
To Identify Learning Path for Novice Programmer Based on Semi-supervised Dataset

Using Proposed Machine Learning Algorithm

Atmiya University, Rajkot, Gujarat, India Page 23 of 96

Chapter 2

Literature Review

In this section different research publications related to study are arranged according

to its logical flow of study.

2.1 Online Coding Platform for Learner

Online coding environments are now an essential component in the programming

education process, which gives students flexibility to code, debug, and receive feedback

remotely. Abbeel and Ng (2004) conceptually established adaptive systems when they

introduced apprenticeship learning via inverse reinforcement learning, thereby enabling

platforms to mimic expert behavior [1]. Cedazo et al. (2015) presents an online C

compiler with integrated self-assessment features intended to improve outcomes in

programming education. It allows students to black-box test their software

functionalities, thus permitting them to test their own code independently and receive

feedback in the form of error messages and hints. This increases participation because

the process of debugging is more engaging. Scalability is cited as an advantage, and

this is relevant for large classrooms. Use of adaptive assessments identifies common

patterns of error among students. Their methodology included empirical testing on

students at the level of university and demonstrated substantial improvements in

debugging and comprehension. This paper limits their handling of extremely complex

code but has provisions for the next version and needs visualization tools that support

the process of tracking error. This research provides a foundational approach to

developing scalable and interactive programming environments, thus directly

applicable to online education systems [2].

Das et al. (2016) introduce Prutor, a cloud-based programming tutor that addresses the

problems of large-scale programming education. Prutor collects real-time data on

student submissions and provides targeted feedback based on individual performance.

The platform is ascendable which makes it possible for instructors to handle large

numbers of submissions effectively. The study involves an assessment of Prutor on the

students' learning outcome, and it has greatly improved their comprehension and

debugging skills. The interactive interface provided by the prutor helps learners to find

To Identify Learning Path for Novice Programmer Based on Semi-supervised Dataset

Using Proposed Machine Learning Algorithm

Atmiya University, Rajkot, Gujarat, India Page 24 of 96

and fix programming mistakes without help from the instructor. The authors note that

the incorporation of machine learning to predict common error patterns is critical.

Ambiguity in code submission or overly complex submissions are some of the

limitations the authors acknowledged with future solutions in mind. Prutor stands as an

excellent example of adaptive and scalable programming education tools [3].

Gupta et al. (2017) introduces, an AI-powered system DeepFix that automatically

repairs common syntax and logical errors in the C programming code. Through deep

learning models, these authors analyzed and corrected coding errors, which reduced

debugging times for novice programmers. DeepFix is equipped with explainable

feedback mechanisms that guide learners into their mistakes, creating even deeper

understanding. This was demonstrated by the testing of this system on a dataset

comprising students' submissions of programmed solutions, indicating high precision

in error detection and correction. Some other challenges arising with ambiguous code

were successfully overcome using hierarchical models. This research therefore points

towards an integration with AI where it would greatly reduce frustrations of students

about programming subjects, hence bringing retention. Repetitive debugging has been

automated for DeepFix so that lecturers do more conceptual teaching. This is one of the

pioneer works applying deep learning techniques in the programming education context

[4].

Rivers and Koedinger (2015) addresses the area of self-improving Python tutor in

student interaction data generating contextual hints. This system recommends with

dynamics based on a change in student performance that has proven to offer customized

learning for students. Through demonstrations, the authors exhibited the potential of

improving solving tasks as complex as simple step breakdowns. The students using the

tutor achieved much higher retention and understanding in comparison with traditional

approaches. Scalable adaptive systems offer an approach to fulfilling diversified learner

needs. There remain some integration difficulties when introducing the tutor into other

languages. The study further proposed future work in terms of extending the

adaptability of the tutor and the feature of peer learning. This system is a great example

of how data-driven feedback can be used in the practical implementation of

programming education [5]. Nguyen et al. (2014) introduces Codewebs: a scalable

To Identify Learning Path for Novice Programmer Based on Semi-supervised Dataset

Using Proposed Machine Learning Algorithm

Atmiya University, Rajkot, Gujarat, India Page 25 of 96

system that makes collaborative learning in programming easy by enabling students to

