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ABSTRACT

Rose (Rosa hybrida L. cv. bush rose) micropropagules were cultivated on MS
medium supplemented with polyamines (PAs) [Cadaverine (Cad), Spermidine (Spd), and
Putrescine (Put)] to investigate its effects on growth and multiplication under in vitro
conditions during 2023. Polyamines were added to the medium at different concentrations
of 10 mM, 30 mM, and 50 mM via filter sterilization before autoclaving, to assess their
impact on in vitro growth parameters, which indicate that a lower concentration of
polyamines, specifically at 30 mM, significantly enhances biomass accumulation and
overall plant growth, whereas higher concentrations (50 mM) tend to exert a diminishing
effect. Biochemical parameters revealed that polyamines at 30 mM notably increased
the levels of key biomolecules, including carbohydrates content, proteins content, and
chlorophylls content, and also shows significant level of phenol content in the rose
micropropagules. Furthermore, antioxidant activities, as measured by superoxide
dismutase and peroxidase activities, was markedly higher in micropropagules grown on
medium supplemented with 30 mM polyamines These findings suggest that low
concentrations of polyamines can serve as effective growth regulators, promoting enhanced
growth and biochemical responses in rose micropropagation. Therefore, incorporating
polyamines, particularly at optimal concentrations, could improve the efficiency and
quality of rose micropropagation protocols, benefiting commercial production and
conservation efforts.
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INTRODUCTION

Roses are one of the world’s most loved
ornamental flowers for quite a while and
considered as the most vital horticulture crop
in the world. They are cultivated throughout
the world as cut blossoms, potted plants and
most importantly in home gardens. Rose (Rosa
hybrida L.) is a perennial flower shrub of the
genus Rosa, inside the family Rosaceae that
contains more than 100 species and found in
multiple colours (Aggarwal et al., 2020). It is
said that in vitro propagation of roses could
multiply rapidly cultivars with desirable traits
and production of healthy and disease-free
plants. During the last several years,
researchers are witnessing several
approaches for rose micropropagation.
However, it is always challenging to find a

suitable protocol and refinements with a high
rate of shoot multiplication and a cost-effective
method for a valuable variety (Huong et al,
2021). Polyamines (PAs) are water-soluble, low
molecular weight, polycationic, aliphatic
nitrogenous compounds containing more than
two amino groups, and are present in all living
organisms. They can exist freely or be
associated with other molecules, such as
phenolic acids and macromolecules like
nucleic acids and proteins (Rakesh et al,
2021). In plants, polyamines play a crucial role
in regulating various physiological processes,
including flower development, embryogenesis,
organogenesis, senescence, and fruit
maturation. Additionally, they are involved in
the plant’s response to biotic and abiotic
stresses (Chen et al., 2019). Recent studies
have examined the role of polyamines in plant
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development and their mechanisms of action
through the use of exogenous PAs, PA synthesis
inhibitors, and transgenic approaches. Studies
has demonstrated that polyamines (PAs) play
a significant role in plant growth, stabilizing
nucleic acids and membrane structures,
enhancing stress resistance, and even
supporting plant survival (Sequera-Mutiozabal
et al., 2016). For instance, studies on Pinus
virginiana have shown that the individual
application of putrescine, spermidine, and
spermine can help recover brown tissues into
normal callus, achieving a recovery rate of
1.4%, along with increased antioxidant enzyme
activity. However, combining these polyamines
resulted in lower recovery rates than when
each was applied alone (Tang et al., 2004).
Polyamines have also been found to enhance
the quality of in vitro cultures of Bacopa
monnieri, as they were shown to increase
phenolic and flavonoid content, as well as
antioxidant activities (Dey et al.,, 2019). In
Citrullus lanatus (watermelon), putrescine (Put)
has shown the most favourable effects on
rooting, root number, and root length. In
contrast, spermidine (Spd) yielded the best
results for the number of responding explants,
shoot number, and shoot length. At this
concentration of Spd, chlorophyll and
carotenoid content were also higher compared
to other Spd concentrations and other
polyamines (Vasudevan et al., 2017). Rajpal and
Tomar (2020) described the presence of
cadaverine (Cad) in corn coleoptiles, pea,
tomato, and Datura, demonstrating that
cadaverine levels depend on plant age and
progressively decrease as the plant ages. This
study aims to explore the enhancing effects of
polyamines on rose micropropagules under in
vitro conditions, with the goal of improving
their proliferation and multiplication
efficiency.

MATERIALS AND METHODS

Shoot cultures of Rosa hybrida L. cv.
bush rose were initiated following the method
of Makarov et al. (2024). Mature nodal
segments were collected from greenhouse-
grown plants during 2023, washed, and
sterilized wusing ethanol and sodium
hypochlorite. The explants were then
inoculated on MS medium with 3.0 mg/L BAP,
0.01 mg/L NAA, 0.8% agar, and 3.0% sucrose,
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and maintained under controlled conditions
(28+£2°C, 16-hour light cycle). Various
concentrations of polyamines (10 mM-50 mM)
were added to the medium pre-autoclaving
with filter sterilization to assess their effects
on shoot multiplication. Cultures were sub-
cultured every three weeks over six cycles,
totalling 126 days. Growth parameters,
biochemical analyses, and antioxidant assays
were conducted at the experiment’s end, with
each treatment replicated three times.

Measurement of Growth Parameters

The total number of shoots, average
shoot length, and biomass production in terms
of both fresh and dry weights were determined.
To measure biomass (fresh and dry weight),
propagules from were removed and their fresh
weight was measured using an electronic top
pan balance. For calculating dry weight, after
measuring the fresh weight, the shoots were
placed in an oven at 62°C for 48 hours to dry.

