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Chapter 2 

Literature Review 

In this section different research publications related to study are arranged according 

to its logical flow of study. 

 

2.1 Online Coding Platform for Learner 

Online coding environments are now an essential component in the programming 

education process, which gives students flexibility to code, debug, and receive feedback 

remotely. Abbeel and Ng (2004) conceptually established adaptive systems when they 

introduced apprenticeship learning via inverse reinforcement learning, thereby enabling 

platforms to mimic expert behavior [1]. Cedazo et al. (2015) presents an online C 

compiler with integrated self-assessment features intended to improve outcomes in 

programming education. It allows students to black-box test their software 

functionalities, thus permitting them to test their own code independently and receive 

feedback in the form of error messages and hints. This increases participation because 

the process of debugging is more engaging. Scalability is cited as an advantage, and 

this is relevant for large classrooms. Use of adaptive assessments identifies common 

patterns of error among students. Their methodology included empirical testing on 

students at the level of university and demonstrated substantial improvements in 

debugging and comprehension. This paper limits their handling of extremely complex 

code but has provisions for the next version and needs visualization tools that support 

the process of tracking error. This research provides a foundational approach to 

developing scalable and interactive programming environments, thus directly 

applicable to online education systems [2].  

 

Das et al. (2016) introduce Prutor, a cloud-based programming tutor that addresses the 

problems of large-scale programming education. Prutor collects real-time data on 

student submissions and provides targeted feedback based on individual performance. 

The platform is ascendable which makes it possible for instructors to handle large 

numbers of submissions effectively. The study involves an assessment of Prutor on the 

students' learning outcome, and it has greatly improved their comprehension and 

debugging skills. The interactive interface provided by the prutor helps learners to find 
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and fix programming mistakes without help from the instructor. The authors note that 

the incorporation of machine learning to predict common error patterns is critical. 

Ambiguity in code submission or overly complex submissions are some of the 

limitations the authors acknowledged with future solutions in mind. Prutor stands as an 

excellent example of adaptive and scalable programming education tools [3]. 

 

Gupta et al. (2017) introduces, an AI-powered system DeepFix that automatically 

repairs common syntax and logical errors in the C programming code. Through deep 

learning models, these authors analyzed and corrected coding errors, which reduced 

debugging times for novice programmers. DeepFix is equipped with explainable 

feedback mechanisms that guide learners into their mistakes, creating even deeper 

understanding. This was demonstrated by the testing of this system on a dataset 

comprising students' submissions of programmed solutions, indicating high precision 

in error detection and correction. Some other challenges arising with ambiguous code 

were successfully overcome using hierarchical models. This research therefore points 

towards an integration with AI where it would greatly reduce frustrations of students 

about programming subjects, hence bringing retention. Repetitive debugging has been 

automated for DeepFix so that lecturers do more conceptual teaching. This is one of the 

pioneer works applying deep learning techniques in the programming education context 

[4].  

 

Rivers and Koedinger (2015) addresses the area of self-improving Python tutor in 

student interaction data generating contextual hints. This system recommends with 

dynamics based on a change in student performance that has proven to offer customized 

learning for students. Through demonstrations, the authors exhibited the potential of 

improving solving tasks as complex as simple step breakdowns. The students using the 

tutor achieved much higher retention and understanding in comparison with traditional 

approaches. Scalable adaptive systems offer an approach to fulfilling diversified learner 

needs. There remain some integration difficulties when introducing the tutor into other 

languages. The study further proposed future work in terms of extending the 

adaptability of the tutor and the feature of peer learning. This system is a great example 

of how data-driven feedback can be used in the practical implementation of 

programming education [5]. Nguyen et al. (2014) introduces Codewebs: a scalable 
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system that makes collaborative learning in programming easy by enabling students to 

find similar coding solutions. The method employed by Codewebs to improve error 

correction and task understanding in students is search-based. The authors present a 

semantic matching framework that will allow the detection of coding patterns and, 