find similar coding solutions. The method employed by Codewebs to improve error

correction and task understanding in students is search-based. The authors present a

semantic matching framework that will allow the detection of coding patterns and,

hence, facilitate the overcoming of misconceptions by the learner. A user-friendly

interface for the system motivates students to find alternative solutions and helps

inculcate a collaborative problem-solving culture. Additionally, the authors conducted

a massive evaluation, showing that considerable benefits accrue to students in terms of

performance and engagement. Efficient indexing algorithms ensured scalability and

faster processing. By bridging the gap between individualized learning and

collaborative approaches, Codewebs offers a novel model for online programming

education. This research forms an important foundation for future systems that will

balance autonomy with peer collaboration [6]. Liao et al. (2016) developed a selective

syntactic compiler for delivering personalized error feedback tailored to promote

engagement and learnability effects. Novice programmers experience different kinds of

difficulties, including debugging and conceptual confusion difficulties [7].

Robins (2019) presents these issues with an orientation toward direction that should be

addressed through an articulated sequence of learning [8]. Piech et al. (2012) proposes

a machine learning-based approach for modeling student learning trajectories over

programming assignments. Applying Hidden Markov Models, the authors graphically

instantiated the student development pathways and uncovered patterns that best predict

subsequent performance. This study proved that temporal developmental data better

predicts learning success than the final grades obtained. This strategy supports early

intervention by categorizing students into performance-based groups, allowing teachers

to have actionable insights about how students are progressing [9]. Sukanya and Albert

(2023) proposed new approaches to isolate novice-specific errors in support of early

learners [10].

2.2 Security Concerns in Remote Code Execution

The main threats are security issues relating to remote code execution. Alhothali et al.

(2022) reviews vulnerabilities in RCE systems, especially on educational platforms.

The authors identified main risk factors: weak mechanisms of isolation and improper

To Identify Learning Path for Novice Programmer Based on Semi-supervised Dataset

Using Proposed Machine Learning Algorithm

Atmiya University, Rajkot, Gujarat, India Page 26 of 96

handling of sessions. To prevent such risks, the paper proposed robust sandboxing

techniques that isolate user sessions from unauthorized access. The evaluation

demonstrated the effectiveness of these techniques in reducing attack vectors.

Challenges such as maintaining performance under heavy usage were also addressed.

The research focuses on integrating advanced security protocols for the protection of

online learning platforms. This work is specifically relevant in designing secure,

scalable environments for programming education [11]. Devi et al. (2011) suggested

the technique of sandboxing that ensures isolation in the containment of the untrusted

code to ensure secure environments [12]. Liao et al. (2019) presents the lightweight

machine learning methodology used to forecast low-performing students early in the

term using clicker data from Peer Instruction courses. The researchers were able to

achieve a 62% success rate using Support Vector Machines (SVM). The group

demonstrates its robustness with validation across several terms and institutions. They

emphasize the early intervention point and lightweight data collection methodologies

that can scale to massive classes. This research would thus align with programming

education, which calls for the need for data-driven approaches to identify those learners

at risk [13].

Kim et al. (2020) addresses security concerns in online coding platforms using

compiler-assisted encryption techniques. The authors proposed a framework that

prevents remote code execution to include a check for security in the path of execution.

Their core work is real-time user submission analysis since it uses a combination of

static and dynamic monitoring, thus including the two methodologies to provide

assurance at all levels. Major improvements in detection and mitigation of various

security risks were noticed on such a large dataset. Scalability for very large datasets

and addressing sophisticated attack vectors are challenges. This research sets a

precedent for incorporating security measures into online programming environments,

making safe learning spaces for students [14].

Murpy et al. (2009) suggested Retina, which is a detection tool that analyzes suspicious

student submissions to ensure safety and integrity of academics and systems [15]. Li et

al. (2020) has also proposed an illustration of applying deep learning models to identify

and mitigate RCE attacks in real-time by providing AI-based security solutions for

To Identify Learning Path for Novice Programmer Based on Semi-supervised Dataset

Using Proposed Machine Learning Algorithm

Atmiya University, Rajkot, Gujarat, India Page 27 of 96

online platforms [16]. Restrepo-Calle et al. (2018) also came up with an interactive

learning and automated assessment of programming skills in the form of UNCode. It

offers both summative and formative feedback through automated grading tools.