Biochemical Analyses
Chlorophyll Content

Chlorophyll content was determined
following the method outlined by Shaikh et al.
(2023). For this, 500 mg of shoots (grown Cn
PAs-containing medium) were weighed and
ground in a mortar with 80% acetone under
dark conditions. The extracts were then
centrifuged at 10,000 rpm, and the
supernatant was used to measure absorbance
using a spectrophotometer (UV-Vis Shimadzu,
Japan) at three wavelengths (663 nm, 652 nm
and 645 nm). Concentrations of chlorophyll a,
chlorophyll b, and total chlorophyll were
calculated using the following formulas:

20.2 x A645+8.02 xA663
Total Cholophyll (mg/g) = xV
a x 1000 x w

12.7 x A663 - 2.69 x A645
Cholophyll A (mg/g) = x V
a x 1000 x w

22.9 x A645 - 4.68 x A663
Cholophyll B (mg/g) = x V
a x 1000 x w

Where, V = Volume of the extract in ml, W =
Fresh weight of the sample (leaf) in g and a =
Length of light path in cell (1 cm).
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Total Phenol Content

The phenol content was measured
using the Folin-Ciocalteu method (Sharma and
Kumar, 2020). Shoots (500 mg) cultivated on
polyamines-containing medium were ground
in 70% methanol, and the extract was
centrifuged at 10,000 rpm for 15 minutes. For
analysis, 500 ul of the methanolic extract was
mixed with 1.0 ml of diluted Folin-Ciocalteu’s
reagent and 2.0 ml of 20% Na,CO, solution,
then heated in a boiling water bath. After
cooling, the solution was diluted to 25 ml with
distilled deionized water, and percent
transmittance was measured at 650 nm using
a UV-Vis spectrophotometer. Total phenol
concentration was determined from a standard
curve of caffeic acid (10-100 ug).

Total Carbohydrates Content

The total carbohydrate content was
estimated using method of Tandon (1976). In
vitro-derived propagules treated with PAs were
homogenized in 0.1 M phosphate buffer (pH 7.0)
and centrifuged at 10,000 rpm for 15 minutes.
For each reaction, 15 pl of supernatant was
mixed with 4.0 ml of 0.2% Anthrone reagent
in concentrated H,SO, and incubated for 5
minutes in a water bath. Absorbance was
measured at 610 nm, and total carbohydrate
content was determined using a glucose
standard curve.

Total Protein Content

Total protein content was estimated
using method of Karimi (2022). 1ml of diluted
crude tissue extract was mixed with 5.0 ml of
Coomassie Brilliant Blue G-250 dye. The
absorbance of the resulting complex was
measured at 595 nm using a UV-Vis
spectrophotometer. Protein concentration was
determined from a standard curve prepared
with various concentrations of albumin.

Enzyme Assay
Peroxidase (POD)

POD activity was measured by
monitoring absorbance changes at 470 nm
using guaiacol and H,0, as substrates,
following the method by Jiao et al. (2021). The
substrate solution contained 0.5% guaiacol in

0.1M K,HPO, (pH 6.0) and was stirred for 30
minutes before adding 0.008% H,O,. A cuvette
with 2.5 mL of the substrate received 50 uL of
the enzyme solution, and absorbance was
recorded.

Superoxide Dismutase (SOD)

Superoxide dismutase (SOD) activity
was assessed using a modified NBT method
(Alam et al., 2021). In a 2 mL reaction mixture,
50 mM phosphate buffer (pH 7.8) containing 2
mM EDTA, 9.9 mM L-methionine, 55 uM NBT,
and 0.025% Triton- x100 was prepared. Then,
40 uL of diluted sample and 20 uL of 1 mM
riboflavin were added. The reaction was
initiated by illuminating the samples under a
15 W fluorescent tube for 10 minutes.
Duplicate tubes without light served as blanks.
After the reaction, absorbance was measured
at 560 nm, and enzyme activity was calculated
using a standard curve derived from pure SOD.

All analyses of data were conducted in
triplicate with three replicates for each
experiment, including appropriate blanks. The
data was checked for variance using a one-
way analysis of variance (ANOVA). In addition
to ANOVA, data analysis was performed by
using Duncan’s multiple range test (DMRT) to
compare multiple treatment and identify
significant differences between them.
Statistical validation of the data was performed
using XLSTAT software.

RESULTS AND DISCUSSION

In this study, incorporating different
concentrations of polyamines (PAs) into the
standard rose multiplication medium produced
varied responses. Adding PAs to the MS
medium before autoclaving resulted in
significant differences in growth parameters,
including shoot length, shoot number, fresh
weight, and dry weight. Additionally, there were
notable increases in biochemical parameters,
such as carbohydrate, protein, and phenol
content. Enhanced activity of antioxidant
enzymes like peroxidase (POD) and superoxide
dismutase (SOD) was also observed. For
comparison, rose cultures at the multiplication
stage grown on the standard MS medium
supplemented with the recommended plant
growth regulators (PGRs) were used as
controls.
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At a low concentration of polyamines
(10 mM), fewer shoots and shorter shoot lengths
were observed. As PA concentrations increased
to 30 mM, both shoot number and length
showed a proportional increase, exceeding
those of the control plantlets. However, at 50
mM, there was a decline in both shoot number
and length compared to the 30 mM
concentration (Table 1). Polyamines interact
with phytohormones, functioning as plant
growth regulators, hormonal secondary
messengers, and sources of carbon and
nitrogen in cultured tissues (Sivanandhan et
al, 2011). Vasudevan et al. (2008) suggested
that polyamine application could significantly
improve regeneration and differentiation in
Cucumis sativus L. A similar trend was observed
for total biomass (fresh and dry weight), a low
concentration of PAs (10 mM) led to a
significant increase in biomass compared to
the control. Biomass continued to increase at
30 mM and 50 mM PAs, though at 50 mM, it
decreased slightly relative to the 30 mM
concentration (Table 1). An upward trend in
shoot fresh and dry weight was observed with
30 mM Spd, achieving values of 3.24 g and 0.36
g, respectively, while similar effects were noted
with Put and Cad.

