Open Packing Number of Triangular Snakes

S.K.Vaidya

(Department of Mathematics, Saurashtra University, Rajkot-360 005, Gujarat, India)

A.D.Parmar

(Atmiya Institute of Technology and Science for Diploma Studies, Rajkot-360 005, Gujarat, India)

E-mail: samirkvaidya@yahoo.co.in, anil.parmar1604@gmail.com

Abstract: A set $S \subseteq V(G)$ of vertices in a graph G is called a packing of G if the closed neighborhood of the vertices of S are pairwise disjoint in G. A subset S of V(G) is called an open packing of G if the open neighborhood of the vertices of S are pairwise disjoint in G. We have investigated exact value of these parameters for triangular snakes.

Key Words: Neighborhood, packing, Smarandache *k*-packing, open packing. AMS(2010): 05C70.

§1. Introduction

We begin with the finite, connected and undirected graph G = (V(G), E(G)) without multiple edges and loops. For a vertex $v \in V(G)$, the open neighborhood N(v) of v is defined as $N(v) = \{u \in V(G)/uv \in E(G)\}$ and the closed neighborhood $N[v] = \{v\} \cup N(v)$. We denote the degree of a vertex $v \in V(G)$ in a graph G by $d_G(v)$. The minimum degree among the vertices of G is denoted by $\delta(G)$ and the maximum degree among the vertices of G is denoted by $\Delta(G)$. For any real number n, $\lfloor n \rfloor$ denotes the greatest integer not greater than that n and $\lceil n \rceil$ denotes the smallest integer not less than that n. For the various graph theoretic notations and terminology, we follows West [8] and Haynes et al. [3].

Definition 1.1 The triangular snake T_n is obtained from the path P_n by replacing every edge of a path by a triangle C_3 .

Definition 1.2 An alternate triangular snake AT_n is obtained from a path P_n with vertices u_1, u_2, \dots, u_n by joining u_i and u_{i+1} (alternately) to a new vertex v_i . That is every alternate edge of a path is replaced by C_3 .

Definition 1.3 The double triangular snake $D(T_n)$ is obtained from a path P_n with vertices v_1, v_2, \dots, v_n by joining v_i and v_{i+1} to a new vertex w_i for $i = 1, 2, \dots, n-1$ and to a new vertex u_i for $i = 1, 2, \dots, n-1$.

Definition 1.4 A double alternate triangular snake $D(AT_n)$ consists of two alternate triangular snakes which have a common path.

¹Received November 21, 2018, Accepted June 3, 2019.

A packing of a graph G is a set of vertices whose closed neighborhoods are pairwise disjoint. Generally, a Smarandache k-packing of a graph G is a set of vertices whose closed neighborhoods intersect just in k vertices, and disjoint if k = 0. Equivalently, a packing of a graph G is a set of vertices whose elements are pairwise at distance at least 3 apart in G. The maximum cardinality of a packing set of G is called the packing number and it is denoted by $\rho(G)$. This concept was introduced by Biggs [1].

A subset S of V(G) is an open packing of G if the open neighborhoods of the vertices of S are pairwise disjoint in G. The maximum cardinality of an open packing set is called the open packing number and is denoted by ρ° . This concept was introduced by Henning and Slater [5]. A brief account of on open packing and its related concepts can be found in [2,4,6,7]. In the present paper, we obtain the packing and open packing number of various snakes.

§2. Main Results

Theorem 2.1 For $n \ge 3$, $\rho(G) = \left\lceil \frac{n}{3} \right\rceil$, where G is triangular snake T_n and double triangular snake $D(T_n)$.

Proof The triangular snake T_n is obtained from a path P_n with vertices v_1, v_2, \dots, v_n by joining v_i and v_{i+1} to a new vertex w_i for $i = 1, 2, 3, \dots, n-1$ while to construct double triangular snake $D(T_n)$ from a path P_n with vertices v_1, v_2, \dots, v_n by joining v_i and v_{i+1} to a new vertex w_i for $i = 1, 2, 3, \dots, n-1$ and to a new vertex u_i for $i = 1, 2, \dots, n-1$.

If S is any packing set of G then it is obvious that v_1 must in S as $d_G(v_1) = 2 = \delta(G)$.

