\zeta_{l}, \zeta_{l+1}, \zeta_{l+1}))) \leq 1.
$$
\n
$$
\frac{1 + \zeta_{l+1}}{1}
$$

Now taking limit *n* → +∞ we have1 ≤ *g*(*ξ*(*S*(*ζl, ζ^l*+1*, ζ^l*+1))) ≤ 1*,* that is,

$$
g(\xi(S(\zeta_l,\zeta_{l+1},\zeta_{l+1})))=1.
$$

As $g \in G$, we get $\lim_{n \to \infty} \xi(S(\zeta_l, \zeta_{l+1}, \zeta_{l+1})) = 0$, that is

$$
\lim_{n \to +\infty} S(\zeta_{l}, \zeta_{l+1}, \zeta_{l+1}) = 0. \tag{3.9}
$$

Now, we present the sequence {*ζl*} is a Cauchy sequence. Suppose, however that {*ζl*} is not a Cauchy sequence. Then there exist $\epsilon > 0$ and sequences $\{\zeta_{m,k}\}$ and $\{\zeta_{l,k}\}$ such that, for all positive integers k, we have $m_l \ge m_l > k$,

$$
S(\zeta_{m_l}, \zeta_{m_l}) \ge \epsilon. \tag{3.10}
$$

In addition, in accordance with *m^ι* , we can choose *m^ι* in such a way that it is the smallest integer with *l^ι* ≥ *m^ι* and satisfies 3.10. Hence

$$
S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{l-1}) < \epsilon. \tag{3.11}
$$

Set δ ^{*l*} = 2*S*(ζ *l*, ζ *l*, ζ *l*-1). Using the lemma 2.4 and 2.5, we have

$$
\epsilon \le S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{m_l}) = S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{m_l})
$$

\n
$$
\le 2S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{lk-1}) + S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{lk-1})
$$

\n
$$
\le S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{lk-1}) + \epsilon
$$

\n
$$
\le \delta_{m_l} + \epsilon.
$$
 (3.12)

Letting $k \rightarrow +\infty$ in Equation 3.12 we derive that

$$
\lim_{n \to \infty} S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{m_l}) = \epsilon. \tag{3.13}
$$

Also, by Lemma 2.5 we obtain the following inequalities:

$$
S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{m_l}) \le 2S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{nk-1}) + S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{ik-1})
$$

\n
$$
\le 2S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{ik-1}) + S(\zeta_{ik-1}, \zeta_{ik-1}, \zeta_{m_l})
$$

\n
$$
= \delta_{m_l} + S(\zeta_{ik-1}, \zeta_{ik-1}, \zeta_{m_l}). \tag{3.14}
$$

$$
S(\zeta_{nk-1}, \zeta_{nk-1}, \zeta_{m_l}) \le 2S(\zeta_{lk-1}, \zeta_{lk-1}, \zeta_{m_l}) + S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{m_l})
$$

= $\delta_{lk-1} + S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{m_l}).$ (3.15)

Letting $k \rightarrow \infty$ in Equation 3.15 and applying Equation 3.14 we get

$$
\lim_{k \to +} S(\zeta_{ik-1}, \zeta_{ik-1}, \zeta_{m_l}) = \epsilon,
$$
\n
$$
\int_{-\infty}^{\infty} S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{ik-1}) = \epsilon.
$$
\n
$$
\lim_{k \to +} (3.16)
$$

Now, lim *k*→+

$$
\alpha^{\text{S}}
$$

$$
S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{m_l}) \le 2S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{m_k-1}) + S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{m_k-1})
$$

\n
$$
\le 2S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{m_k-1}) + 2S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{n_k-1}) + S(\zeta_{m_k-1}, \zeta_{m_k-1}, \zeta_{l_k-1})
$$

\n
$$
= \delta_{m_l} + \delta_{m_l} + S(\zeta_{m_k-1}, \zeta_{m_k-1}, \zeta_{l_k-1}). \tag{3.17}
$$

$$
S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{lk-1}) \le 2S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{m_l}) + S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{lk-1})
$$

\n
$$
\le 2S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{m_l}) + 2S(\zeta_{lk-1}, \zeta_{lk-1}, \zeta_{m_l}) + S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{m_l})
$$

\n
$$
= \delta_{mk-1} + \delta_{lk-1} + S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{m_l}).
$$

\nLetting $k \to \infty$ in Equation 3.18 and applying Equation 3.17 we get,
\n
$$
\lim_{k \to +\infty} S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{lk-1}) = \epsilon.
$$
 (3.19)

$$
S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{m_l}) \le 2S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{m_k-1}) + S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{m_k-1})
$$

= $\delta_{m_l} + S(\zeta_{m_k-1}, \zeta_{m_l}, \zeta_{m_l}).$ (3.20)

$$
S(\zeta_{mk-1}, \zeta_{m_l}, \zeta_{m_l}) = S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{mk-1})
$$

\n
$$
S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{mk-1}) \le 2S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{lk-1}) + S(\zeta_{lk-1}, \zeta_{lk-1}, \zeta_{mk-1})
$$

\n
$$
\le 2S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{lk-1}) + 2S(\zeta_{lk-1}, \zeta_{lk-1}, \zeta_{m_l}) + S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{m_l})
$$

\n
$$
\le \delta_{m_l} + \delta_{lk-1} + 2S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{m_l}) + S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{m_l})
$$

\n
$$
= \delta_{m_l} + \delta_{lk-1} + \delta_{mk-1} + S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{m_l}).
$$
\n(3.21)

Letting $k \rightarrow \infty$ in Equation 3.21 and applying Equation 3.20 we get

$$
\lim_{k \to +\infty} S(\zeta_{m,k-1}, \zeta_{m_l}, \zeta_{m_l}) = \epsilon. \tag{3.22}
$$

$$
S(\zeta_{m k-1},\zeta_{m k-1},\zeta_{m l})=\delta_{m k-1},
$$

Letting $k \rightarrow \infty$, we obtain

$$
\lim_{k \to +\infty} S(\zeta_{m,k-1}, \zeta_{m,k-1}, \zeta_{m}) = 0. \tag{3.23}
$$

Consider Equation 3.6 with $\vartheta = \zeta_{m_l}$, $\zeta = \zeta_{m_l} - 1$, $\nu = \zeta_{m_l}$, $\mu = \zeta_{lk} - 1$, $\vartheta^* = \zeta_{m_l}$ *,*

$$
S(\zeta_{mk-1}, \zeta_{m_l}, \zeta_{m_l}) \le g[(\Delta(\zeta_{mk-1}, \zeta_{m_l}, \zeta_{lk-1})][\Delta(\zeta_{mk-1}, \zeta_{m_l}, \zeta_{lk-1})],
$$
\n(3.24)
\nwhere