Summative feedback grades the programming solutions on syntax, semantics, and

efficiency. The formative feedback provides explanations of errors and hints. This

system solves the problem of manual evaluation that takes a lot of time and is not

consistent. It uses static and dynamic analysis to evaluate code functionality and

behavior. UNCode was built mainly for engineering students but supports iterative

learning where students may perfect solutions based on feedback provided. The paper

gives out its effectiveness in developing engagement and skills in the learners [17].

2.3 Collecting Learners’ Programming Data

The backbone of the adaptive programming education system is the collection of

learner data and its subsequent analyses. According to Ala-Mutka (2005), there is a

need to collect and analyze granular information such as the kind of errors, times to

perform tasks, and submission history to feed into the predictive model [18]. Ihantola

et al. (2015) reviewed preprocessing techniques for educational data mining by putting

emphasis on how structured and clean data was more probable to extract meaningful

ideas [19]. Watson et al. (2013) focus on logging students' interactions in programming

tasks to determine performance trends and learning difficulties. The authors proposed

a framework for log data collection and analysis revealing insights into common errors

and task completion strategies. Their findings indicate that logged data can inform

predictive models to allow educators to intervene at the right time. They covered issues

like data privacy and processing of massive logs. The research identifies the need for

data gathering with detail in programming education [20].

Denny et al. (2012) categorized syntax errors to determine novice programmers' issues

and create automated feedback systems [21]. Bilegjargal and Hsueh (2021) analyzed

the adoption and efficacy of online judge systems in programming education. The

authors used structural equation modeling to analyze the attitudes students have toward

features such as real-time feedback, error analysis, and task recommendation. The

results showed learners who used online judge systems improved their problem-solving

skill and reduced debugging time significantly. The study also outlined the importance

To Identify Learning Path for Novice Programmer Based on Semi-supervised Dataset

Using Proposed Machine Learning Algorithm

Atmiya University, Rajkot, Gujarat, India Page 28 of 96

of user interfaces in enhancing student engagement. Challenges such as system

scalability and accuracy of data logging were identified, along with recommendations

for future improvements. This study displays the importance of having such systems in

adaptive learning [22]. Ghosh et al. (2024) used computational thinking in visual

programming with task-specific data to customize pathways for novice learners [23].

2.4 Feature Engineering on Dataset

Feature engineering is one of the major steps in transforming raw learner data into

actionable inputs for machine learning models. According to Rivers and Koedinger

(2015), some of the significant features that were added to the models included error

patterns, task complexity, and time spent on a particular task that would signify student

success [5]. Liao et al. (2016) presented lightweight feature selection methods in order

to optimize the performance of the model while not compromising the interpretability

[7]. Lin et al. (2019) utilized dimensionality reduction techniques like PCA to manage

high-dimensional data, losing less information but increasing computational efficiency

[24]. Yadav and Pal (2012) explore data mining techniques in predicting the academic

performance of engineering students. The authors used classification algorithms such

as Decision Trees and Naive Bayes to identify at-risk students. Through historical

performance metrics and grades, the study discovered some important predictors of

academic success; attendance and prior coursework stand out as predictors. The

findings have improved intervention timing, so that educators can start to assist students

earlier if they are having trouble in the class. This paper provides a basis for using data-

driven techniques to enhance the teaching process, especially for technical courses like

programming [25].

Gupta et al. (2017) demonstrated how deep learning models can automatically extract

meaningful features from complex programming datasets for enhancing the accuracy

of prediction [4]. Shen et al. (2022) focuses on the use of profiling techniques for

predicting programming performance, relying on granular data such as error patterns

and task completion times. The authors developed a machine learning model that

achieved high accuracy in identifying at-risk learners. Their system also gave

personalized suggestions to assist students in overcoming obstacles. The paper

highlights the following limitations: The datasets are small, which calls for larger

To Identify Learning Path for Novice Programmer Based on Semi-supervised Dataset

Using Proposed Machine Learning Algorithm

Atmiya University, Rajkot, Gujarat, India Page 29 of 96

datasets to increase model generalizability. This research underlines the need for early

interventions in programming education to improve learning outcomes. This work is a

good contribution to the field of predictive analytics in education [26]. Marjan et al.