We construct a set S of vertices as follows:

$$S = \left\{ v_{3i+1}/0 \le i \le \left\lceil \frac{n}{3} \right\rceil - 1 \right\}$$

Then $|S| = \left\lceil \frac{n}{3} \right\rceil$. Moreover S is a packing set of G as $N[v] \cap N[u] \neq \phi$ for all $v, u \in S$. For any $w \in V(G) - S$, $N[v] \cap N[w] \neq \phi$ and $N[u] \cap N[w] \neq \phi$. Thus, S is a maximal packing set of G. Therefore any superset containing the vertices greater than that of |S| can not be a packing set of G. Hence

$$\rho(G) = \left\lceil \frac{n}{3} \right\rceil.$$

Theorem 2.2 For $n \ge 3$, $\rho^{\circ}(G) = \left\lceil \frac{n}{3} \right\rceil$, where G is triangular snake T_n and double triangular snake $D(T_n)$.

Proof The triangular snake T_n is obtained from a path P_n with vertices v_1, v_2, \dots, v_n by joining v_i and v_{i+1} to a new vertex w_i for $i = 1, 2, 3, \dots, n-1$ while to construct double triangular snake $D(T_n)$ from a path P_n with vertices v_1, v_2, \dots, v_n by joining v_i and v_{i+1} to a new vertex w_i for $i = 1, 2, 3, \dots, n-1$ while $v_i + 1$ to a new vertex w_i for $i = 1, 2, 3, \dots, n-1$ and to a new vertex u_i for $i = 1, 2, \dots, n-1$.

If S is any open packing set of G then it is obvious that v_1 must in S as $d_G(v_1) = 2 = \delta(G)$. We construct a set S of vertices as follows:

$$S = \left\{ v_{3i+1}/0 \le i \le \left\lceil \frac{n}{3} \right\rceil - 1 \right\}$$

Then $|S| = \left\lceil \frac{n}{3} \right\rceil$. Moreover S is an open packing set of G as $N(v) \cap N(u) \neq \phi$ for all $v, u \in S$. For any $w \in V(G) - S$, $N(v) \cap N(w) \neq \phi$ and $N(u) \cap N(w) \neq \phi$. Thus, S is a maximal open packing set of G. Therefore any superset containing the vertices greater than that of |S| can not be an open packing set

of G. Hence

$$\rho^{o}(G) = \left\lceil \frac{n}{3} \right\rceil.$$

Illustration 2.3 The graph T_7 and its packing number and open packing number are shown Figure 1 while the graph $D(T_7)$ and its packing number and open packing number are shown in Figure 2.

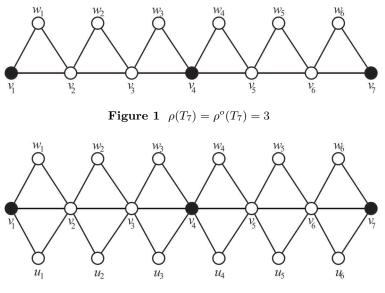


Figure 2 $\rho(D(T_7)) = \rho^o(D(T_7)) = 3$

Theorem 2.4 For n > 3, $\rho(G) = \left\lceil \frac{n}{3} \right\rceil$, where G is alternate triangular snake AT_n and double alternate triangular snake $D(AT_n)$.

Proof An alternate triangular snake AT_n is obtained from a path P_n with vertices v_1, v_2, \dots, v_n by joining v_i and v_{i+1} (alternately) to a new vertex w_i , $i = 1, 2, \dots, n-1$ while to construct a double alternate triangular snake $D(AT_n)$ from a path P_n with vertices v_1, v_2, \dots, v_n by joining v_i and v_{i+1} (alternately) to a new vertex w_i , $i = 1, 2, \dots, n-1$ and to a new vertex u_i for $i = 1, 2, \dots, n-1$.

If S is any packing set of G then it is obvious that v_1 must in S as

$$d_G(v_1) = \delta(G) = \begin{cases} 1, & \text{if } n \text{ is odd,} \\ 2, & \text{if } n \text{ is even.} \end{cases}$$

We construct a set S of vertices as follows:

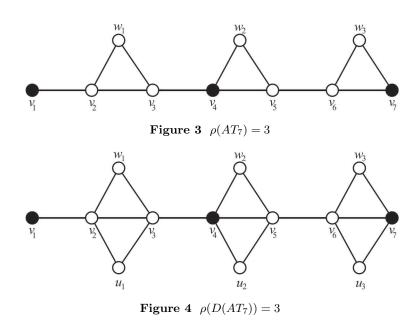
$$S = \left\{ v_{3i+1}/0 \le i \le \left\lceil \frac{n}{3} \right\rceil - 1 \right\}$$

Then $|S| = \left\lceil \frac{n}{3} \right\rceil$. Moreover S is a packing set of G as $N[v] \cap N[u] \neq \phi$ for all $v, u \in S$. For any $w \in V(G) - S$, $N[v] \cap N[w] \neq \phi$ and $N[u] \cap N[w] \neq \phi$. Thus, S is a maximal packing set of G. Therefore any superset containing the vertices greater than that of |S| can not be a packing set of G. Hence

$$\rho(G) = \left\lceil \frac{n}{3} \right\rceil.$$

Illustration 2.5 The graph AT_7 and its packing number is shown Figure 3 while the graph $D(AT_7)$

and its packing number is shown in Figure 4.