 $\Delta(\zeta_{m k-1}, \zeta_{m_l}, \zeta_{l k-1}) = \max \ S(\zeta_{m k-1}, \zeta_{m k-1}, \zeta_{m_l}), S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{l k-1}), S(\zeta_{l k-1}, \zeta_{l k-1}, \zeta_{m k-1})$)*,*

$$
\frac{S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{m_l}) S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{lk-1})}{1 + S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{m_l}) S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{lk-1})}
$$
\n
$$
\frac{\zeta_{mk-1}}{1 + S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{lk-1})} \cdot \frac{\zeta_{mk-1}}{1 + S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{lk-1}) S(\zeta_{lk-1}, \zeta_{lk-1}, \zeta_{lk-1}, \zeta_{lk-1})}
$$
\n
$$
S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{mk-1}, \zeta_{mk-1})
$$
\n
$$
\frac{\zeta_{mk-1}}{1 + S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{lk-1}) S(\zeta_{lk-1}, \zeta_{lk-1}, \zeta_{nk-1})}
$$

$$
1+S(\zeta_{m k-1}\,,\zeta_{m k-1}\,,\zeta_{m l}\,)S(\zeta_{l k-1}\,,\zeta_{l k-1}\,,\zeta_{m k-1}\,)
$$

$$
\Delta(\zeta_{mk-1}, \zeta_{m_l}, \zeta_{lk-1}) = \max \quad S(\zeta_{mk-1}, \zeta_{mk-1}, \zeta_{m_l}), S(\zeta_{m_l}, \zeta_{nk-1}), S(\zeta_{lk-1}, \zeta_{lk-1}, \zeta_{mk-1})
$$
\n(3.25)\nUsing the Equations 3.16, 3.19, 3.23 in 3.25 we obtain,\n
$$
\delta_1(\zeta_{mk-1}, \zeta_{m_l}, \zeta_{lk-1}) = \max\{0, \epsilon, \epsilon\}
$$
\n
$$
= \epsilon. \tag{3.26}
$$

Now taking limit $k \to \infty$ in Equation 3.24 and using Equations 3.2,3.26, we obtain,

$$
\xi(\epsilon)\leq g(\xi(\epsilon)).\xi(\epsilon)\xi(\epsilon)=1.
$$

This contradicts itself by implying that ϵ = 0. Hence,

$$
\lim_{k \to +\infty} \left(S(\zeta_{m_l}, \zeta_{m_l}, \zeta_{m_{k+1}}) \right) = 0. \tag{3.27}
$$

Thus {*ζl*} is a Cauchy sequence. Since (B*, S*) is complete S - metric space, so there exists *ϱ* ∈ B such that $\{\zeta_l\} \rightarrow \varrho$ as $l \rightarrow \infty$.

Conversely, for all $l \in N$,

 $d_s(Q, C) \leq d_s(Q, T\zeta)$ ≤ *ds*(*ϱ, ζl*+1) + *ds*(*ζl*+1*,* T*ζl*) $= d_s(\varrho, \zeta_{l+1}) + d_s(\text{B}, \text{C}).$ (3.28) Taking limit as $l \rightarrow \infty$ in above inequality, we discoverlim $d_s(\varrho, T\zeta_l) = d_s(\varrho, C) = d_s(\zeta, C)$. *l*→∞

that converges to some μ^* ∈ C. Hence, B Since C is approximatively compact with respect to B so the sequance {T*ζl*} has a subsequence {T*ζmι* }

$$
d_s(\varrho,\mu^*) = \lim_{l \to \infty} d_s(\zeta_{lk+1}, \mathrm{T}\zeta_{m_l}) = d_s(\mathrm{B},\mathrm{C}), \tag{3.29}
$$

and so $\varrho \in B_0$. Now since $T\varrho \in TB_0 \subseteq C_0$, so there exist $\kappa \in B_0$ such that

$$
d_s(\kappa, \mathrm{T}\varrho) = d_s(\mathrm{B}, \mathrm{C}).
$$

By Equation 3.6 with $\vartheta = \zeta_{l+1}$, $\zeta = \zeta_l$, $\nu = \kappa$, $\mu = \varrho$, $\vartheta^* = \zeta_{n+2}$ we have

$$
\xi(S(\zeta_{i+1}, \zeta_{i+2}, \kappa)) \le g(\xi(\Delta(\zeta_i, \zeta_{i+1}, \varrho)))\xi(\Delta(\zeta_i, \zeta_{i+1}, \varrho)),
$$
\nwhere\n
$$
\Delta(\zeta_i, \zeta_{i+1}, \varrho) = \max\{S(\zeta_i, \zeta_i, \zeta_{i+1}), S(\zeta_{i+1}, \zeta_{i+1}, \varrho), S(\varrho, \varrho, \zeta_i),
$$
\n
$$
\frac{S(\zeta_i, \zeta_i, \zeta_{i+1})S(\zeta_{i+1}, \zeta_{i+1}, \varrho)}{S(\zeta_i, \zeta_i, \zeta_{i+1})S(\zeta_{i+1}, \zeta_{i+1}, \varrho)} = \frac{S(\zeta_{i+1}, \zeta_{i+1}, \varrho)S(\varrho, \varrho, \zeta_i)}{S(\varrho, \varrho, \zeta_i)}.
$$
\n
$$
1 + S(\varrho, \varrho, \zeta)S(\zeta, \zeta, \zeta)
$$
\n
$$
\frac{S(\varrho, \varrho, \zeta_i)}{S(\zeta_i, \zeta_i, \zeta_{i+1})})
$$
\n
$$
1 + 1
$$
\n
$$
1 + 1
$$
\n(1)

 $\Delta(\zeta, \zeta_{l+1}, \varrho) = max\{S(\zeta_l, \zeta_l, \zeta_{l+1}), S(\zeta_{l+1}, \zeta_{l+1}, \varrho), S(\varrho, \varrho, \zeta_l)\}.$

Taking the limit $l \rightarrow \infty$

 $\lim \Delta(\zeta, \zeta_{l+1}, \varrho) = \lim \max \{ S(\zeta, \zeta, \zeta_{l+1}), S(\zeta_{l+1}, \zeta_{l+1}, \varrho, S(\varrho, \varrho, \zeta)) \}$ *l*→∞ *n*→∞ = 0*.*

Taking the limit *l* → ∞ in equation(3.28) and using lim_{*l*→∞} $\Delta(\zeta, \zeta_{l+1}, \varrho) = 0$, we get

$$
\xi(S(\varrho,\varrho,\kappa))\leq g(\xi(0))\xi(0)=0.
$$

Then $S(\varrho, \varrho, \kappa) = 0$. That is $\varrho = \kappa$, so $d_s(\varrho, T\varrho) = d_s(B, C)$. Consequently, T has the "best proximity point".