(2021) designed feature engineering techniques specific to programming education,

which capture domain-specific nuances well [27].

2.5 Applying Different Machine Learning Algorithms

Sharma and Harkishan (2022) proposed an intelligent tutoring system for programming

education incorporating real-time feedback and adaptive learning pathways. The

authors utilized machine learning algorithms in the analysis of student interactions and

the prediction of trends of performance, thus recommending personal tasks. The results

showed considerable improvements in engagement and retention rates among students.

The scalability and adaptability of the system were identified as some of its strengths

and facilitated its use in diverse educational settings. Some of the discussed challenges

include integrating cross-platform support, with ideas on future work. The work thus

makes a compelling argument for the inclusion of intelligent systems in programming

education [28]. Modi et al. (2024) demonstrate diversity in machine learning models

was extensive, including K-Nearest Neighbors (KNN), Decision Trees, Logistic

Regression, XGBoost, Random Forest, and Deep Neural Networks (DNN). These

models suggest that Random Forest and XGBoost outperform, as they handle noise in

the data quite well and could capture the more intricate patterns existing in the data.

That is why the ensemble learning methodology is so robust. With this regard, ensemble

models can therefore address the complexity and variability held in novice

programming datasets, while maintaining high accuracy in modeling learning behavior

[29].

Breiman (2001) is one of the earlier innovators of introducing robust ensemble methods

commonly used in educational data mining, including Random Forest [30]. Buenaño-

Fernández et al. (2019) uses ensemble learning techniques, such as Random Forest and

Gradient Boosting, to predict performance in programming. It further showed how the

application of multiple algorithms enhances accuracy in prediction and robustness in

prediction. The method is based on the large amount of student submissions and

attempts to identify trends of performances. The study therefore demonstrated how

To Identify Learning Path for Novice Programmer Based on Semi-supervised Dataset

Using Proposed Machine Learning Algorithm

Atmiya University, Rajkot, Gujarat, India Page 30 of 96

ensemble methods can handle noisy high dimensional data. Challenges would lie in the

computational overhead incurred in training ensemble models in large datasets. Such

studies demonstrate the effectiveness of using ensemble methods in establishing sound

educational analytics systems [31].

Chen and Guestrin (2016) presents XGBoost, which is an optimized gradient boosting

algorithm that has become the benchmark in predictive modeling. The authors have

pointed out its scalability to handle sparse and high-dimensional data and its suitability

for educational data mining. The evaluation proved significant performance

improvement over traditional boosting methods with applications that range from

predicting student performance to adaptive task recommendations. The interpretability

features of feature importance scores make XGBoost very useful for teaching. The

paper ends by mentioning possible extensions, namely the support for deep learning

integrations [32]. Altabrawee et al. (2019) checked the classification techniques of

SVM and KNN in modelling student performance [33].

Wang et al. (2017) applied deep knowledge tracing for programming exercises with a

demonstration of the necessity of sequential data analysis as it relates to learning

performance [34]. Cabo et al. (2021) studies the application of machine learning in

predicting the performance of engineering students in programming courses. The

authors modeled student outcomes as decision trees and neural networks over the

variables of time-on-task, submission frequency, and error patterns. The authors found

that the neural networks successfully identified the at-risk students and that decision

trees offered an interpretability benefit for instructors. Their work, too put great

emphasis on the idea that domain-specific feature engineering played a major role for

boosting accuracy in prediction. The authors end by calling for embedding predictive

models within the programming education systems in order to create early intervention

and tailored support [35].

An extensive review of different algorithms implemented in educational data mining

over the effectiveness of those techniques in predicting student performance was well

delivered by Alsariera et al. (2022). A comparative analysis over multiple datasets

between supervised, unsupervised, and ensemble methods showed that ensemble-based

To Identify Learning Path for Novice Programmer Based on Semi-supervised Dataset

Using Proposed Machine Learning Algorithm

Atmiya University, Rajkot, Gujarat, India Page 31 of 96

approaches such as Random Forest and Gradient Boosting are significantly more

accurate and scalable as compared to others. According to the authors, the selection of

a number of features was essential mainly to improve the interpretability of the model.