Theorem 2.6 For n > 3, $\rho^{o}(G) = \left\lceil \frac{n}{2} \right\rceil$, where G is alternate triangular snake AT_n and double alternate triangular snake $D(AT_n)$.

Proof An alternate triangular snake AT_n is obtained from a path P_n with vertices v_1, v_2, \dots, v_n by joining v_i and v_{i+1} (alternately) to a new vertex w_i , $i = 1, 2, \dots, n-1$ while to construct a double alternate triangular snake $D(AT_n)$ from a path P_n with vertices v_1, v_2, \dots, v_n by joining v_i and v_{i+1} (alternately) to a new vertex w_i , $i = 1, 2, \dots, n-1$ and to a new vertex u_i for $i = 1, 2, \dots, n-1$.

If S is any open packing set of G then it is obvious that v_1 must in S as

$$d_G(v_1) = \delta(G) = \begin{cases} 1, & \text{if } n \text{ is odd,} \\ 2, & \text{if } n \text{ is even.} \end{cases}$$

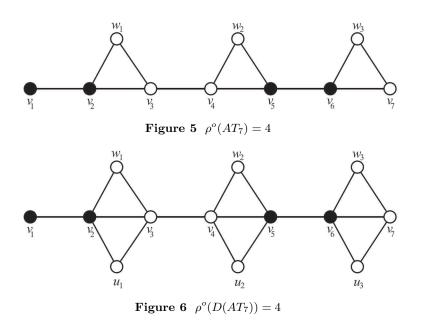
We construct a set S of vertices as follows:

$$S = \begin{cases} \left\{ v_{4i+1}, v_{4i+2}/0 \le i \le \left\lceil \frac{n}{5} \right\rceil \right\} & \text{for } n \text{ is odd} \\ \\ \left\{ v_{4i+2}, v_{4i+3}/0 \le i \le \left\lfloor \frac{n}{5} \right\rfloor \right\} & \text{for } n \text{ is odd} \end{cases}$$

Then $|S| = \left\lceil \frac{n}{2} \right\rceil$. Moreover S is an open packing set of G as $N(v) \cap N(u) \neq \phi$ for all $v, u \in S$. For any $w \in V(G) - S$, $N(v) \cap N(w) \neq \phi$ and $N(u) \cap N(w) \neq \phi$. Thus, S is a maximal open packing set of G. Therefore any superset containing the vertices greater than that of |S| can not be an open packing set of G. Hence

$$\rho^{o}(G) = \left\lceil \frac{n}{3} \right\rceil.$$

Illustration 2.7 The graph AT_7 and its open packing number is shown Figure 5 while the graph $D(AT_7)$ and its open packing number is shown in Figure 6.



§3. Concluding Remarks

The concept of packing number relates three important graph parameters - neighborhood of a vertex, adjacency between two vertices and domination in graphs. We have investigated packing and open packing numbers of triangular snakes.

Acknowledgment

The authors are highly indebted to the anonymous referee for constructive suggestions on the first draft of this paper.

References

- [1] N.Biggs, Perfect codes in graphs, J. Combin. Theory, B(15)(1973), 289 296.
- [2] I.S.Hamid, S.Saravanakumar, Packing parameters in graphs, *Discussiones Mathematicae*, 35(2015), 5-16.
- [3] T.W.Haynes, S.T.Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, 1998.
- [4] M.A.Henning, D.Rautenbach, P.M.Schfer, Open packing, total domination, and the P₃-Radon number, *Discrete Mathematics*, 313(2013), 992 - 998.
- [5] M.A.Henning, P.J.Slater, Open packing in graphs, JCMCC, 29(1999), 3 16.
- [6] S.K.Vaidya, A.D.Parmar, Some new results on total equitable domination in graphs, *Journal of Computational Mathematica*, 1(2017), No. 1, 98-103.
- [7] S.K.Vaidya, A.D.Parmar, Open packing number of some path related graphs, Journal of Applied Science and Computations, VI(V)(2019), 180-184.
- [8] D. B. West, Introduction to Graph Theory, Prentice Hall, 2003.