Now we prove the uniqueness of "best proximity point" Suppose that $p \ q$ such that $d_s(p, Tp) = d_s(B, C)$

and $d_s(q, Tq) = d_s(B, C)$. Now by 3.6, with $\zeta = \vartheta = \vartheta^* = p$ and $\mu = v = q$ we get

$$
\xi(S(p, p, q)) \le g(\xi(\Delta(p, p, q)))\xi(\Delta(p, p, q)),\tag{3.31}
$$

where

 $\Delta(p, p, q) = \max \{ S(p, p, p), S(p, p, q), S(q, q, p), \frac{S(p, p, p)S(p, p, q)}{S(p, p, q)} \}$ $1 + S(p, p, p)S(p, p, q)$ *S*(*p, p, q*)*S*(*q, q, p*) *S*(*q, q, p*)*S*(*p, p, p*) $1 + S(p, p, q)S(q, q, p) 1 + S(q, q, p)S(p, p, p)$

= max{*S*(*p, p, q*)*, S*(*q, q, p*)}*.*

If max $\{S(p, p, q), S(q, q, p)\} = S(p, p, q)$ then from Equation 3.31, we get

ξ(*S*(*p, p, q*)) ≤ *g*(*ξ*(*S*(*p, p, q*)))*ξ*(*S*(*p, p, q*))*, < ξ*(*S*(*p, p, q*))

which is a contradiction. Thus max $\{S(p, p, q), S(q, q, p)\} = S(q, q, p)$, again Equation 3.31 implies

ξ(*S*(*p, p, q*)) ≤ *g*(*ξ*(*S*(*q, q, p*)))*ξ*(*S*(*q, q, p*))*, < ξ*(*S*(*q, q, p*))*.*

As ξ is non decreasing, then $q = p$.

2. Then also, let $d_s(B, C) = 2|\xi - \mu|$. Let $B = \{1, 2, 3, 4\}$ and $C = \{6, 7, 8, 9\}$ Define T: B → C **Example 3.6.** Let X = [0, + ∞). It's simple to observe that $S(\zeta,\mu,\varrho) = 1(|\zeta-\varrho|+|\mu-\varrho|)$ is an S-M on

$$
\begin{array}{ccc}\n\zeta & = & \zeta & = & 4, \\
\zeta & = & 6 & \zeta & = & 4, \\
\zeta & = & 4 & \text{otherwise.}\n\end{array}
$$

Also define ,

Also define,
\n
$$
\alpha \left(\vartheta, \nu, \kappa \right) = \begin{cases}\n1 & \text{if } \vartheta, \nu, \kappa \in B, \\
0 & \text{otherwise.}\n\end{cases}
$$

Clearly d_s(B, C) = 1, B₀ = {4}, C₀ = {6} and T(B₀) \subseteq T(C₀). Let $d_s(\vartheta, T\zeta) = d_s(B, C)$ and $d_s(v, T\mu) =$ *Also consider g* : $[0, +\infty) \rightarrow [0, 1]$ *and* $\xi : [0, \infty) \rightarrow [0, \infty]$ *defined by* $\xi(\zeta) = \zeta$, $g(\zeta) = \zeta$ *respectively.* $d_S(B,C) = 1$. Then $(\vartheta, \zeta), (\nu, \mu) \in \{(4, 4), (4, 2)\}$. Also, if $d_S(\vartheta^*, T\vartheta) = d_S(B,C) = 1$, then $\vartheta^* = 4$. *Therefore, if*

 $d_s(\vartheta, T\zeta) = d_s(B, C)$ *,* $d_s(\vartheta^*, \mathrm{T}\vartheta) = d_s(\mathrm{B}, \mathrm{C})$ *,* $d_s(v, T\mu) = d_s(B, C)$ *,*

then

 $(\vartheta, \vartheta^*, \nu, \zeta, \mu) \in \{ (4, 4, 4, 4, 4), (4, 4, 4, 2, 2), (4, 4, 4, 2, 4), (4, 4, 4, 4, 2) \}.$

,

Now ϑ = *ϑ*[∗] = *ν* = 4 *so, ξ*(*S*(*ϑ, ϑ*[∗] *, ν*)) = 0*. Hence,*

$$
\xi\big(S\big(\vartheta,\vartheta^*,\nu\big)\big)\,=\,0\,\leq\,\frac{1}{\,}x\leq g\big(\xi\big(\Delta\big(\zeta,\vartheta,\mu\big)\big)\big)\xi\big(\Delta\big(\zeta,\vartheta,\mu\big)\big),
$$

where

$$
\Delta(\zeta, \vartheta, \mu) = \max \quad S(\zeta, \zeta, \vartheta), S(\vartheta, \vartheta, \mu), S(\mu, \mu, \zeta), \quad \frac{S(\zeta, \zeta, \vartheta)S(\vartheta, \vartheta, \mu)}{S(\vartheta, \zeta, \vartheta)S(\vartheta, \vartheta, \mu)}
$$
\n
$$
1 + S(\vartheta, \vartheta, \mu)S(\mu, \mu, \zeta) \quad 1 + S(\mu, \mu, \zeta)S(\zeta, \zeta, \vartheta)
$$
\n
$$
1 + S(\vartheta, \vartheta, \mu)S(\mu, \mu, \zeta) \quad 1 + S(\mu, \mu, \zeta)S(\zeta, \zeta, \vartheta)
$$

Let $\zeta = 2$, $\vartheta = 1$, $\mu = 4$, we obtained

∆(2*,* 1*,* 4) = max *S*(2*,* 2*,* 1)*, S*(1*,* 1*,* 4)*, S*(4*,* 4*,* 2)*, S*(2*,* 2*,* 1)*S*(1*,* 1*,* 4) 1 + *S*(2*,* 2*,* 1)*S*(1*,* 1*,* 4)

1 + *S*(1*,* 1*,* 4)*S*(*T* 4*,* 4*,* 1) 1 + *S*(4*,* 4*,* 1)*S*(2*,* 2*,* 1) *S*(1*,* 1*,* 4)*S*(4*,* 4*,* 1) *, S*(4*,* 4*,* 1)*S*(2*,* 2*,* 1) $=$ max $\frac{1}{1}$ *,* 1, 3, 3, 1
 3, 1, 3, 3, 1 *, ,* $=$ $\frac{3}{2}$ *.* 4 4 2 19 11 9 4

Thus T *is a generalized rational αs*−*Proximal contraction mapping. All the conditions of Theorem 3.2 are true and T* has a unique best proximity point. Here, $\rho = 4$ is the unique best proximity point in T

,

If in Theorem 3.2 we take $\xi(s) = s$, $g(t) = t^r$ where $0 < r < 1$ and $r \in (0, \infty)$ then we deduce the following corollary.