Polyamines have been shown to
promote shoot regeneration from Passiflora
leaves, Brassica campestris cotyledons, and
cucumber shoot tips (Cucumis sativus)
(Shankar et al, 2011). In rose explants, Spd
and Put did not differ significantly in shoot
length compared to Cad, although all three
polyamines enhanced shoot fresh and dry
weight over the control (Table 1). Previous
studies have reported that exogenous Put

application increased shoot length in various
species, including flax, Linum usitatissimumL.
(El-Lethy et al, 2010), myrtle, Catharanthus
roseus L. (Talaat etal., 2005), onion, Allium cepa
L. cv. ‘Giza 20’ (Amin et al, 2011), artichoke,
Cynara scolymus L. (El-Abagy et al., 2010), and
bean seedlings, Phaseolus vulgaris L. cv. Giza
(Zeid, 2004). The positive effects of polyamines
on vegetative growth are likely due to their
role in strengthening cell division and
expansion (Yang et al.,, 2024). In rose explants,
polyamines increased the total carbohydrate
content in shoots. The highest carbohydrate
levels were recorded with 30 mM
concentrations of exogenous Spd and Cad
(65.04 and 65.03, respectively), followed closely
by Put at 30 mM (64.62). All concentrations
resulted in higher carbohydrate content
compared to the control (56.93) (Table 2).
Similar findings have been reported in wheat,
T. aestivum var. Giza 168 (El-Bassiouny et al.,
2008). In this study, polyamines also enhanced
the total protein content in rose plantlets
compared to the control, with the 30 mM
concentration yielding the highest protein
levels (Spd - 78.47, Put - 77.87, Cad - 73.87)
relative to 10 mM and 50 mM (Table 2).
Comparable results were observed in barley,
where polyamines promoted protein
accumulation under stress conditions (Ozmen
et al., 2022). In contrast, polyamines reduced
phenolic content in plantlets compared to the
control level of 2.4, with the lowest phenolic
levels observed at 30 mM for all three
polyamines (Spd - 2.12, Put- 2.13, Cad - 2.09),
and Cad showing the lowest phenolic content
across all three concentrations (10 mM, 30
mM, and 50 mM) (Table 2). Similar work in

Table 1. Effect of different polyamines concentration on in vitro growth of rose micropropagules

Polyamines Polyamines No. of Length of Fresh weight Dry weight
concentration shoots shoots (g) (g)
(mM) (mean) (cm)

Control 0 8.667 a 3.407 a 3.188 a 0.318 a

Spermidine 10 13.667 b 3.453 bc 3.218 bc 0.343 d
30 18.000 c 3.573 d 3.248 e 0.369 g
50 12.667 b 3.493 ¢ 3.238 de 0.348 e

Putrescine 10 11.667 b 3.463 bc 3.208 abc 0.343 d
30 18.333 ¢ 3.547 d 3.228 cd 0.369 g
50 13.000 b 3.433 ab 3.208 abc 0.348 e

Cadaverine 10 11.333 b 3.463 bc 3.198 ab 0.328 b
30 17.333 ¢ 3.493 ¢ 3.218 bc 0.358 f
50 12.667 b 3.397 a 3.198 ab 0.335 ¢

Means in the same columns followed by different letters are significantly different (P<0.05) according to Duncan's

Multiple Range Test.
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Table 2. Effect of different polyamines concentration on biochemical parameters in rose micropropagules grown

under in vitro conditions

Polyamines Polyamines Total carbohydrate Total phenol Total protein
concentration (mg/g fwt) (mg/g fwt) (mg/g fwt)
(mM)
Control 0 56.933 a 2.400 a 69.370 a
Spermidine 10 61.973 bc 2.210 a 75.870 f
30 65.043 d 2.120 a 78.470 g
50 63.973 cd 2.163 a 71.070 b
Putrescine 10 61.733 bc 2.207 a 74.870 ef
30 64.623 d 2.130 a 77.870 g
50 63.523 cd 2.173 a 72.080 bc
Cadaverine 10 60.833 b 2.180 a 72.870 cd
30 65.033 d 2.093 a 73.870 de
50 63.733 cd 2.117 a 71.970 bc

Means in the same columns followed by different letters are significantly different (P<0.05) according to Duncan's

Multiple Range Test.

rose has shown that foliar applications of
polyamines like Put, Spd, and spermine can
reduce phenolic content under stress
conditions (Yousefi et al., 2021).

We found that adding polyamines (PAs)
resulted in a gradual increase in chlorophyll
a, chlorophyll b, and total chlorophyll content.
However, further increases in PAs
concentration led to a decline in chlorophyll
levels, although these values remained higher
than those of the corresponding control
propagules (Fig. 1). Similar findings have been
reported in previous studies, where the
application of polyamines like spermidine (Spd)
and spermine (Spm) increased chlorophyll
content in Calendula officinalis L. (Baniasadi
etal.,2018).

POD activity was significantly
enhanced with increasing concentrations of
polyamines (PAs). Different concentrations of
PAs resulted in increased POD activity
compared to the control. Notably, 30 mM of
PAs exhibited the highest POD activity
compared to both 10 mM and 50 mM
concentrations (Fig. 2). Interestingly,
cadaverine (Cad) demonstrated higher POD
activity than spermidine (Spd) and putrescine
(Put). Similar results were observed with
superoxide dismutase (SOD) activity, where
the 30 mM concentration displayed the
highest activity compared to 10 mM and 50
mM, with Cad again showing greater activity
than Spd and Put (Fig. 3). Polyamines play a
complex role in plant oxidative stress, as they
can enhance the function of the enzymatic
antioxidant defense system, aiding in the
efficient regulation of oxidative stress in
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Fig. 1. Effect of polyamine (PAs) on chlorophyll
contents in rose micropropagules grown
under in vitro conditions.

plants exposed to environmental challenges

(Wang et al.,, 2020). Exogenously applied

spermidine (Spd) increased levels of Spd and

spermine (Spm) while reducing putrescine

(Put) levels in cucumber roots under hypoxic

stress. This effect was attributed to enhanced

enzymatic antioxidant activity, greater
reactive oxygen species (ROS) detoxification,
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Fig. 3. Effect of polyamine (PAs) on antioxidant
enzyme like superoxide dismutase (SOD)
in rose micropropagules grown under in vitro
conditions.

ultimately improving stress resistance (Wu

etal.,2018).

However, polyamines can also produce

ROS due to their catabolism, which generates

strong oxidizers such as hydrogen peroxide

(H,0,) and acrolein, potentially leading to

cellular breakdown under stress. At the same

time, H,0, acts as a signalling molecule in the
stress signal transduction pathway and triggers
an antioxidant defense response. Therefore,
polyamines appear to be regulators of redox
homeostasis, exhibiting a dual role in plant
oxidative stress (Shao et al., 2022).