hence, facilitate the overcoming of misconceptions by the learner. A user-friendly 

interface for the system motivates students to find alternative solutions and helps 

inculcate a collaborative problem-solving culture. Additionally, the authors conducted 

a massive evaluation, showing that considerable benefits accrue to students in terms of 

performance and engagement. Efficient indexing algorithms ensured scalability and 

faster processing. By bridging the gap between individualized learning and 

collaborative approaches, Codewebs offers a novel model for online programming 

education. This research forms an important foundation for future systems that will 

balance autonomy with peer collaboration [6]. Liao et al. (2016) developed a selective 

syntactic compiler for delivering personalized error feedback tailored to promote 

engagement and learnability effects. Novice programmers experience different kinds of 

difficulties, including debugging and conceptual confusion difficulties [7]. 

 

Robins (2019) presents these issues with an orientation toward direction that should be 

addressed through an articulated sequence of learning [8]. Piech et al. (2012) proposes 

a machine learning-based approach for modeling student learning trajectories over 

programming assignments. Applying Hidden Markov Models, the authors graphically 

instantiated the student development pathways and uncovered patterns that best predict 

subsequent performance. This study proved that temporal developmental data better 

predicts learning success than the final grades obtained. This strategy supports early 

intervention by categorizing students into performance-based groups, allowing teachers 

to have actionable insights about how students are progressing [9]. Sukanya and Albert 

(2023) proposed new approaches to isolate novice-specific errors in support of early 

learners [10]. 

 

2.2 Security Concerns in Remote Code Execution 

The main threats are security issues relating to remote code execution. Alhothali et al. 

(2022) reviews vulnerabilities in RCE systems, especially on educational platforms. 

The authors identified main risk factors: weak mechanisms of isolation and improper 
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handling of sessions. To prevent such risks, the paper proposed robust sandboxing 

techniques that isolate user sessions from unauthorized access. The evaluation 

demonstrated the effectiveness of these techniques in reducing attack vectors. 

Challenges such as maintaining performance under heavy usage were also addressed. 

The research focuses on integrating advanced security protocols for the protection of 

online learning platforms. This work is specifically relevant in designing secure, 

scalable environments for programming education [11]. Devi et al. (2011) suggested 

the technique of sandboxing that ensures isolation in the containment of the untrusted 

code to ensure secure environments [12]. Liao et al. (2019) presents the lightweight 

machine learning methodology used to forecast low-performing students early in the 

term using clicker data from Peer Instruction courses. The researchers were able to 

achieve a 62% success rate using Support Vector Machines (SVM). The group 

demonstrates its robustness with validation across several terms and institutions. They 

emphasize the early intervention point and lightweight data collection methodologies 

that can scale to massive classes. This research would thus align with programming 

education, which calls for the need for data-driven approaches to identify those learners 

at risk [13]. 

  

Kim et al. (2020) addresses security concerns in online coding platforms using 

compiler-assisted encryption techniques. The authors proposed a framework that 

prevents remote code execution to include a check for security in the path of execution. 

Their core work is real-time user submission analysis since it uses a combination of 

static and dynamic monitoring, thus including the two methodologies to provide 

assurance at all levels. Major improvements in detection and mitigation of various 

security risks were noticed on such a large dataset. Scalability for very large datasets 

and addressing sophisticated attack vectors are challenges. This research sets a 

precedent for incorporating security measures into online programming environments, 

making safe learning spaces for students [14]. 

 

Murpy et al. (2009) suggested Retina, which is a detection tool that analyzes suspicious 

student submissions to ensure safety and integrity of academics and systems [15]. Li et 

al. (2020) has also proposed an illustration of applying deep learning models to identify 

and mitigate RCE attacks in real-time by providing AI-based security solutions for 
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online platforms [16]. Restrepo-Calle et al. (2018) also came up with an interactive 

learning and automated assessment of programming skills in the form of UNCode. It 

offers both summative and formative feedback through automated grading tools. 