Corollary 3.6.1. Suppose B, C be two non-empty subsets of a S-M space (X, S) such that (B, S) is a complete S-M *space,* B₀ *is non-empty,* and C *is approximatively compact with respect to* B. *Assume that* $T : B \rightarrow C$ *is a non-self* $mapping$ *such that* $T(B_0) \subseteq C_0$ *and, for* ζ , μ , ϑ , ϑ^* , $\nu \in B$

1 + *S*(*ϑ, ϑ, µ*)*S*(*µ, µ, ζ*) 1 + *S*(*µ, µ, ζ*)*S*(*ζ, ζ, ϑ*) $d_s(\vartheta, \mathrm{T}\zeta) = d_s(\mathrm{B}, \mathrm{C})$ *,* $d_s(\vartheta^*, \mathrm{T}\vartheta) = d_s(\mathrm{B}, \mathrm{C})$ *,* $d_s(v, T\mu) = d_s(B, C)$ *, holds* where $0 < r < 1$. $=$ \Rightarrow *α*_{*s*}(*θ, θ*^{*}*, ν*)*S*(*θ, ν, κ*) ≤ Δ(*ζ, θ, μ*)^{*r*}Δ(*ζ, θ, μ*) and $\Delta(\zeta, \vartheta, \mu)$ = max $S(\zeta, \zeta, \vartheta)$, $S(\vartheta, \vartheta, \mu)$, $S(\mu, \mu, \zeta)$, $\frac{S(\zeta, \zeta, \vartheta)S(\vartheta, \vartheta, \mu)}{S(\zeta, \zeta, \vartheta)}$ *,* $1 + S(\zeta, \zeta, \vartheta)S(\vartheta, \vartheta, \mu)$ *S*(*ϑ, ϑ, µ*)*S*(*µ, µ, ζ*) *, S*(*µ, µ, ζ*)*S*(*ζ, ζ, ϑ*) *.*

Then T has unique best proximity point, that is, there exists unique $\varrho \in B$ such that $d_s(\varrho, T\varrho) = d_s(B, C)$ If in

1+*t* Theorem 3.2 we take $\xi(s) = s$, $g(t) = 1$ then we conclude the following corollary.

Corollary 3.6.2. Suppose B, C be two non-empty subsets of an S-M space (X, S) such that (B, S) is a *complete S-M space,* B⁰ *is non-empty, and* C *is approximatively compact with respect to* B*. Assume that*

 $T : B \to C$ *is a non-self-mapping such that* $T(B_0) \subseteq C_0$ *and for* ζ , μ , ϑ , ϑ^* , $\nu \in B$

 $\alpha_s(\vartheta, \vartheta^*, v) S(\vartheta, \vartheta^*, v) \leq \frac{1}{1 + \Delta(\zeta \vartheta, \mu)} \langle \vartheta, \mu \rangle$ *ds*(*ϑ,* T*ζ*) = *ds*(B*,* C)*,* $d_s(\vartheta^*, \mathrm{T}\vartheta) = d_s(\mathrm{B}, \mathrm{C})$ *,* $d_s(v, T\mu) = d_s(B, C)$

where $\Delta(\zeta, \vartheta, \mu)$ = max $S(\zeta, \zeta, \vartheta)$, $S(\vartheta, \vartheta, \mu)$, $S(\mu, \mu, \zeta)$, $\frac{S(\zeta, \zeta, \vartheta)S(\vartheta, \vartheta, \mu)}{S(\zeta, \zeta, \vartheta)}$ *,* 1 + *S*(*ζ, ζ, ϑ*)*S*(*ϑ, ϑ, µ*)

$$
\frac{S(\vartheta, \vartheta, \mu)S(\mu, \mu, \zeta)}{1 + S(\vartheta, \vartheta, \mu)S(\mu, \mu, \zeta)} \quad \frac{S(\mu, \mu, \zeta)S(\zeta, \zeta, \vartheta)}{1 + S(\mu, \mu, \zeta)S(\zeta, \zeta, \vartheta)}
$$

holds for $0 \le r < 1$ *. Then T has unique best proximity point that is, there exists unique* $\rho \in B$ *such that* $d_s(\rho, T\rho)$ $= d_s(B, C)$.

.

In Theorem 3.2 we can have another result.

Let (X, S) be a S-M space, and let α_s , $\eta_s : B \times B \times B \to [0, +\infty)$ be a function. Mapping T : $B \to C$ is called generalized rational *αs*−Proximal contraction type mapping with respect to *η^s* if there exist *g* ∈ G such that, for all *ζ, ϑ, ϑ*[∗] *, µ, ν* ∈ B. *αs*(*ϑ, ϑ*[∗] *, ν*) ≥ *ηs*(*ϑ, ϑ*[∗] *, ν*)

1 + *S*(*µ, µ, ζ*)*S*(*ζ, ζ, ϑ*) *, .* 1 + *S*(*ϑ, ϑ, µ*)*S*(*µ, µ, ζ*)=⇒ *S*(*ϑ, ϑ*[∗] *, ν*) ≤ *g*(*ξ*(∆(*ζ, ϑ, µ*)))*ξ*(∆(*ζ, ϑ, µ*))where, $\Delta(\zeta, \vartheta, \mu)$ = max $S(\zeta, \zeta, \vartheta)$, $S(\vartheta, \vartheta, \mu)$, $S(\mu, \mu, \zeta)$, $\frac{S(\zeta, \zeta, \vartheta)S(\vartheta, \vartheta, \mu)}{S(\zeta, \zeta, \vartheta)S(\vartheta, \vartheta, \mu)}$ *,* $1 + S(\zeta, \zeta, \vartheta)S(\vartheta, \vartheta, \mu)$ *S*(*ϑ, ϑ, µ*)*S*(*µ, µ, ζ*) *S*(*µ, µ, ζ*)*S*(*ζ, ζ, ϑ*)