CONCLUSION

This study demonstrates the varied
effects of polyamines (PAs) on rose
micropropagules during the multiplication
stage. The results indicate that the inclusion
of PAs in the culture medium significantly
influences both growth and biochemical
parameters. Specifically, moderate PAs
concentrations (30 mM) were most effective
in enhancing shoot proliferation, biomass,
carbohydrate, protein content, and antioxidant
enzyme activity, while maintaining lower

phenolic content, which collectively support
improved plant growth and stress resilience.
The reduction in growth parameters at higher
PAs concentrations (50 mM) suggests an
optimal range for PAs application to maximize
benefits in rose tissue cultures. This study
highlights the role of PAs not only as plant
growth promoters but also as modulators of
oxidative stress responses through enhanced
POD and SOD enzyme activities. These
findings are consistent with earlier studies on
other plant species, where PAs were shown to
promote cell division, expand biomass, and
regulate oxidative stress. The observed
interactions between PAs and phytohormones,
along with their influence on carbohydrate,
protein, and phenol content, underline the
potential of PAs to act as multifaceted growth
regulators in tissue culture applications.
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Abstract

Micropropagation of important forestry, horticultural and medicinal plants have
made revolutionary changes in terms of research and commercialization.
However, there are a variety of factors which influence the scaling-up
and commercialization aspects, which decide whether mass propagation
will be effective and lucrative. Low rates of shoot multiplication, increased
costs of media components, loss of cultures due to contamination,
and difficulties with hardening and acclimation are the key obstacles to
scaling up micropropagation technology. These restrictions have forced
a large number of in vitro technologies developed for a range of plant species
to be used only under research laboratories settings. To apply tissue culture
technology to large-scale propagation, it is required to develop techniques
that are relatively simple to adopt, have high multiplication rate with high levels
of reproducibility, and exhibit higher survival of plantlets when transferred to
ex vitro conditions. Efficient techniques include utilization of liquid culture
systems and replacement of agar with other gelling agents. These techniques
allow development of micropropagules that not only function better in post-
vitro soil conditions and are comparatively less expensive, but will also help
develop a workable micropropagation technique that can be applied to the
mass production of desirable plant species. The current review describes
liquid culture system as an efficient approach to produce large number
of plants at low production cost.
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Introduction

In the last decade, plant tissue culture has proved
its significance in several areas of research and
commercialization. These include: a) CRISPR-CAS-9
mediated improvement of crops, b) commercial
production of horticulture and medicinal plants,

c) transgenic plant development, c) in vitro production
of important secondary metabolites, d) production
of novel varieties through embryo rescue and haploid
culture, e) germplasm conservation.' Tissue culture
methods are generally used to improvise the plants
which do not produce seeds or have stubborn
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seeds that can't be stored in seed gene banks
under normal capacity settings. In order to maintain
quality of plantlets, in vitro procedures have been
proved to be very useful in various roots and tubers,
ornamental plants, medicinal plants, and several
other tropical fruit plants. Plant tissue culture was
initially utilized as a research method with a primary
goal of cultivating and studying the development
of tiny, isolated plant tissue pieces or isolated cells.’
Plant tissue culture has gone through numerous
stages of progress, including logical curiosity,
a research tool and innovative applications, similar
to other advanced methods. Micropropagation
technology is a technique for in vitro propagation
of plants by using principles of biotechnology.
The plants are derived from taking initiation
material like stem part, root part or leaf tissues
and the technique developed guides in large scale
production of economically important crops varieties.
Singh et al. (2016) has enlisted key characteristics
of micropropagation technique, which include
a regulated environment, managed plant growth,
and product (micro-propagules) that are free of many
pests and diseases.? Due to the propagated plants'
compact size, nursery space and plant transportation
expenses are reduced. The biggest drawback
of tissue culture plants is how expensive they are
to produce. Avariety of plants intended for commercial
tissue culture propagation are constrained by
this challenge.

Plant organs and tissues are cultured in vitro on
artificial media, which supply the nutrients vital for
development. The progress of micropropagation
as a method for plant propagation is enormously
impacted by the type and concentration of the
culture medium components used. Generally,

in any tissue culture medium, the components are
majorly classified in four groups excluding sucrose
(carbon source) and agar (solidifying agent).
These groups are: a) Macronutrients (Nitrogen,
Potassium, Phosphorus, Magnesium, Sulphur),
b) Micronutrients (Manganese, Boron, Zinc, Cobalt,
Copper), ¢) Iron and chelating agents (FeSO, and
EDTA) and d) organic supplements (vitamins and
amino acids). The most commonly utilized medium is
the one described by Murashige and Skoog (1962).
This medium was ideally developed for growth
of tobacco callus and later on it was proved beneficial
for wide range of species with slight modifications.?

In addition to these inorganic supplements,
plant tissue culture medium often provides
a carbohydrate (sucrose is typically standard)
to substitute the carbon that a plant normally fixes
from the air through photosynthesis. As mentioned
above, numerous media also include various
organic substances, vitamins, and plant growth
regulators to promote development. In early trials
of research in development of growth media,
undefined components like natural plant products,
yeast extracts, protein hydrolysates efc. were
utilized instead of defined nutrients or amino acids,
or even as additional supplements. Coconut milk,
for example, is still frequently utilized, and banana
homogenate has been a famous expansion to media
for orchid culture. There are certain precautions,
which are needed to be followed while designing
and development of medium. For example, there
should not be any changes in laboratory conditions
and type of inorganic or organic salts (for instance
the hydration of compounds). Table 1 shows general
composition of plant tissue culture medium, which
is followed by most of the researchers.