Summative feedback grades the programming solutions on syntax, semantics, and 

efficiency. The formative feedback provides explanations of errors and hints. This 

system solves the problem of manual evaluation that takes a lot of time and is not 

consistent. It uses static and dynamic analysis to evaluate code functionality and 

behavior. UNCode was built mainly for engineering students but supports iterative 

learning where students may perfect solutions based on feedback provided. The paper 

gives out its effectiveness in developing engagement and skills in the learners [17]. 

 

2.3 Collecting Learners’ Programming Data 

The backbone of the adaptive programming education system is the collection of 

learner data and its subsequent analyses. According to Ala-Mutka (2005), there is a 

need to collect and analyze granular information such as the kind of errors, times to 

perform tasks, and submission history to feed into the predictive model [18]. Ihantola 

et al. (2015) reviewed preprocessing techniques for educational data mining by putting 

emphasis on how structured and clean data was more probable to extract meaningful 

ideas [19]. Watson et al. (2013) focus on logging students' interactions in programming 

tasks to determine performance trends and learning difficulties. The authors proposed 

a framework for log data collection and analysis revealing insights into common errors 

and task completion strategies. Their findings indicate that logged data can inform 

predictive models to allow educators to intervene at the right time. They covered issues 

like data privacy and processing of massive logs. The research identifies the need for 

data gathering with detail in programming education [20]. 

 

Denny et al. (2012) categorized syntax errors to determine novice programmers' issues 

and create automated feedback systems [21]. Bilegjargal and Hsueh (2021) analyzed 

the adoption and efficacy of online judge systems in programming education. The 

authors used structural equation modeling to analyze the attitudes students have toward 

features such as real-time feedback, error analysis, and task recommendation. The 

results showed learners who used online judge systems improved their problem-solving 

skill and reduced debugging time significantly. The study also outlined the importance 
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of user interfaces in enhancing student engagement. Challenges such as system 

scalability and accuracy of data logging were identified, along with recommendations 

for future improvements. This study displays the importance of having such systems in 

adaptive learning [22]. Ghosh et al. (2024) used computational thinking in visual 

programming with task-specific data to customize pathways for novice learners [23]. 

 

2.4 Feature Engineering on Dataset 

Feature engineering is one of the major steps in transforming raw learner data into 

actionable inputs for machine learning models. According to Rivers and Koedinger 

(2015), some of the significant features that were added to the models included error 

patterns, task complexity, and time spent on a particular task that would signify student 

success [5]. Liao et al. (2016) presented lightweight feature selection methods in order 

to optimize the performance of the model while not compromising the interpretability 

[7]. Lin et al. (2019) utilized dimensionality reduction techniques like PCA to manage 

high-dimensional data, losing less information but increasing computational efficiency 

[24]. Yadav and Pal (2012) explore data mining techniques in predicting the academic 

performance of engineering students. The authors used classification algorithms such 

as Decision Trees and Naive Bayes to identify at-risk students. Through historical 

performance metrics and grades, the study discovered some important predictors of 

academic success; attendance and prior coursework stand out as predictors. The 

findings have improved intervention timing, so that educators can start to assist students 

earlier if they are having trouble in the class. This paper provides a basis for using data-

driven techniques to enhance the teaching process, especially for technical courses like 

programming [25]. 

 

Gupta et al. (2017) demonstrated how deep learning models can automatically extract 

meaningful features from complex programming datasets for enhancing the accuracy 

of prediction [4]. Shen et al. (2022) focuses on the use of profiling techniques for 

predicting programming performance, relying on granular data such as error patterns 

and task completion times. The authors developed a machine learning model that 

achieved high accuracy in identifying at-risk learners. Their system also gave 

personalized suggestions to assist students in overcoming obstacles. The paper 

highlights the following limitations: The datasets are small, which calls for larger 
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datasets to increase model generalizability. This research underlines the need for early 

interventions in programming education to improve learning outcomes. This work is a 

good contribution to the field of predictive analytics in education [26]. Marjan et al. 