Theorem 3.7. Let (X, S) be a CS-M space. Let T be an α_s -Proximal admissible mapping with respectto η_s *such that the following hold:*

- *1.* T *is a generalized rational αs*− *Proximal contraction type mapping.*
- *2. There exists ζ*⁰ ∈ X *such that αs*(*ζ*0*, ζ*0*,* T*ζ*0) ≥ *ηs*(*ζ*0*, ζ*0*,* T*ζ*0)*.*

3. This continuous.

4. If $\{\zeta_i\}$ is a sequence in X such that $\alpha_s(\zeta_i,\zeta_i,\zeta_{i+1}) \geq \eta_s(\zeta_i,\zeta_i,\zeta_{i+1})$ for all $l \in \mathbb{N} \cup \{0\}$ and $\zeta_l \to \varrho \in \mathbb{B}$ as $l \to \infty$ $+ \infty$, then there exists a subsequence $\{\zeta_{m} \}$ of $\{\zeta_l\}$ such that $\alpha_s(\zeta_{m_l}, \zeta_{m_l}, \zeta_{m_l}) \geq \eta_s(\zeta_{m_l}, \zeta_{m_l}, \zeta_{m_l})$ for all k.

Then T *has best proximity point.*

Proof. Since subset B₀ is not empty, we take *ζ*₀ in B₀. Taking T*ζ*₀ ∈ T(B₀) ⊆ C₀ into account, we can find *ζ*¹ ∈ B⁰ such that

$$
d_s(\zeta_1,\mathrm{T}\zeta_0)=d_s(\mathrm{B},\mathrm{C}).
$$

Further, since $T\zeta_1 \in T(B_0) \subseteq C_0$, it follows that there are element ζ_2 and ζ_3 in B₀ such that

$$
d_s(\zeta_2, T\zeta_1) = d_s(B, C), d_s(\zeta_3, T\zeta_2) = d_s(B, C).
$$

Recursively, we obtain a sequence{*ζl*} in B₀ satisfying

$$
d_s(\zeta_{l+1},\mathrm{T}\zeta_l)=d_s(\mathrm{B},\mathrm{C}),\forall l\in\mathrm{N}\cup\{0\}.
$$

By taking $\vartheta = \zeta_l$, $\zeta = \zeta_{l-1}$, $\nu = \zeta_{l+1}$, $\mu = \zeta_l$, $\vartheta^* = \zeta_{l+1}$, Equation 3.2 gives

$$
\alpha_{s}(\zeta_{b}\,\zeta_{l+1},\,\zeta_{l+1})\xi(S(\zeta_{b}\,\zeta_{l+1},\,\zeta_{l+1}))\leq g(\xi(\Delta(\zeta_{l-1},\,\zeta_{b}\,\zeta_{l})))(\xi(\Delta(\zeta_{l-1},\,\zeta_{b}\,\zeta_{l})).\tag{3.32}
$$

By condition (3), we have $\alpha_s(\zeta_0, \zeta_1, \zeta_1) \geq \eta_s(\zeta_0, \zeta_1, \zeta_1)$

 $\eta_{s}(\zeta_{l},\zeta_{l+1},\zeta_{l+1})\xi(S(\zeta_{l},\zeta_{l+1},\zeta_{l+1}))\leq g(\xi(\Delta(\zeta_{l-1},\zeta_{l},\zeta_{l})))(\xi(\Delta(\zeta_{l-1},\zeta_{l},\zeta_{l}))).$

By the assumption $η_s(ζ₀, ζ₁, ζ₁) ≥ 1$ and T is $α_s$ - Proximal admissible, we have $\eta_s(\zeta_l, \zeta_{l+1}, \zeta_{l+1}) \geq 1$ for all $l \in \mathbb{N} \cup \{0\}$ *.*

$$
\xi(S(\zeta_l, \zeta_{l+1}, \zeta_{l+1})) \leq g(\xi(\Delta(\zeta_{l-1}, \zeta_l, \zeta_l)))\xi(\Delta(\zeta_{l-1}, \zeta_l, \zeta_l))
$$
\n(3.33)
\nwhere
\n
$$
\Delta(\zeta_{l-1}, \zeta_l, \zeta_l) = \max \ S(\zeta_{l-1}, \zeta_{l-1}, \zeta_l), S(\zeta_l, \zeta_l, \zeta_l), S(\zeta_l, \zeta_l, \zeta_{l-1}),
$$
\n
$$
\frac{S(\zeta_{l-1}, \zeta_{l-1}, \zeta_l)S(\zeta_l, \zeta_l, \zeta_l)}{1 + S(\zeta_{l-1}, \zeta_{l-1}, \zeta_l)} \sum_{\substack{S(\zeta_l, \zeta_l, \zeta_l)\\ S(\zeta_l, \zeta_l, \zeta_l)\\ S(\zeta_l, \zeta_l, \zeta_l, \zeta_l)\\ S(\zeta_l, \zeta_l, \zeta_{l-1})}} \frac{S(\zeta_l, \zeta_l, \zeta_l, \zeta_l)}{1 + S(\zeta_l, \zeta_l, \zeta_l)} \sum_{\substack{S(\zeta_l, \zeta_l, \zeta_{l-1})\\ S(\zeta_l, \zeta_l, \zeta_l, \zeta_l)\\ S(\zeta_l, \zeta_l, \zeta_l, \zeta_l)\\ S(\zeta_l, \zeta_l, \zeta_l, \zeta_l)\\ S(\zeta_l, \zeta_l, \zeta_l, \zeta_l)\\ S(\zeta_l, \zeta_l, \zeta_l, \zeta_l) \sum_{\substack{S(\zeta_l, \zeta_l, \zeta_l)\\ S(\zeta_l, \zeta_l, \zeta_l)\\ S(\zeta_l, \zeta_l, \zeta_l)\\ S(\zeta_l, \zeta_l, \zeta_l)}}
$$
\n(3.33)

If max $\{S(\zeta_{l-1}, \zeta_{l-1}, \zeta_l), S(\zeta_l, \zeta_l, \zeta_{l-1})\} = S(\zeta_l, \zeta_l, \zeta_{l-1})$ then the Equation 3.33 becomes

$$
\xi(S(\zeta_l,\zeta_{l+1},\zeta_{l+1})) \leq g(\xi(S(\zeta_l,\zeta_l,\zeta_{l-1})))\xi(S(\zeta_l,\zeta_l,\zeta_{l-1}))
$$

$$
< \xi(S(\zeta_l,\zeta_l,\zeta_{l-1})),
$$
 (3.34)

which is a contradiction.