Most of the issues were related to working with noisy and imbalanced datasets as well

as possible preprocessing strategies, so the results indicate an importance of robust

algorithms in adaptive learning environments, making the study be used as a point of

reference for the use of ML in programming education [36]. Rokach and Maimon

(2005) gives an exhaustive review of Decision Trees as a classifier that covers widely

used algorithms like C4.5 and CART. The authors explain splitting criteria: Information

Gain and Gini Index, as well as advance pruning techniques to enhance accuracy of

trees. They note that DTs are quite simple and interpretable so suitable for educational

applications, like predicting student performance. Challenges, such as those from

imbalanced datasets, are discussed, and the hybrid technique is proposed in order to

improve robustness. This is a foundational piece for feature selection and classification

within educational data mining [37].

Gupta et al. (2019) extends reinforcement learning to programming error correction in

terms of syntactic and logical errors. The authors designed an RL-based system that can

automatically detect and correct errors while giving the learner explanations. The

findings were that reinforcement learning models performed better than rule-based

systems in adapting to the different error scenarios. Challenges involved include the

computationally expensive cost of training RL models and their dependency on large,

labeled datasets. The authors proposed hybrid approaches to address these issues. This

paper highlights the autonomous systems potential for improving education in

programming [38]. Pires et al. (2024) explores the applicability of long short-term

memory networks to the analysis of time-related patterns in programming data. The

authors showed in their work how LSTM can be used to predict accurately student

performance, especially concerning sequential learning tasks. The evaluation portrayed

how temporal models outclass their traditional foils in the capture of the learning

trajectory and that challenges are at the computational complexity and being adjusted

to the domain concerned. This research opens pathways in educational data mining that

might be explored by advanced neural networks for adaptive learning systems [39].

To Identify Learning Path for Novice Programmer Based on Semi-supervised Dataset

Using Proposed Machine Learning Algorithm

Atmiya University, Rajkot, Gujarat, India Page 32 of 96

2.6 Proposed Solutions and Recommendations

Gupta et al. (2017) stated that task recommendations must be aligned with the learner's

profile, which is the core concept of an ensemble algorithm [4]. Rivers and Koedinger

(2015) established the success of hint generation systems in dynamic adaptation

according to the needs of the students, which is related to complexity-aware weighting

[5]. Durak and Bulut (2023) review classification and prediction-based machine

learning algorithms particularly for educational applications with the focus on

programming education. The authors analyzed the commonly used algorithms, such as

logistic regression, XGBoost, and Random Forest, and have shown that ensemble

techniques are working effectively at growing accuracy and robustness for diverse

datasets. Hybrid models combining different techniques were also indicated as

promising for better generalizability. The authors noted that computational complexity

and the need for large datasets were still significant barriers. Yet, the findings of the

study highlighted the importance of algorithm optimization in adaptive learning

systems [40]. Jokhan et al. (2022) discussed how student performance can be predicted

using AI in higher education studies. The subject of discussion was the study

concerning the sustainable development goals. Here, the authors used the Random

Forest classification model for predicting performance, achieving a 97.03% accuracy

level in just six weeks. The virtual education system improved because of the

application of this early intervention model against the background of the COVID-19

pandemic. The paper highlighted the potential to analyze digital interactions and use

that information to optimize the teaching strategy, thus achieving equitable education.

The interplay of analytics and pedagogy in the paper underlines the transformative

impact AI has on education [41].