(2021) designed feature engineering techniques specific to programming education, 

which capture domain-specific nuances well [27]. 

 

2.5 Applying Different Machine Learning Algorithms 

Sharma and Harkishan (2022) proposed an intelligent tutoring system for programming 

education incorporating real-time feedback and adaptive learning pathways. The 

authors utilized machine learning algorithms in the analysis of student interactions and 

the prediction of trends of performance, thus recommending personal tasks. The results 

showed considerable improvements in engagement and retention rates among students. 

The scalability and adaptability of the system were identified as some of its strengths 

and facilitated its use in diverse educational settings. Some of the discussed challenges 

include integrating cross-platform support, with ideas on future work. The work thus 

makes a compelling argument for the inclusion of intelligent systems in programming 

education [28]. Modi et al. (2024) demonstrate diversity in machine learning models 

was extensive, including K-Nearest Neighbors (KNN), Decision Trees, Logistic 

Regression, XGBoost, Random Forest, and Deep Neural Networks (DNN). These 

models suggest that Random Forest and XGBoost outperform, as they handle noise in 

the data quite well and could capture the more intricate patterns existing in the data. 

That is why the ensemble learning methodology is so robust. With this regard, ensemble 

models can therefore address the complexity and variability held in novice 

programming datasets, while maintaining high accuracy in modeling learning behavior 

[29]. 

 

Breiman (2001) is one of the earlier innovators of introducing robust ensemble methods 

commonly used in educational data mining, including Random Forest [30]. Buenaño-

Fernández et al. (2019) uses ensemble learning techniques, such as Random Forest and 

Gradient Boosting, to predict performance in programming. It further showed how the 

application of multiple algorithms enhances accuracy in prediction and robustness in 

prediction. The method is based on the large amount of student submissions and 

attempts to identify trends of performances. The study therefore demonstrated how 
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ensemble methods can handle noisy high dimensional data. Challenges would lie in the 

computational overhead incurred in training ensemble models in large datasets. Such 

studies demonstrate the effectiveness of using ensemble methods in establishing sound 

educational analytics systems [31]. 

 

Chen and Guestrin (2016) presents XGBoost, which is an optimized gradient boosting 

algorithm that has become the benchmark in predictive modeling. The authors have 

pointed out its scalability to handle sparse and high-dimensional data and its suitability 

for educational data mining. The evaluation proved significant performance 

improvement over traditional boosting methods with applications that range from 

predicting student performance to adaptive task recommendations. The interpretability 

features of feature importance scores make XGBoost very useful for teaching. The 

paper ends by mentioning possible extensions, namely the support for deep learning 

integrations [32]. Altabrawee et al. (2019) checked the classification techniques of 

SVM and KNN in modelling student performance [33]. 

 

Wang et al. (2017) applied deep knowledge tracing for programming exercises with a 

demonstration of the necessity of sequential data analysis as it relates to learning 

performance [34]. Cabo et al. (2021) studies the application of machine learning in 

predicting the performance of engineering students in programming courses. The 

authors modeled student outcomes as decision trees and neural networks over the 

variables of time-on-task, submission frequency, and error patterns. The authors found 

that the neural networks successfully identified the at-risk students and that decision 

trees offered an interpretability benefit for instructors. Their work, too put great 

emphasis on the idea that domain-specific feature engineering played a major role for 

boosting accuracy in prediction. The authors end by calling for embedding predictive 

models within the programming education systems in order to create early intervention 

and tailored support [35]. 

 

An extensive review of different algorithms implemented in educational data mining 

over the effectiveness of those techniques in predicting student performance was well 

delivered by Alsariera et al. (2022). A comparative analysis over multiple datasets 

between supervised, unsupervised, and ensemble methods showed that ensemble-based 
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approaches such as Random Forest and Gradient Boosting are significantly more 

accurate and scalable as compared to others. According to the authors, the selection of 

a number of features was essential mainly to improve the interpretability of the model. 