So max $\{S(\zeta_{l-1}, \zeta_{l-1}, \zeta_l), S(\zeta_l, \zeta_l, \zeta_{l+1})\}$ is $S(\zeta_{l-1}, \zeta_{l-1}, \zeta_l)$. This implies

$$
\xi(S(\zeta_l,\zeta_{l+1},\zeta_{l+1})0)) < \xi(S(\zeta_{l-1},\zeta_{l-1},\zeta_l)) \text{ holds for all } l \in \mathbb{N} \cup \{0\}. \tag{3.35}
$$

In a similar way Theorem 3.2, we can prove that T has a best proximity point.

Theorem 3.8. Let B, C be two non-empty subsets of an S-M space (X, S) such that (B, S) is a complete *S-M space*, B_0 *is non-empty, and* C *is approximatively compact with respect to* B *. Assume that* $T : B \rightarrow C$

is a non-self-mapping such tha $T(B_0) \subseteq C_0$ *and, for* ζ , μ , ϑ , ϑ^* , $\nu \in B$

$$
d_{s}(\vartheta, T\zeta) = d_{s}(B, C),
$$
\n
$$
S(\vartheta, \vartheta^{*}, \nu) \leq \alpha S(\zeta, \zeta, \vartheta) + \beta \frac{\sqrt{S(\zeta, \zeta, \vartheta)S(\zeta, \zeta, \mu)}}{1 + S(\vartheta, \vartheta^{*})} \tag{3.36}
$$
\n
$$
d_{s}(\nu, T\mu) = d_{s}(B, C),
$$
\n
$$
= \Rightarrow +\gamma S(\mu, \mu, \zeta) + \delta \frac{S(\mu, \mu, \zeta)}{1 + S(\zeta, \zeta, \vartheta)} \tag{3.36}
$$

holds where $\alpha, \beta, \gamma, \delta \ge 0$ and $\alpha + \beta + \gamma + \delta < 1$. Then T has the unique best proximity point.

Proof. Following the same lines in the proof of Theorem 3.2, we can construct a sequences $\{\zeta_l\}$ inB₀ satisfying

$$
d_s(\zeta_{l+1},\mathrm{T}\zeta_n)=d_s(\mathrm{B},\mathrm{C});\forall l\in\mathrm{N}\cup\{0\}.
$$

From (3.36) with $\zeta = \zeta_{l-1}$, $\vartheta = \zeta_l$, $\mu = \zeta_l$, $\nu = \zeta_{l+1}$, $\vartheta^* = \zeta_{l+1}$, we obtain

S(*ζ , ζ , ζ*) ≤ *αS*(*ζ , ζ , ζ*) + *β* √ *S*(*ζl*−1*, ζl*−1*, ζl*)*S*(*ζl*−1*, ζl*−1*, ζl*)

$$
l \quad l+1 \quad l+1 \quad l-1 \quad l-1 \quad l \quad 1 + S(\zeta_{l+1}, \zeta_{l+1}, \zeta_{l-1})
$$

+ $\gamma S(\zeta_l, \zeta_l, \zeta_{l-1})$
= $(\alpha + \beta + \gamma S(\zeta_{l+1}, \zeta_{l-1}) + \delta + \gamma S(\zeta_{l+1}, \zeta_{l-1}) + \gamma + \gamma S(\zeta_{l+1}, \zeta_{l-1}) + \gamma S(\zeta_{l+1}, \zeta_{l-$

≤ (*α* + *β* + *γ* + *δ*)*S*(*ζl*−1*, ζl*−1*, ζl*)*,*

for all $l \in N \cup \{0\}$. This implies

$$
S(\zeta_l, \zeta_{l+1}, \zeta_{l+1}) \le k! S(\zeta_0, \zeta_0, \zeta_1), \tag{3.37}
$$

where $k = \alpha + \beta + \gamma + \delta < 1$. Now, for all $m, l \in \mathbb{N}$, $n < m$, by Lemma 2.4 and Equation 3.36, we have

$$
S(\zeta_{l}, \zeta_{m}, \zeta_{m}) \leq 2S(\zeta_{l}, \zeta_{l}, \zeta_{l+1}) + S(\zeta_{m}, \zeta_{m}, \zeta_{l+1})
$$

= $2S(\zeta_{l}, \zeta_{l}, \zeta_{l+1}) + S(\zeta_{l+1}, \zeta_{l+1}, \zeta_{m})$
 n
 $\leq 2k S(\zeta_{0}, \zeta_{0}, \zeta_{1}) + 2S(\zeta_{l+1}, \zeta_{l+1}, \zeta_{l+2}) + S(\zeta_{m}, \zeta_{m}, \zeta_{l+2})$
= $2k^{n}S(\zeta_{0}, \zeta_{0}, \zeta_{1}) + 2S(\zeta_{l+1}, \zeta_{l+1}, \zeta_{l+2}) + S(\zeta_{l+2}, \zeta_{l+2}, \zeta_{m})$
:
 $\leq 2[k^{l} + \dots \dots \dots \dots \dots \dots \dots + k^{m-1}]S(\zeta_{0}, \zeta_{0}, \zeta_{1})$
 $\leq k$
 $\leq 1 - k S(\zeta_{0}, \zeta_{0}, \zeta_{1}).$

Taking limit as *n*, $m \to \infty$, we get $S(\zeta_k \zeta_k \zeta_m) \to 0$. This gives that $\{\zeta_l\}$ is a Cauchy sequence in S-M space (X *, S*). Due to the completeness of (B*, S*), there exists *ρ</i> ∈ B such that {ζ<i>l* $} converges to$ $$ρ$. As in the proof of$ Theorem 3.2, we have $d_s(\kappa, T\rho) = d_s(B, C)$ for some $\kappa \in B_0$. From Equation 3.36 with