Table 1: List of inorganic/organic salts, carbon source, vitamins, and solidifying
agents used in generalized plant tissue culture media

Sr. No. Components

Elements

Inorganic/Organic salts

1 Macro-elements

Potassium (K)

Calcium (Ca)

Nitrogen (N)

NH,NO,
(NH,),S0,
KNO,

KCl

KH,PO,

K,SO,
Ca(NO,),4H,0
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CaCl,.2H,0
Magnesium (Mg) MgSO,.7H,0
Sodium (Na) Na,- EDTA
NaH,PO,.2H.,O
Na,SO,
Ferrous (Fe) FeSO,.7H,0
Micro-elements Potassium (K) Ki
Boron (B) H,BO,
Ferrous (Fe) Fe,(SO,),
Manganese (Mn) MnSO,.4H,0
Zinc (Zn) Zn80,.7H,0
Sodium (Na) Na,MoO,.2H,0
Copper (Cu) CuS0,.5H,0
Cobalt (Co) CoCl,.6H,0
Vitamins Calcium pantothenate
Thiamine HCI
Inositol
Nicotinic acid
Pyridoxine HCI
Amino acids Glycine
Cysteine HCI
Glutamine
Carbon Source Sucrose
6 Solidifying agents Agar

Liquid Medium as an Efficient Approach for
Tissue Culture

In plant tissue culture, generally semi-solid medium
is used for regeneration and other purposes.
However, there are several constrains in using
semi-solid medium for example, high production
cost, less protocol efficiency and multiplication rate,
high contamination rate and somaclonal variations,
which arise during culture conditions.* The high
prices of media have restricted the widespread
adoption of the plant tissue culture application.®
Low plantlet production rates, high labour costs,
and increased space requirements continue to
be the barriers in adoption of semisolid media
for commercial production.® In order to produce
valuable and affordable in vitro plantlets, the proper
selection of media components should be taken into
account. Liquid culture media have been employed
as an effective way to address the problems which
arise during the use of semisolid medium and also
enable the researchers or commercial producers
in development of automation and cut down
both time and cost.5” Uniform culture conditions,
quick media replacement without changing the
container, sterilisation with ultra-filtration, and

simpler container cleaning after use are all benefits
of liquid culture systems. Agar culture media require
surface culturing of tissues, whereas liquid culture
media allow for the use of containers of various
capacities.®® Faster growth rates, efficient nutrient
absorption by tissues, and dilution of secreted growth
inhibitors, such as phenolics produced by explants,
all represent potential advantages of liquid culture
systems over solid cultures.™

Plant tissues/ explants of various species have
shown improved performance in liquid medium as
opposed to solid or semi-solid medium." Acacia
nilotica shoot numbers were around ten times higher
in liquid culture than in gelled culture.’? However,
liquid culture is characterised by excessive humidity
and a restricted exchange of gases between the
interior atmosphere of the culture vessel and its
surroundings. These circumstances might lead
to physiological illnesses such as hyperhydricity.
If liquid culture is defined as the growing of explants
on a nonsolid media, then other changes to the
fundamental system are feasible. Explants are
placed in a static liquid solution in the most basic
liquid culture methods. For instance, thousands
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of embryos may be produced from androgenic pollen
grains of wheat in a static liquid culture. Modifications
include aeration, which involves bubbling air through
the medium, use of a support for the explants
(such as cellulose substrate), shaking the culture
to maximize contact between the medium and
explants. Temporary immersion system, in which the
explants are submerged and removed in the medium
for varying lengths of time are also very efficient
methods apart from use of bioreactors (closed or
open). Scaling up and utilization of bioreactors for
commercial production, as well as the development
of organ-genic propagules like bulblets, have all
been studied in detail.’*'* While it is outside the
purview of this work to evaluate all occurrences and
implications described in liquid culture, the process
by which liquid culture can control plant growth
and development is covered. Growth rates and
morphogenetic patterns are used to demonstrate
the advantages of liquid culture over traditional
gelled medium, while the drawbacks are underlined.
The role of certain chemical variables in coordinating
growth and development is also discussed.

Explants cultivated in solid media will display polarity
in their response and cells that are not in direct touch
with the medium must absorb nutrients and process
regulatory signals by diffusion from nearby cells.
This may result in the peripherally placed cells
sensing a different signal. Since the entire surface
of the explant is immersed in the medium and
may thus sense chemical signals, this condition is
avoided in liquid culture. The decrease in the harmful
effects of toxins is another benefit of adopting
liquid systems for culturing. Any metabolite that the
explant releases into the media may have harmful
or inhibiting effects on subsequent growth and/or
development. Toxins quickly dilute in liquid systems,
as opposed to solidified media, where released
compounds stay near to the explant, lessening any
possible inhibitory impact. Liquid cultures often
have higher rates of multiplication and proliferation
than traditional gelled cultures. According to Kim
et al (2003), garlic shoots on solidified cultures
showed a decrease in the growth rate and fresh
weight of shoots." Explants produced on liquid
medium for potato micropropagation showed faster
shoot development rates than explants cultured
on solidified media.’® Sugarcane meristems were
cultivated in both liquid and solid medium as well as
in a transient immersion system, and'” compared the

growth rates of these meristems.' In some cases,
strangely, the growth rates of the liquid and solid
media did not differ much, whereas the temporary
immersion system yielded a growth rate that
was double than that of the other two techniques.'®

In liquid culture, shoots of Pinus radiata, tea, wild
pear, and Calotropis gigantea have all shown
better rates of multiplication, when compared with
explants grown on agar-solidified media.'®?' When
cultivated in a liquid-shake culture, aspen root
cultures quickly increased in biomass.?? But faster
development rate in a liquid environment is not
a general occurrence. Suspension culture offers
a lot of promise for reproduction and the generation
of synthetic seeds since it can result in the formation
of many somatic embryos. After just eight weeks
in culture, one gram of embryogenic callus from
coffee leaves may generate 1.2 x 105 somatic
embryos under ideal development circumstances.
According to Gawel et al (1990), liquid cultures
generate more cotton somatic embryos than gelled
cultures do.? A number of factors have been put forth
as the causes of this improved growth rate, including
better nutrient availability,’®?* increased water
availability,?® a less pronounced gradients in nutrients
and endogenous hormones, and a more gradual pH
shift throughout culture,?® removal of polarity, and
a lessened impact of toxins. According to Singha
(1982), decreased diffusion resistance and tighter
contact between the explant and culture media
lead to greater availability of nutrients and water.?*
However, there was no appreciable difference
in the water content of micropropagated potato
shoots between liquid and solid cultures. Increased
carbohydrate and organic nitrogen build up led to
an increase in shoot fresh weight, indicating that
liquid culture favours nutrient digestion.'® Depending
on the species, kind of explant, and particular
culture circumstances, growth rate increases may
be caused by increased carbohydrate build up,
increased water intake, or a combination of the two.