Most of the issues were related to working with noisy and imbalanced datasets as well 

as possible preprocessing strategies, so the results indicate an importance of robust 

algorithms in adaptive learning environments, making the study be used as a point of 

reference for the use of ML in programming education [36]. Rokach and Maimon 

(2005) gives an exhaustive review of Decision Trees as a classifier that covers widely 

used algorithms like C4.5 and CART. The authors explain splitting criteria: Information 

Gain and Gini Index, as well as advance pruning techniques to enhance accuracy of 

trees. They note that DTs are quite simple and interpretable so suitable for educational 

applications, like predicting student performance. Challenges, such as those from 

imbalanced datasets, are discussed, and the hybrid technique is proposed in order to 

improve robustness. This is a foundational piece for feature selection and classification 

within educational data mining [37]. 

 

Gupta et al. (2019) extends reinforcement learning to programming error correction in 

terms of syntactic and logical errors. The authors designed an RL-based system that can 

automatically detect and correct errors while giving the learner explanations. The 

findings were that reinforcement learning models performed better than rule-based 

systems in adapting to the different error scenarios. Challenges involved include the 

computationally expensive cost of training RL models and their dependency on large, 

labeled datasets. The authors proposed hybrid approaches to address these issues. This 

paper highlights the autonomous systems potential for improving education in 

programming [38]. Pires et al. (2024) explores the applicability of long short-term 

memory networks to the analysis of time-related patterns in programming data. The 

authors showed in their work how LSTM can be used to predict accurately student 

performance, especially concerning sequential learning tasks. The evaluation portrayed 

how temporal models outclass their traditional foils in the capture of the learning 

trajectory and that challenges are at the computational complexity and being adjusted 

to the domain concerned. This research opens pathways in educational data mining that 

might be explored by advanced neural networks for adaptive learning systems [39]. 
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2.6 Proposed Solutions and Recommendations 

Gupta et al. (2017) stated that task recommendations must be aligned with the learner's 

profile, which is the core concept of an ensemble algorithm [4]. Rivers and Koedinger 

(2015) established the success of hint generation systems in dynamic adaptation 

according to the needs of the students, which is related to complexity-aware weighting 

[5]. Durak and Bulut (2023) review classification and prediction-based machine 

learning algorithms particularly for educational applications with the focus on 

programming education. The authors analyzed the commonly used algorithms, such as 

logistic regression, XGBoost, and Random Forest, and have shown that ensemble 

techniques are working effectively at growing accuracy and robustness for diverse 

datasets. Hybrid models combining different techniques were also indicated as 

promising for better generalizability. The authors noted that computational complexity 

and the need for large datasets were still significant barriers. Yet, the findings of the 

study highlighted the importance of algorithm optimization in adaptive learning 

systems [40]. Jokhan et al. (2022) discussed how student performance can be predicted 

using AI in higher education studies. The subject of discussion was the study 

concerning the sustainable development goals. Here, the authors used the Random 

Forest classification model for predicting performance, achieving a 97.03% accuracy 

level in just six weeks. The virtual education system improved because of the 

application of this early intervention model against the background of the COVID-19 

pandemic. The paper highlighted the potential to analyze digital interactions and use 

that information to optimize the teaching strategy, thus achieving equitable education. 

The interplay of analytics and pedagogy in the paper underlines the transformative 

impact AI has on education [41]. 