Gupta et al. (2019) introduce reinforcement learning in error correction systems by

showing that adaptive algorithms could optimize a real-time experience of learning

[38]. Shen et al. (2022) established that complexity-aware models do function to adjust

the dynamic pathway of learning based on not only difficulty in a given task but also

based on the learners' performance [26]. Parihar et al. (2017) created an automatic

grading system with introductory programming courses that employs the use of

program repair techniques. Leverage AI-based repair models and assess student

submissions while offering detailed feedback. Methodologies enhance grading

To Identify Learning Path for Novice Programmer Based on Semi-supervised Dataset

Using Proposed Machine Learning Algorithm

Atmiya University, Rajkot, Gujarat, India Page 33 of 96

efficiency, personalized guidance, and results yield substantial reductions in grading

time without sacrificing feedback quality. The research emphasizes the great potential

of integrating AI in automated educational assessments that aim to improve the

scalability of programming education, such as in your project [42]. Jayasree and Asim

(2021) Suggested predictive models for prediction of student performance in the

context of MOOC. The authors used the regression analysis and supervised ML models,

such as Random Forest and Gradient Boosting models, on the OULAD dataset. The

model identified behavioral, temporal, and demographic features as some of the most

significant predictors. The study had great accuracy, with the gradient boosting model

performing the best in final performance predictions. By identifying high-risk students

early, the models facilitate timely interventions. This research highlights the role of ML

in improving student outcomes in online education [43].

Kotsiantis et al. (2004) use machine learning techniques to anticipate student's

performances in learning environments at distances. The writers used data drawn from

the Hellenic Open University to perform experiments and run algorithms: Naive Bayes,

Decision Trees, and Support Vector Machines. Naive Bayes had been demonstrated to

be particularly the most acceptable due to high accuracy scores and even a simple

interface. As proved by these results, demographics and grades of assignment

accurately classify student performance. This approach enables early detection of

vulnerable learners to which tutors provide support in an appropriate way. It also calls

upon the strength of robust techniques of machine learning for boosting distance

education effectiveness [44].

In programming education, evaluating models of machine learning demands inclusive

methodologies. According to Breiman (2001), the technique of using the metrics

precision, recall, and F1-score along with the qualitative information helps to perform

a thorough evaluation of model performance [30]. Rubio (2020) utilized trajectory

analysis to predict novice success and provide actionable insights in the refinement of

adaptive learning systems [45]. Liao et al. (2016) combines clicker response data and

early-term programming assessments to predict student performance in introductory

courses. The methodology involves the creation of predictive models capable of

identifying struggling students by the third week of the course. This study showed

To Identify Learning Path for Novice Programmer Based on Semi-supervised Dataset

Using Proposed Machine Learning Algorithm

Atmiya University, Rajkot, Gujarat, India Page 34 of 96

scalable, real-time intervention in programming education with an accuracy of up to

70%. Moreover, it shows that interaction data with dynamic students could complement

predictive frameworks, hence rendering it as a precious asset of adaptive learning

systems [7].

For instance, Pires et al. (2024) presented evidence of deep models such as long short

term memory networks that analyze sequential program data for better accuracy of

predicting [39]. Knowledge tracing has been applied to analyze the programming

exercise for continuous learner assessment, such as in Wang et al. (2017). These results

present strong arguments for dynamic and adaptive systems with ensemble algorithm

as an approach to catering for different learner needs [34]. Moonsamy et al. (2021) did

a meta-analysis of Educational Data Mining (EDM) techniques for predicting student

performance in programming. PRISMA methodology was used, where 11 studies are

analyzed and it is discovered that ensemble methods such as Random Forest performed

with the highest prediction task accuracy. The research revealed the heterogeneity of

performance from the algorithms due to data source variability and variations in

preprocessing techniques. Potential for EDM in early student-at-risk detection and

timely interventions is suggested. Data inconsistencies and publication bias were other

discussed issues with recommendations such as standardization of the dataset and

methodologies. This meta-analysis confirms the need for EDM in dealing with multiple

educational problems [46].

Sehaba (2020) demonstrated usage of machine learning algorithms in educational

technology for predictive analytics toward the improvement of student learning

outcomes. It discusses the assessment framework of student performance with the use

of classification models, thereby laying much emphasis on data preprocessing, feature

selection, and optimization of the algorithm. Here, different machine learning

algorithms have been compared for predicting the student's performance based on

effectiveness-Decision Trees, Random Forest, and Gradient Boosting. This also

underscores feature engineering, derived attributes, ensemble learning techniques, and

XAI techniques in model improvement. This research indicates predictive analytics is

able to predict the risky learners as early as possible so that interventions could be given

just in time and individual support can be provided to at-risk learners. It suggests that