 $ζ = ζ_{l−1}, *θ* = ζ_l, *θ*[*] = ζ_{l+1}, *µ* = *ρ* and *ν* = *κ*, we deduce$

$$
S(\zeta, \zeta, \kappa) \leq \alpha S(\zeta, \zeta, \zeta) + \beta \sqrt{\zeta(\zeta_{l-1}, \zeta_{l-1}, \zeta_l) S(\zeta_{l-1}, \zeta_{l-1}, z)}
$$

$$
l \quad l+1
$$
 $l-1 \quad l-1 \quad l+1 \quad \sqrt{(l+1) \quad (l+1) \quad (l+1)$

+ *γS*(*ϱ, ϱ, ζ l*−) + *δ S*(*ϱ, ϱ, ζ^l*−1) 1 + *S*(*ζl*−1*, ζl*−1*, ζl*) 1 *.*

By taking limit as $l \rightarrow \infty$ in the inequality mentioned above, we obtain $S(\varrho, \varrho, \kappa) = 0$; that is $\varrho = \kappa$. Hence, $d_s(\varrho, T\varrho) = d_s(\kappa, T\varrho) = d_s(B, C)$; that is, T has the best proximity point. To prove uniqueness, suppose that p $q, d_s(p, Tp) = d_s(B, C)$ and $d_s(q, Tq) = d_s(B, C)$. Now by Equation 3.36 with $\zeta = \vartheta = \vartheta^* = p$ and $\mu = v = q$ we have,

$$
S(p, p, q) \qquad \qquad \searrow \qquad \qquad \frac{\sqrt{S(p, p, p)S(p, p, q)}}{1 + S(p, p, p)} \\qquad \qquad \frac{\sqrt{S(p, p, p)S(p, p, q)}}{1 + S(p, p, p)} \\qquad \qquad \frac{\sqrt{S(p, p, p)S(p, p, q)}}{1 + S(p, p, p)} \\qquad \qquad \frac{\sqrt{S(p, p, p)S(p, p, q)}}{1 + S(p, p, p)} \\qquad \qquad \frac{\sqrt{S(p, p, p)S(p, p, q)}}{1 + S(p, p, p)} \\qquad \qquad \frac{\sqrt{S(p, p, p)S(p, p, q)}}{1 + S(p, p, p)} \\qquad \qquad \frac{\sqrt{S(p, p, p)S(p, p, q)}}{1 + S(p, p, p)} \\qquad \qquad \frac{\sqrt{S(p, p, p)S(p, p, q)}}{1 + S(p, p, p)} \\qquad \qquad \frac{\sqrt{S(p, p, p)S(p, p, q)}}{1 + S(p, p, p)} \\qquad \qquad \frac{\sqrt{S(p, p, p)S(p, p, q)}}{1 + S(p, p, p)} \\qquad \qquad \frac{\sqrt{S(p, p, p)S(p, p, q)}}{1 + S(p, p, p)} \\qquad \qquad \frac{\sqrt{S(p, p, p)S(p, p, q)}}{1 + S(p, p, p)} \\qquad \qquad \frac{\sqrt{S(p, p, p)S(p, p, q)}}{1 + S(p, p, p)} \\qquad \qquad \frac{\sqrt{S(p, p, p)S(p, p, q)}}{1 + S(p, p, p)} \\qquad \qquad \frac{\sqrt{S(p, p, p)S(p, p, q)}}{1 + S(p, p, p)} \\qquad \qquad \frac{\sqrt{S(p, p, p)S(p, p, q)}}{1 + S(p, p, p)} \\qquad \qquad \frac{\sqrt{S(p, p, p)S(p, p, q)}}{1 + S(p, p, p)} \\qquad \qquad \frac{\sqrt{S(p, p, p)S(p, p, q)}}{1 + S(p, p, p)} \\qquad \qquad \frac{\sqrt{S(p, p, p)S(p, p, q)}}{1 + S(p, p, p)} \\qquad \qquad \frac{\sqrt{S(p, p, p)S(p, p)}}{1 + S(p, p)} \\qquad \qquad \frac{\sqrt{S(p, p)S(p, p)}}{1 + S(p, p)} \\qquad \qquad \frac{\sqrt{S(p, p)S(p
$$

+ $\gamma S(q, q, p) + \delta$

$$
1+S(p,p,p)
$$

≤ (*γ* + *δ*)*S*(*q, q, p*) = (*γ* + *δ*)*S*(*p, p, q*)*,*

which implies $S(p, p, q) = 0$. Hence $p = q$, that is T has the unique best proximity point.

By taking $β = γ = δ = 0$ in Theorem (3.5), we obtain the following Corollary:

Corollary 3.8.1. Suppose B, C be two non-empty subsets of an S-M space (X, S) such that (B, S) is a *complete S-M space*, B₀ *is non-empty,* and C *is approximatively compact with respect* to B. Assume that $T : B \rightarrow$ C *is a non-self-mapping such that* $T(B_0) \subseteq C_0$ *and, for* $\zeta, \mu, \vartheta, \nu \in B$

^ds(*ϑ,* ^T*ζ*) = *^ds*(B*,* ^C)*,* $d_s(\vartheta^*, \mathrm{T}\vartheta) = d_s(\mathrm{B}, \mathrm{C})$, $\qquad \qquad \cong \qquad \qquad \mathrm{S}(\vartheta, \vartheta^*, \nu) \leq \alpha \mathrm{S}(\zeta, \zeta, \vartheta)$ $d_s(v, T\mu) = d_s(B, C)$

holds where $0 \leq \alpha < 1$. Then T has the unique best proximity point.

4 Application to Fixed Point Theory

In this section, as an application of our best proximity results, we will derive certain new fixed point results

Note that if

ds(*ϑ,* T*ζ*) = *ds*(B*,* C)*,* $d_s(\vartheta^*, \mathrm{T}\vartheta) = d_s(\mathrm{B}, \mathrm{C})$ *,* $d_s(v, T\mu) = d_s(B, C)$ $\Rightarrow \alpha_s(\vartheta, \vartheta^*, \nu) \xi(S(\vartheta, \vartheta^*, \nu)) \leq g(\xi(\Delta(\zeta, \vartheta, \mu))) \xi(\Delta(\zeta, \vartheta, \mu)),$ (4.1) where

$$
\Delta(\zeta, \vartheta, \mu) = \max \quad S(\zeta, \zeta, \vartheta), S(\vartheta, \vartheta, \mu), S(\mu, \mu, \zeta), \quad \frac{S(\zeta, \zeta, \vartheta)S(\vartheta, \vartheta, \mu)}{\cdots}, \n1 + S(\zeta, \zeta, \vartheta)S(\vartheta, \vartheta, \mu) \n\frac{S(\vartheta, \vartheta, \mu)S(\mu, \mu, \zeta)}{1 + S(\vartheta, \vartheta, \mu)S(\mu, \mu, \zeta)} \n\tag{4.2}
$$

and $B = C = X$, then $\vartheta = T\zeta$, $\vartheta^* = T\vartheta$, and $\nu = T\mu$. That is, $\vartheta^* = T^2\zeta$. Therefore, if in Theorem 3.5 wetake B $= C = X$, we deduce the following recent result.