 

Gupta et al. (2019) introduce reinforcement learning in error correction systems by 

showing that adaptive algorithms could optimize a real-time experience of learning 

[38]. Shen et al. (2022) established that complexity-aware models do function to adjust 

the dynamic pathway of learning based on not only difficulty in a given task but also 

based on the learners' performance [26]. Parihar et al. (2017) created an automatic 

grading system with introductory programming courses that employs the use of 

program repair techniques. Leverage AI-based repair models and assess student 

submissions while offering detailed feedback. Methodologies enhance grading 
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efficiency, personalized guidance, and results yield substantial reductions in grading 

time without sacrificing feedback quality. The research emphasizes the great potential 

of integrating AI in automated educational assessments that aim to improve the 

scalability of programming education, such as in your project [42]. Jayasree and Asim 

(2021) Suggested predictive models for prediction of student performance in the 

context of MOOC. The authors used the regression analysis and supervised ML models, 

such as Random Forest and Gradient Boosting models, on the OULAD dataset. The 

model identified behavioral, temporal, and demographic features as some of the most 

significant predictors. The study had great accuracy, with the gradient boosting model 

performing the best in final performance predictions. By identifying high-risk students 

early, the models facilitate timely interventions. This research highlights the role of ML 

in improving student outcomes in online education [43]. 

 

Kotsiantis et al. (2004) use machine learning techniques to anticipate student's 

performances in learning environments at distances. The writers used data drawn from 

the Hellenic Open University to perform experiments and run algorithms: Naive Bayes, 

Decision Trees, and Support Vector Machines. Naive Bayes had been demonstrated to 

be particularly the most acceptable due to high accuracy scores and even a simple 

interface. As proved by these results, demographics and grades of assignment 

accurately classify student performance. This approach enables early detection of 

vulnerable learners to which tutors provide support in an appropriate way. It also calls 

upon the strength of robust techniques of machine learning for boosting distance 

education effectiveness [44]. 

 

In programming education, evaluating models of machine learning demands inclusive 

methodologies. According to Breiman (2001), the technique of using the metrics 

precision, recall, and F1-score along with the qualitative information helps to perform 

a thorough evaluation of model performance [30]. Rubio (2020) utilized trajectory 

analysis to predict novice success and provide actionable insights in the refinement of 

adaptive learning systems [45]. Liao et al. (2016) combines clicker response data and 

early-term programming assessments to predict student performance in introductory 

courses. The methodology involves the creation of predictive models capable of 

identifying struggling students by the third week of the course. This study showed 
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scalable, real-time intervention in programming education with an accuracy of up to 

70%. Moreover, it shows that interaction data with dynamic students could complement 

predictive frameworks, hence rendering it as a precious asset of adaptive learning 

systems [7]. 

 

For instance, Pires et al. (2024) presented evidence of deep models such as long short 

term memory networks that analyze sequential program data for better accuracy of 

predicting [39]. Knowledge tracing has been applied to analyze the programming 

exercise for continuous learner assessment, such as in Wang et al. (2017). These results 

present strong arguments for dynamic and adaptive systems with ensemble algorithm 

as an approach to catering for different learner needs [34]. Moonsamy et al. (2021) did 

a meta-analysis of Educational Data Mining (EDM) techniques for predicting student 

performance in programming. PRISMA methodology was used, where 11 studies are 

analyzed and it is discovered that ensemble methods such as Random Forest performed 

with the highest prediction task accuracy. The research revealed the heterogeneity of 

performance from the algorithms due to data source variability and variations in 

preprocessing techniques. Potential for EDM in early student-at-risk detection and 

timely interventions is suggested. Data inconsistencies and publication bias were other 

discussed issues with recommendations such as standardization of the dataset and 

methodologies. This meta-analysis confirms the need for EDM in dealing with multiple 

educational problems [46]. 

 

Sehaba (2020) demonstrated usage of machine learning algorithms in educational 

technology for predictive analytics toward the improvement of student learning 

outcomes. It discusses the assessment framework of student performance with the use 

of classification models, thereby laying much emphasis on data preprocessing, feature 

selection, and optimization of the algorithm. Here, different machine learning 

algorithms have been compared for predicting the student's performance based on 

effectiveness-Decision Trees, Random Forest, and Gradient Boosting. This also 

underscores feature engineering, derived attributes, ensemble learning techniques, and 