To Identify Learning Path for Novice Programmer Based on Semi-supervised Dataset

Using Proposed Machine Learning Algorithm

Atmiya University, Rajkot, Gujarat, India Page 35 of 96

such predictive and adaptive technologies improve the novice programming learning

experiences [47]. Mustapha (2023) discussed advanced applications of artificial

intelligence and machine learning in education, it seeks to focus on adaptive learning

systems that cater to diverse needs within learners. It underlines the importance of data

preprocessing and feature engineering for correct predictions in educational datasets

where raw data is transformed into actionable insights. Ensemble learning methods,

like Random Forest and Gradient Boosting, are used with the ability to deal with

imbalanced and noisy datasets, predict student success, and identify at-risk learners at

an early stage. The paper advocates for the use of semi-supervised learning techniques

to deal with incomplete or sparse labels in educational data, demonstrating how they

may provide robust predictions in resource-constrained settings. Explainable AI (XAI)

techniques are essential to incorporate into educational systems to enable interpretable

results, such that educators can identify what is not working and come up with

appropriate teaching strategies. This paper contributes to the understanding of how the

advanced AI techniques can benefit the learning experience of novice programmers and

lead to a better educational outcome [48].

Brooks et al. (2023) explores how artificial intelligence and machine learning can be

applied in education systems, focusing on individualized learning paths and

sophisticated analytics. It underlines the need for AI-enabled systems to analyze learner

behaviors, predict performance, and adaptively recommend content. Another important

point raised by this study is that robust preprocessing of data and feature engineering

are required to ensure educational datasets' quality and reliability. Ensemble learning

techniques such as Random Forest and Gradient Boosting are discussed, along with

explainable AI (XAI) for transparency and informed decision-making. These results are

congruent with studies about finding the learning paths for novice programmers [49].

Ouahi et al. (2024) presents a literature review on the application of machine learning

techniques to predict learner outcomes in online training courses. The objective is to

provide a summary of the latest models developed for the purposes of forecasting

student performance, categorical coding methodologies, and the datasets used. The

study runs experiments to test the proposed models against each other as well as against

some prediction methods with other machine learning algorithms side by side. The

experimental results indicate that using encoding method for preprocessing categorical

To Identify Learning Path for Novice Programmer Based on Semi-supervised Dataset

Using Proposed Machine Learning Algorithm

Atmiya University, Rajkot, Gujarat, India Page 36 of 96

variables improves the performance of deep learning architectures. Indeed, with the

help of long short-term memory networks, it performs very well on the problem under

investigation [50].

Ahadi (2016) examines the application of machine learning to predict difficulties that

a novice programmer would encounter early in their learning. The research shows how

predictive models can analyze coding patterns and error behaviors to intervene early,

thereby improving learning outcomes and engagement [51]. Ahmed et al. (2019)

propose an innovative method to generate error-specific examples that assist novice

programmers in debugging compilation errors. The system uses machine learning and

program analysis techniques that generate educationally valuable, error-specific

examples that help in understanding and correcting coding faults. The experiment

shows targeted feedback enhances learning efficiency as well as decreases the tendency

of error repetition, helping in more efficient programming training [52]. Alalawi et al.

(2023) provides a systematic review of machine learning applications in predicting

student performance highlighting trends, challenges, and opportunities in the field. The

importance is on robust feature engineering, good algorithm selection, and attending to

data quality issues towards improving the accuracy of such predictions. It provides

useful information on how ML can be used to enhance the experiences of personalized

learning and early detection of at-risk students’ which lines up well with the work in

programming education research [53]. Anand et al. (2018) presents a recursive

clustering method to assess students' performance in programming courses. The

technique uses clustering for students along with key performance indicators like time

taken for completing the tasks and error rates for patterns and profiling learners into

levels of proficiency. This method will help teachers understand student learning

behavior more clearly and guide interventions for such students. The research thus

proves the utility of clustering in managing different learning needs in programming

education [54].