In contrast to gelled cultures, where depletion zones
(gradients) do form around the explant, agitation
of a liquid culture enables uniform dispersion
of nutrients and growth-promoting agents.
This is helpful because in agitated liquid cultures,
the concentrations can be maintained uniformly,
whereas the action of exogenously administered
growth regulators frequently fluctuates with



NIRMAL et al., Curr. Agri. Res., Vol. 11(1) 28-42 (2023) 32

concentration. Additionally, culture agitation results
in higher explant aeration and, thus, increased
growth rates26. Microspores are grown in a liquid
media with developing ovaries to produce haploid
wheat plants. As a "nurse culture," the ovaries
release substances needed by growing microspores
to finish androgenic development and form a haploid
embryo.?” Nevertheless, an extract made from
immature ovaries did not promote androgenesis,
indicating that ovaries actively create the necessary
factor(s) in response to the physical environment of
the liquid media. In order to ensure that all elements
and regulators are dispersed uniformly throughout
the media, androgenic differentiation will profit from
the diminished barrier to diffusion.

Regeneration in Liquid Culture System
Somatic embryogenesis is the process through
which a non-zygotic cell grows into a bipolar
structure that resembles a zygotic embryo without
having a vascular link to the original tissue.?
In order to research different facets of embryogenesis,
somatic embryos are employed as a model system.
The possibility for extensive vegetative reproduction
is perhaps the biggest benefit of creating somatic
embryos. This method enables the production
of genetically homogeneous plants from a superior
parent as well as the multiplication of plants that are
thought to be challenging to replicate. Furthermore,
research involving genetic transformation benefit
from the generation of a lot of embryogenic calli
in liquid culture.® Establishing the proper kind
of suspension culture is necessary for somatic
embryogenesis to take place in liquid culture.
Large vacuolated cells in suspension are frequently
produced by undifferentiated callus and perish after
two weeks. When the callus is triggered on a media
that contains an auxin like 2,4-Dichlorophenoxyacetic
acid (2,4-D) however, an embryogenic suspension
can be produced; these cells are typically smaller
and have dense cytoplasm. The development
of embryogenic callus occurs in asparagus
when the kind and ratio of the hormones alter.
When the hormone combination of Indole Acetic
acid (IAA), Benzyl Adinine (BA), and 6-(y,y-
Dimethylallylamino)purine(2-iP) was substituted with
kinetin and 2,4-D, globular callus clumps were seen.
In contrast, Ophiopogon japonicus suspension cultures
do not need plant growth regulators to produce
somatic embryos.3°

For the formation of somatic embryos and
subsequent plant regeneration in some species,
huge numbers of embryogenic cells or cell clumps
are produced in suspension cultures, filtered, and
then plated on solid media.®' In these situations, the
liquid phase of the culture serves just to promote
cell multiplication, while keeping the individual
cells and cell clumps in an embryogenic condition.
In their study, Jayashankar et al. (2003), examined
somatic embryos produced in both solid and
liquid environments. These authors noted that
although embryos derived from a solid media
had big cotyledons, a poorly formed suspensor,
and a relatively underdeveloped concave apical
meristem, those obtained from a liquid medium
had smaller cotyledons, a distinct suspensor, and
a flat-to-convex shoot apical meristem. Embryos
from the liquid media did not demonstrate dormancy,
in contrast to those from the solidified medium,
and they had high rates of plant regeneration.3?
What characteristic of the liquid medium is able
to keep cell clumping in an embryogenic state is still
amystery? Itis most likely a result of several variables
working together. For instance, increased availability
of metabolites and growth-regulating compounds
that can be absorbed by all areas of the explant
(owing to closer contact with the medium) along
with lowered nutritional gradients all likely help to
preserving the embryogenic potential of the culture.

Secondary Metabolites Production in Liquid
Culture System

Plants create a wide range of organic substances
known as secondary metabolites to help them
interact with their biotic environment and develop
defensive mechanisms.?*34 The majority of secondary
metabolites, including terpenes, phenolics, and
alkaloids, are categorised based on their biosynthetic
origin, exhibit a variety of biological activities, and
are employed as biopesticides, agrochemicals,
medicines, flavouring agents, perfumes, colours,
and food additives. Field cultivation for the purpose
of producing secondary metabolites has a number
of drawbacks, such as poor yields and concentration
swings resulting from environmental, seasonal,
and geographic differences. In order to produce
secondary metabolites, plant cells and cultures have
therefore become appealing alternatives (Table 2).
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Table 2: Reported plants species producing secondary metabolites under in vitro conditions

Sr. No. Plant Species Secondary metabolites reported References
1. Capsicum chinense Capsaicin [35]
2. Salvia castanea Tanshinone [36]
3. Papavar orientale Morphine [37]
4. Astragalus membranaceus Isoflvonoid [38]
5. Psoralea corylifolia Daidzin [39]
6. Bacopa monnieri Bacoside [40]
7. Catharanthus roseus Vinblastine, vincristine [41]
8. Chlorophytum borivilianum Saponin [42]
9. Camptotheca acuminata Camptothecin [43]
10. Isoplexis canariensis Canarigenin, uzarigenin, [44]
digitoxigenin, xysmalogenin
1. Ruta graveolens Psoralen, bergapten, xanthotoxin, [45]
isopimpinellin, imperatorin, umbelliferon
12. Salvia officinalis Carnosol, carnosic acid, rosmarinic acid [46]
13. Tripterygium wilfordii Triptolide, wilforgine, wilforine [47]
14. Rosa hybrida Anthocyanin [48]
15. Panax ginseng Ginsenoside [49]
16. Genista tinctoria Isoflavones [50]
17. Nothapodytes nimmoniana Camptothecin [51]
18. Ruta graveolens Psoralen, bergapten, xanthotoxin, [52]
isopimpinellin
19. Securinega suffruticosa Securinine, allosecurinine [53]
20. Withania somnifera Withanolides [54]

Bioreactors

Plant tissue, cell, and organ cultures have been
acknowledged as potent tools for the clonal
propagation of commercially significant crops
(micropropagation), the production of valuable
secondary metabolites, the expression of
complex foreign proteins (molecular farming),
and phytoremediation of waste waters (Phyto
transformation and phytoextraction). It is possible
to cultivate plant cultures on a large scale using
liquid media in vitro under controlled environmental
conditions in bioreactor systems. These plant
cultures can be differentiated (embryos, shoots,
seedlings, transformed or adventitious roots),
or dedifferentiated (suspended cells). The main goal
of the strategy is to produce as much plant biomass
as is economically viable, ready for immediate use
or for later separation of valuable products.