Theorem 4.1. Let B be non-empty subsets of an S-M space (X, S) such that (B, S) be a complete S-Mspace *and* B_0 *be non-empty set.* B *is approximatively compact with respect to* B.

- *1.* T *is a generalized rational αs*−*Proximal contraction mapping.*
- *2. There exists* $\zeta_0 \in B$ *such that* $\alpha_s(\zeta_0, \zeta_1, T\zeta_1) \geq 1$ *.*
- *3.* T *is continuous.*

Then T has a fixed point $\rho \in B$, and T is a Picard operator, that is, $\{T^n \zeta_0\}$ converges to a.

Theorem 4.2. Let B be non-empty subsets of an S-M space (X, S) such that (B, S) be a complete S-Mspace *and* B_0 *be non-empty set.* B *is approximatively compact with respect to* B.

- *1.* T *is a generalized rational αs*−*Proximal contraction mapping.*
- *2. There exists* $\zeta_0 \in B$ *such that* $\alpha_s(\zeta_0, \zeta_1, T\zeta_1) \geq 1$ *.* **3.** *T is continuous.*
- *3.* T *is continuous.*
- 4. If $\{\zeta_i\}$ is a sequence in B such that $\alpha_s(\zeta_i,\zeta_{i+1},\zeta_{i+1}) \geq 1$ for all $l \in \mathbb{N} \cup \{0\}$ and $\zeta_l \to \rho \in \mathbb{B}$ as
- $l \to +\infty$, then there exists a subsequence $\{\zeta_{m_l}\}$ of $\{\zeta_n\}$ such that $\alpha_s(\zeta_{m_l}, \varrho, \varrho) \ge 1$ for all k.

Then T has a fixed point $\varrho \in B$, and T is a Picard operator, that is, $\{T^n \zeta_0\}$ converges to a.

References

[1] Abdeljwad, T. Meir–Keeler *α*−contractive fixed and common fixed point theorems. Fixed Point The- ory Appl. 2013, 19(2013)

[2] Alghamdi, M. A., and Karapınar, E. G-*β* − *ψ*− contractive-type mappings and related fixed point theorems. Journal of Inequalities and Applications, 2013(1), 1-16.

[3] Ansari, A.H., Changdok, S., Hussain, N., Mustafa, Z., Jaradat, M.M.M. Some common fixed point theorems for weakly *α*−admissible pairs in G-metric spaces with auxiliary functions. J. Math. Anal. 8(3), 80–107 (2017)

[4] Arshad, M., Hussain, A., Azam, A. Fixed point of *α*−geraghaty contraction with application. UPB Sci. Bull., Ser. A 78(2),67–78 (2016)

[5] Cho, S., Bae, J., Karapinar, E. Fixed point theorems of *α*−geraghaty contraction type in metric space. Fixed Point Theory Appl. 2013, 329 (2013)

[6] Fan, K. Extensions of two fixed point theorems of FE Browder. Mathematische zeitschrift, 112(3),(1969). 234-240.

[7] Hieu, N. T., Thanh Ly, N. T., and Dung, N. V. A generalization of Ciric quasi-contractions for mapson S-M spaces. Thai Journal of Mathematics, 13(2), (2014).369-380.

[8] Hussain, N., Kutbi, M. A., and Salimi, P. Best proximity point results for modified *α* − *ψ*−proximal rational contractions. In Abstract and Applied Analysis (Vol. 2013). Hindawi.

[9] Hussain, N., Khaleghizadeh, S., Salimi, P. and Abdou, A. A. A new approach to fixed point results in triangular intuitionistic fuzzy metric spaces. In Abstract and Applied Analysis (Vol. 2014). Hindawi.

[10] Hussain, N., Parvaneh, V., Golkarmanesh, F.: Coupled and tripled coincidence point results under(F, g)-invariant sets in G_b −metric spaces and $G - \alpha$ −admissible mappings. Math. Sci. 9, 11–26 (2015)

[11] Jleli, M., and Samet, B. Best proximity points for *α* − *ψ*−-proximal contractive type mappings and applications. Bulletin des Sciences Mathématiques, 137(8),(2013). 977-995.

[12] Karapinar, E., Kumam, P., Salimi, P. On *α* − *ψ*−Meir–Keeler contractive mappings. Fixed Point Theory Appl. 2013, 94(2013)

[13] Mongkolkeha, C., Cho, Y. J., and Kumam, P. Best proximity points for Geraghty's proximal contraction mappings. Fixed Point Theory and Applications, 2013(1), 1-17.

[14] Mustafa, Z., and Sims, B. A new approach to generalized metric spaces. Journal of Nonlinear and convex Analysis, 7(2), (2006) 289.

[15] Nantadilok, J. Best proximity point results in S-M spaces. International Journal of Mathematical Analysis, 10(27), (2016). 1333-1346.

[16] Ningthoujam, P., Yumnam, R., Thounaojam, S.,]and Stojan, R. Some remarks on *α*−admissibility in S-M spaces. Journal of Inequalities and Applications, 2022(1).

[17] Salimi, P., Latif, A., Hussain, N. Modified *α*− *ψ*−contractive mappings with applications. Fixed Point Theory Appl. 2013,151 (2013)

[18] Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for *α*−*ψ*−contractive type mappings. Nonlinear Anal. 75,2154–2165 (2012)

[19] Sedghi, S., Shobe, N., Aliouche, A. A generalization of fixed point theorems in S-M spaces. Mat. Vesn. 64(3),258–266 (2012)

[20] Sedghi, S., Shobe, N., and Zhou, H. (2007). A common fixed point theorem in-metric spaces. Fixed point theory and Applications, 2007, 1-13.

[21] Zhou, M., Liu, X.L., Radenovi c, S. S −*γ* − *ϕ* − *ψ*−contractive type mappings in S-M spaces. J.Nonlinear Sci. Appl. 10,1613–1639 (2017)