Baker and Yacef in 2009 have outlined the state of EDM until 2009, elaborating on its

applications for understanding and improvement of learning processes. The discussion

focuses on some key techniques of clustering, classification, and sequential pattern

mining for the analysis of educational datasets. The author stresses that EDM can

To Identify Learning Path for Novice Programmer Based on Semi-supervised Dataset

Using Proposed Machine Learning Algorithm

Atmiya University, Rajkot, Gujarat, India Page 37 of 96

facilitate personalized learning, predict student performance, and identify at-risk

learners. The authors also give direction for the future, which entails the integration of

real-time analytics and further EDM adoption in more diverse educational contexts

[55]. Bergin and Reilly (2006) reported a multi-institutional study that used a

multivariate approach to predict the student performance in introductory programming

courses. The research determined various factors that influence success; these factors

include prior experience with programming, mathematical aptitude, and study habits.

By using statistical and machine learning techniques, it could be shown that both

academic and behavioral variables may serve as predictors of programming outcomes.

Thus, the research calls for an understanding of various characteristics of learners to

effectively formulate programming education strategies [56].

Chen and Ding (2023) propose a framework for predicting academic performance in

the schools of Pennsylvania based on machine learning. Algorithms like Random

Forest, XGBoost, and Support Vector Machines are employed to analyze factors such

as socio-economic status, attendance, and previous academic records. The findings

revealed that ensemble methods are quite useful in achieving high accuracy. The study

stresses the need for feature selection and data preprocessing to improve model

performance and offers useful insights for educational policy-making and personalized

interventions [57]. Guo et al. (2003) provide an in-depth study of the K-Nearest

Neighbors algorithm as a model-based approach in classification tasks. The paper

discusses improvements over traditional KNN, including feature weighting and

distance metrics, to enhance accuracy and robustness. The authors demonstrate the

algorithm's applicability to high-dimensional and noisy datasets, which shows its

flexibility in diverse scenarios. This paper, while acknowledging the simplicity and

efficiency of KNN, also addresses the problem of the sensitivity of this algorithm

towards irrelevant features with optimized parameter tuning. It lays a foundational

insight in using KNN for educational and other classification problems [58].

Hosseini et al. (2017) explores stereotype modeling to predict the performance of

problem solving in both MOOCs and traditional classes. The authors show that learners

can be clustered into groups based on demographic and behavioral characteristics,

which can allow for effective forecasting of student outcomes with stereotype-based

To Identify Learning Path for Novice Programmer Based on Semi-supervised Dataset

Using Proposed Machine Learning Algorithm

Atmiya University, Rajkot, Gujarat, India Page 38 of 96

models. The authors point to the utility of such models in identifying at-risk learners

and personalizing educational content. The research underlines the significance of using

user profiles to improve prediction accuracy, providing useful insights into adaptive

learning environments in programming education [59]. Llanos et al. (2023) focus on

early prediction of student performance in introductory programming (CS1) courses

using machine learning techniques. The paper compares models, such as Random

Forest, Support Vector Machines, and Logistic Regression, to predict student outcomes

from the initial performance and behavioral data. Its findings underscore the value of

early predictors: assignment completion rates and error patterns for at-risk students’

identification. The research underlines the need for proactive intervention strategies to

enhance learning outcomes, which closely aligns with efforts to personalize

programming education [60].

Samonte et al. (2024) presents an adaptation of the DAS3H model to create a

personalized distributed practice schedule aimed at enhancing long-term memorization

in an intelligent programming language tutor. By integrating distributed practice

techniques into programming education, the study demonstrates improvements in

retention and learning outcomes. The model dynamically adjusts practice schedules

based on individual performance and learning behaviors, providing a tailored approach

to skill development. This research highlights the potential of combining cognitive

science principles with intelligent tutoring systems to optimize programming education

for novice learners [61]. Effenberger and Pelánek (2019) explore how to measure

students' performance on programming tasks through the analysis of completion rates,

error patterns, and time spent. This study underlines the necessity of designing

programming tasks in a way that would really differentiate between students' skill levels

while providing meaningful feedback. By using data-driven metrics, the authors show

how the assessment of performance can be enhanced to identify learning gaps and guide

personalized interventions. This study offers some very interesting insights into

monitoring the development of novice programmers and making the programming

curriculum individualistic [62].