The bioreactor is a piece of specialised technology
that controls numerous physical and/or nutritional
parameters to enable intense culture. Systems

using bioreactors typically include a culture vessel
and an automated control block. The culture vessel
is made to hold the grown cells in an aseptic
environment while enabling options for maintaining
ideal micro-environmental conditions, nutrients, and
gaseous mass transfers to ensure their maximum
development. The automated control block is a
computerised, fully automated or semi-automated
system that is intended to monitor and regulate
the cultivation conditions in the culture vessel,
including the agitation speed, temperature, dissolved
oxygen and carbon dioxide (CO,) concentrations,
illumination regime, pH, composition of the overlay
gaseous environment, and the level of the liquid
medium. Existing bioreactors may be divided into
four major categories based on the makeup of the
environment in which the grown cells are housed:
liquid-phase bioreactors, gas-phase bioreactors,
temporary immersion systems (TIS), and hybrid
bioreactors. The cultured cells/ tissues are fully
submerged in a liquid nutrient solution in liquid-
phase bioreactors. The best researched systems
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at the moment are liquid-phase bioreactors, which
include mechanically agitated, pneumatically
agitated, hydraulically agitated, and membrane
bioreactors. These systems have nearly infinite
potential for use in generating undifferentiated plant
cell suspension cultures.5®

However, liquid-phase bioreactor methods often
are unable to guarantee adequate development
of differentiated plant in vitro systems. Because
of hypoxia and hyper-hydricity, total submersion
of plant tissue or organ cultures in the liquid media
frequently results in deformities and material loss.
Asphyxia and hyper-hydria are unfavourable
physiological states that are solely brought on
by the culture media's low oxygen concentration
and water potential.®® The creation of bioreactors
with a sophisticated design, capable of supplying
a specialised microenvironment in order to ensure
the growth and physiological integrity of the
cultures, is necessitated by the complex morphology
of differentiated plant tissue and organs.®” Gas-phase
bioreactors TIS, and hybrid bioreactors®5® have
been created to solve the problems that currently
exist. The goal of TIS is to decrease physiological
problems and retain the morphological integrity
of fast-growing differentiated plant in vitro cultures
by creating an ideal environment, improving nutrition
and gas exchanges, and lowering mechanical stress.
In TIS, explants are regularly submerged in a liquid
media and subsequently exposed to a gaseous
atmosphere, providing the most natural environment
for plant tissue and organ in vitro cultures®” TIS has
been developed in many forms and is often used in
the commercial micropropagation of commercially
significant plant species. TIS have also been used
in the study of secondary metabolite synthesis,
molecular farming, and even phytoremediation
of hazardous substances® because to its straight
forward design and adaptable functioning.

Temporary Immersion System (TIS): A
Modification In Liquid Culture System

The original idea for TIS was developed by
scientists in 1983, when they created a device
called "auxophyton" that could combine aeration and
liquid media cultivation.®® Auxophyton rotated the
culture containers on a wheel, alternating exposing
the test plants to air or submerging them in liquid.
The carrot tissue was 2.6 times heavier after 20
days than the tissue grown on an agar medium.®

Earlier attempts in growing carrot tissue cultures
completely immersed in water failed, probably
for lack of oxygen.®' TIS-based bioreactors have
experienced several developments since that
time. However, every device complies with the
specifications given by Teisson et al.,®? including:
(a) no continuous immersion, (b) sufficient mixing
and OTR, (c) consecutive medium changes and
automation, (d) low shear stress, contamination
and costs. Different plant species have indicated
that TIS has good impacts on shoot proliferation,??
shoot vigor,5* SE,% plant material quality.5® as
well as micro cuttings and microtuberization.57:¢8
The most important factors determining the
effectiveness of TIS are hyperhydricity and adjusting
the immersion time.5%7°

Hyperhydricity: a Disadvantage in Liquid Culture
System

Although liquid culture techniques often promote
greater, more rapid multiplication and biomass build
up, there are several species that are not suited for
liquid cultures because they are more likely to exhibit
physiological abnormalities called hyperhydric
syndrome.” The normal soil environment is
produced by solid medium for terrestrial plants.
Usually, explants that are totally submerged in
growing media have the morphological alterations
common to plants from liquid environments.
Hyperhydricity, a condition where plants store too
much water in their tissues, can occur in these
situations.” The stems of hyperhydric shoots are
transparent and brittle, contain a lot of water, and
have a severe lack of chlorophyll, among other
physiological abnormalities. Shoots with excessive
water content frequently have thick, elongated,
curled, and wrinkled leaves.” They have fewer
layers of palisade cells, wide intercellular gaps,
chloroplast degeneration, uneven stomata, and
a very thin cuticle with less cellulose when seen
anatomically. Because there is so much water in the
apoplastic gaps of hyperhydric tissues, they have
reduced dry biomass.™