XAI techniques in model improvement. This research indicates predictive analytics is 

able to predict the risky learners as early as possible so that interventions could be given 

just in time and individual support can be provided to at-risk learners. It suggests that 
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such predictive and adaptive technologies improve the novice programming learning 

experiences [47]. Mustapha (2023) discussed advanced applications of artificial 

intelligence and machine learning in education, it seeks to focus on adaptive learning 

systems that cater to diverse needs within learners. It underlines the importance of data 

preprocessing and feature engineering for correct predictions in educational datasets 

where raw data is transformed into actionable insights. Ensemble learning methods, 

like Random Forest and Gradient Boosting, are used with the ability to deal with 

imbalanced and noisy datasets, predict student success, and identify at-risk learners at 

an early stage. The paper advocates for the use of semi-supervised learning techniques 

to deal with incomplete or sparse labels in educational data, demonstrating how they 

may provide robust predictions in resource-constrained settings. Explainable AI (XAI) 

techniques are essential to incorporate into educational systems to enable interpretable 

results, such that educators can identify what is not working and come up with 

appropriate teaching strategies. This paper contributes to the understanding of how the 

advanced AI techniques can benefit the learning experience of novice programmers and 

lead to a better educational outcome [48]. 

 

Brooks et al. (2023) explores how artificial intelligence and machine learning can be 

applied in education systems, focusing on individualized learning paths and 

sophisticated analytics. It underlines the need for AI-enabled systems to analyze learner 

behaviors, predict performance, and adaptively recommend content. Another important 

point raised by this study is that robust preprocessing of data and feature engineering 

are required to ensure educational datasets' quality and reliability. Ensemble learning 

techniques such as Random Forest and Gradient Boosting are discussed, along with 

explainable AI (XAI) for transparency and informed decision-making. These results are 

congruent with studies about finding the learning paths for novice programmers [49]. 

Ouahi et al. (2024) presents a literature review on the application of machine learning 

techniques to predict learner outcomes in online training courses. The objective is to 

provide a summary of the latest models developed for the purposes of forecasting 

student performance, categorical coding methodologies, and the datasets used. The 

study runs experiments to test the proposed models against each other as well as against 

some prediction methods with other machine learning algorithms side by side. The 

experimental results indicate that using encoding method for preprocessing categorical 
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variables improves the performance of deep learning architectures. Indeed, with the 

help of long short-term memory networks, it performs very well on the problem under 

investigation [50]. 

 

Ahadi (2016) examines the application of machine learning to predict difficulties that 

a novice programmer would encounter early in their learning. The research shows how 

predictive models can analyze coding patterns and error behaviors to intervene early, 

thereby improving learning outcomes and engagement [51]. Ahmed et al. (2019) 

propose an innovative method to generate error-specific examples that assist novice 

programmers in debugging compilation errors. The system uses machine learning and 

program analysis techniques that generate educationally valuable, error-specific 

examples that help in understanding and correcting coding faults. The experiment 

shows targeted feedback enhances learning efficiency as well as decreases the tendency 

of error repetition, helping in more efficient programming training [52]. Alalawi et al. 

(2023) provides a systematic review of machine learning applications in predicting 

student performance highlighting trends, challenges, and opportunities in the field. The 

importance is on robust feature engineering, good algorithm selection, and attending to 

data quality issues towards improving the accuracy of such predictions. It provides 

useful information on how ML can be used to enhance the experiences of personalized 

learning and early detection of at-risk students’ which lines up well with the work in 

programming education research [53]. Anand et al. (2018) presents a recursive 

clustering method to assess students' performance in programming courses. The 

technique uses clustering for students along with key performance indicators like time 

taken for completing the tasks and error rates for patterns and profiling learners into 

levels of proficiency. This method will help teachers understand student learning 

behavior more clearly and guide interventions for such students. The research thus 

proves the utility of clustering in managing different learning needs in programming 

education [54]. 

