International Journal of Machine Design and Manufacturing

HOME **ABOUT LOGIN REGISTER SEARCH CURRENT ARCHIVES ANNOUNCEMENTS EDITORIAL BOARD JOURNALSPUB** HOME PAGE PUBLICATION ETHICS & MALPRACTICE STATEMENT

Home > Vol 8, No 2 (2022) > Pravinbhai

Open Access Subscription or Fee Access

Technical review on study of Mechanical properties of component using FDM technique in 3D Printing

Makwana Niraj Pravinbhai, Shivang S. Jani, Keyur V. Parmar

Abstract

One of the famous Additive Manufacturing methods for a range of application is

Modelling (FDM). Fused Deposition Modelling (FDM) is a method for building three-dimensional

geometries layer by layer. The FDM technology, also known as fused deposition modelling, is reasonably

priced, safe for the environment, and appropriate for complicated geometries. Minimize waste of material;

enhance component density and decrease prices are all aims. This article provides a detailed examination

of the variables that directly impact mechanical qualities of components made using the Fused Deposition

Modelling (FDM) technology, such as tensile strength, compressive strength, and bending strength. A

review like this one can help researchers in a related subject choose the optimum optimization method

since component density affects a material's mechanical strength. According to research conducted by a

number of academics, it is crucial to study the mechanical characteristics of materials with various densities.

Keywords

Additive Manufacturing, Fused Deposition Modelling, Mechanical Properties, Density

Full Text:

PDF 🛅

References

Rishi Kumar & Himanshu Sharma, A Comparative Study on the Life Cycle Assessment of a 3D

Printed Product with PLA, ABS & PETG Materials, Procedia CIRP 107 (2022) 15-20

OPEN JOURNAL SYSTEMS

Journal Help

SUBSCRIPTION

Login to verify subscription

USER

Username Password

Remember me

Login

NOTIFICATIONS

- View
- Subscribe

JOURNAL CONTENT

Search		
Search So	оре	
All	~	
Search		

Browse

- By Issue
- By Author
- By Title
- Other Journals

FONT SIZE

INFORMATION

- For Readers
- For Authors
- For Librarians

CURRENT ISSUE

S.M. Fijul Kabir & Kavita Mathur, A critical review on 3D printed continuous fiberreinforced

composites: history, mechanism, materials and properties, (2019) Published by Elsevier, S0263-

(19)32270-6

Pavan Kumar Penumakala & Jose Santo, A critical review on the fused deposition modeling of

thermoplastic polymer composites, 1359-8368/© (2020) Elsevier Ltd

Li Yuan & Songlin Ding, Additive Manufacturing technology for porous metal implant

applications and triple minimal surface structures: A review, Bioactive Materials 4 (2019) 56–70

Carla M. Ferreira & Carlos M.S. Vicente, Characterization of 3D printed ABS specimens under

static and cyclic torsional loadings, Procedia Structural Integrity 34 (2021) 205–210

F. Saenz & C. Otarola, Influence of 3D printing settings on mechanical properties of ABS at room

temperature and 77 K, Published by Elsevier, Additive Manufacturing 39 (2021) 101841

Sunpreet Singh & Seeram Ramakrishna, Material issues in Additive Manufacturing: A review,

published by Elsevier Ltd, Journal of Manufacturing Processes 25 (2017) 185-200

Rahul Roy & Abhijit Mukhopadhyay, Tribological studies of 3D printed ABS and PLA plastic

parts, 2214-7853 (2020) Elsevier Ltd

Daniel Foltut & Estera Valean, The influence of temperature on mechanical properties of 3D

printed and injection molded ABS, 2214-7853/Copyright (2023) Elsevier Ltd

Chamil Abeykoon & Pimpisut Sri-Amphorn, Optimization of fused deposition modeling

parameters for improved PLA and ABS 3D printed structures, Production and hosting by

Elsevier, International Journal of Lightweight Materials and Manufacture 3 (2020) 284e297.

Lei Zhang & Guojing Yang, Three-dimensional (3D) Printed Scaffold and Material Selection for

Bone Repair, Acta Biomaterialia (2018) S1742-7061 (18) 30702-5

Ans Al Rashid & Shoukat Alim Khan, Additive Manufacturing: Technology, applications,

markets, and opportunities for the built environment, Published by Elsevier, Automation in

Construction 118 (2020) 103268

Nurul Husna Mohd Yusoff & Chien Hwa Chong, Optimization strategies and emerging

application of functionalized 3D-printed materials in water treatment: A review, Published by

Elsevier, Journal of Water Process Engineering 51 (2023) 103410

Leipeng Yang & Shujuan Li, Experimental Investigations for Optimizing the $\mbox{\it Extrusion}$

Parameters on FDM PLA Printed Parts, Journal of Materials Engineering and Performance,

(2018) 1059-9495

Alexander Paolini & Stefan Kollmannsberger, Additive Manufacturing in construction: A review

on processes, applications, and digital planning methods, Published by Elsevier, (2019) 100894

Yubo Tao & Fangong Kong, A review on voids of 3D printed parts by fused filament fabrication,

journal of materials research and technology (2021);15:4860e4879

M. Manoj Prabhakar & A.K. Saravanan, A short review on 3D printing methods, process

parameters and materials, 2214-7853, (2020) Elsevier Ltd

Junior Nomani & Daniel Wilson, Effect of layer thickness and cross-section geometry on the

tensile and compression properties of 3D printed ABS, (2019) Published by Elsevier, S2352-

(19)30078-9

John Ryan C. Dizon & Alejandro H. Espera Jr, Mechanical characterization of 3D-printed

polymers, published by Elsevier, Additive Manufacturing 20 (2018) 44-67

Manav Doshi & Ameya Mahale, Printing parameters and materials affecting mechanical

properties of FDM-3D printed Parts: Perspective and prospects, published by Elsevier, Materials

Mechanical Properties niraj makwana

Mechanical properties (2018) 1-10 © STM Journals2013. All RightsPage 7

Today: Proceedings 50 (2022) 2269-2275

Website

https://3dprinterchat.com/fdm-is-short-for-fused-deposition-modeling/

Refbacks

· There are currently no refbacks.