 

Baker and Yacef in 2009 have outlined the state of EDM until 2009, elaborating on its 

applications for understanding and improvement of learning processes. The discussion 

focuses on some key techniques of clustering, classification, and sequential pattern 

mining for the analysis of educational datasets. The author stresses that EDM can 
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facilitate personalized learning, predict student performance, and identify at-risk 

learners. The authors also give direction for the future, which entails the integration of 

real-time analytics and further EDM adoption in more diverse educational contexts 

[55]. Bergin and Reilly (2006) reported a multi-institutional study that used a 

multivariate approach to predict the student performance in introductory programming 

courses. The research determined various factors that influence success; these factors 

include prior experience with programming, mathematical aptitude, and study habits. 

By using statistical and machine learning techniques, it could be shown that both 

academic and behavioral variables may serve as predictors of programming outcomes. 

Thus, the research calls for an understanding of various characteristics of learners to 

effectively formulate programming education strategies [56]. 

 

Chen and Ding (2023) propose a framework for predicting academic performance in 

the schools of Pennsylvania based on machine learning. Algorithms like Random 

Forest, XGBoost, and Support Vector Machines are employed to analyze factors such 

as socio-economic status, attendance, and previous academic records. The findings 

revealed that ensemble methods are quite useful in achieving high accuracy. The study 

stresses the need for feature selection and data preprocessing to improve model 

performance and offers useful insights for educational policy-making and personalized 

interventions [57]. Guo et al. (2003) provide an in-depth study of the K-Nearest 

Neighbors algorithm as a model-based approach in classification tasks. The paper 

discusses improvements over traditional KNN, including feature weighting and 

distance metrics, to enhance accuracy and robustness. The authors demonstrate the 

algorithm's applicability to high-dimensional and noisy datasets, which shows its 

flexibility in diverse scenarios. This paper, while acknowledging the simplicity and 

efficiency of KNN, also addresses the problem of the sensitivity of this algorithm 

towards irrelevant features with optimized parameter tuning. It lays a foundational 

insight in using KNN for educational and other classification problems [58]. 

 

Hosseini et al. (2017) explores stereotype modeling to predict the performance of 

problem solving in both MOOCs and traditional classes. The authors show that learners 

can be clustered into groups based on demographic and behavioral characteristics, 

which can allow for effective forecasting of student outcomes with stereotype-based 
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models. The authors point to the utility of such models in identifying at-risk learners 

and personalizing educational content. The research underlines the significance of using 

user profiles to improve prediction accuracy, providing useful insights into adaptive 

learning environments in programming education [59]. Llanos et al. (2023) focus on 

early prediction of student performance in introductory programming (CS1) courses 

using machine learning techniques. The paper compares models, such as Random 

Forest, Support Vector Machines, and Logistic Regression, to predict student outcomes 

from the initial performance and behavioral data. Its findings underscore the value of 

early predictors: assignment completion rates and error patterns for at-risk students’ 

identification. The research underlines the need for proactive intervention strategies to 

enhance learning outcomes, which closely aligns with efforts to personalize 

programming education [60].  

 

Samonte et al. (2024) presents an adaptation of the DAS3H model to create a 

personalized distributed practice schedule aimed at enhancing long-term memorization 

in an intelligent programming language tutor. By integrating distributed practice 

techniques into programming education, the study demonstrates improvements in 

retention and learning outcomes. The model dynamically adjusts practice schedules 

based on individual performance and learning behaviors, providing a tailored approach 

to skill development. This research highlights the potential of combining cognitive 

science principles with intelligent tutoring systems to optimize programming education 

for novice learners [61]. Effenberger and Pelánek (2019) explore how to measure 

students' performance on programming tasks through the analysis of completion rates, 

error patterns, and time spent. This study underlines the necessity of designing 

programming tasks in a way that would really differentiate between students' skill levels 

while providing meaningful feedback. By using data-driven metrics, the authors show 

how the assessment of performance can be enhanced to identify learning gaps and guide 

personalized interventions. This study offers some very interesting insights into 

monitoring the development of novice programmers and making the programming 

curriculum individualistic [62]. 