The plant material may occasionally still be unable to
develop even after the transfer of the hyperhydrated
tissues to the solid medium to restore the plant
to a normal state.” Later phases of plant growth
may experience ramifications from the vitreous
effect. Additionally, proliferating hyperhydric shoots
have trouble establishing roots, as seen in the cases
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of Salvia officinalis*® and Centaurium erythraea.”™
This is not always the case and can be observed
as exception as we can see in other plants, like in
case of Catharanthus roseus liquid culture system
did not prevent the subsequent formation of roots
on the shoots but actually aided in the process.*!
The shoots also rooted more quickly, showed
higher percentages of rooted shoots and numbers
of roots on a single shoot, and were longer than
the plants grown in the solid medium. Most of the
time, the process of acclimatising rooted shoots
is independent of the consistency of the growing
medium and has no impact on the survival rate.
Even more has been said about how rooting in liquid
may forecast a later stage of micropropagation since
there is less chance of root system injury during soil
transplanting.*’ A large decrease in the generation
of bioactive metabolites in the morphologically
altered organs may be another unfavourable effect
of hyperhydricity.”® This phenomenon manifests
as a result of several stressful circumstances,
such as extreme humidity. A gaseous restricted
environment with low oxygen concentration may
cause hyperhydricity. Hypoxia can result from the
extra water in the tissues reaching low saturation
levels." Free radical-induced oxidative stress
can harm tissues and cells and interfere with
their metabolic processes. Normal development
is disturbed as a result of all these variables.
Agitation might produce aeration, however certain
species are delicate to the shear stress and
mechanical damage brought on by shaking the
culture. Hyperhydricity may be markedly increased
by exogenously applying cytokinin to a liquid
media, especially at high doses.”” In the meantime,
the medium is frequently supplemented with cytokinin
to promote the development and proliferation
of in vitro shoots.

Role of Support Matrix in Liquid Culture System
Many methods for supporting plants over stationary
liquid to lessen hyperhydricity have recently been
investigated. Support matrix facilitates continuous
and simple nutrient absorption, while permitting
shoot development at very high levels of aeration.
It enables dangerous phenolic exudates to spread
throughout the media. Furthermore, the shear stress
and mechanical damage brought on by the aeration
and agitation associated with shake flask cultures
are eliminated by the supports' static nature.”
For most plant systems to multiply, root well, and

anchor better in various types of culture containers,
some sort of solid matrix is also fundamentally
necessary. The addition of expensive gelling
agents, as well as the cost of washing and cleaning,
are avoided when support matrices are used.
The likelihood of contamination can be decreased
during the maintenance of these types of cultures
since subculturing is only possible with the addition
of sterile liquid medium.”®8 However, when
employed, a mechanical support should be porous,
inert, non-toxic, resistant to plant digestion enzymes,
and autoclavable. There are currently several
mechanical supports available, and many people
have successfully used them in various industrial
systems. The majority of the time, a significant
decrease in manufacturing costs favoured overall
growth. For instance, cotton fibre costs around $2/
kg, whereas agar costs between $100 and $200/
kg. Similar to that, apple rootstock was rooted
using a matrix made of sugarcane bagasse.®
Ahigh-quality plant cultivated on sugarcane bagasse
was significantly (13.4%) less expensive than one
grown on agar-gelled media. A cost reduction
of roughly 35% was made possible when the
quantity of high-quality rooted plants exceeded 1000.
In order to cultivate ginger and turmeric at a lower
cost than agar,® successfully employed glass beads.
In his testing, there was a 94% decrease in the cost
of the media. He also showed that only 15 to 18
ml of media were needed per culture container (an
Erlenmeyer flask with a 100 ml capacity) when glass
beads were employed as support matrices. As a
result of this technique, the price of medium was
significantly reduced because one litter of media
created 50 cultured vessels (only 30 containers are
filled in the case of agar-gelled semi-solid medium).

Plants of ginger and turmeric proliferated as well on
liquid glass bead media as they did on agar-based
medium. For vanilla, a similar kind of reaction was
seen. Even with a modest vitrification, Ficus cv.
"Mini lucii" had a greater rate of multiplication. On
glass bead liquid-medium, Saintpaulia, Syngonium,
Philodendron, and Spathiphyllum also showed faster
multiplication rates and better growth.®2 Glass beads
were employed by McLeod and Nowak (1990) to
propagate raspberry and white clove plants, and they
claimed a 60 percent media cost savings as a result.
Glass beads were effective in maintaining callus and
shoot organogenesis in Rhododendron. After being
washed with acid, the beads can be utilised again.
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An effective strategy for the speedy and inexpensive
in vitro multiplication of certain commercially relevant
plant species was glass bead-supported liquid
media, such as Celastrus paniculatus, Chlorophytum
borivilianum, Terminalia bellerica, and Boswellia
serrata. In all of these plants, liquid medium
encouraged shoot multiplication, shoot elongation,
and accumulation of total fresh and dry weight.
The shoots raised in this medium had a greater
number of leaves, each with a bigger surface area

and thicker laminae. For C. paniculatus and B.
Serrata shoot cultures, an increase in chlorophyll
a, b, and total chlorophyll content was seen.
The use of glass beads was very successful and did
not result in any degradation due to hyperhydricity
in liquid culture. Plantlets may be easily removed
from the media due to use of glass beads.
The support matrix used by different researchers
has been listed in Table 3.

Table 3: Different mechanical support types are utilized at various phases of micropropagation
of various plant species.

Sr. No. Different supports Micropropagation Plants References
systems stages

1 Cotton fibre Callus organogenesis Artemisia annua [83]

2 Filter paper bridges Multiplication Chrysanthemum [84]
and potato

3 Luffa sponge Multiplication and rooting ~ Philodendron spp. [79]

4 Paddy straw, jute, coir Rooting Nicotiana, Beta, [80]
Chenopodium, Tectona,
Musa,

5 Coir Microcorm production Gladiolus [85]

6 Sugarcane baggase Rooting Apple [81]

7 Peat pellets Rooting Sunflower [86]

Multiplication Terminalia, Celastrus, [87]

Feronia, Boswellia,
Chlorophytum

8 Glass wool Multiplication Chrysanthemum [84]

9 Rock wool Shoot development Eucalyptus citriodora [88],[89]
Spathiphyllum [90]

10 Nylon cloth Multiplication Chrysanthemum [84]

11 Polyurethane foams Multiplication Nicotiana and Vitis [91]
Gladiolus [78]

12 Foam plastics Adventitious root Rhododendron [92]

development

13 Polyester squares Multiplication Musa [93]

14 Polyester rafts Multiplication Anthurium [94]

15 Florailite and vermiculite ~ Multiplication Ipomoea batatas [95]
(sweet potato)

16 Polypropylene Membrane Multiplication Gladiolus [78]

Rafts
Conclusion procedures in the laboratory as a component

The main challenge with commercial tissue
culture technology is its high manufacturing
costs. The development of micropropagation

of R&D programs should result in a viable technology
suited for the mass production of desired clones.
The established methodology that is accessible
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for a species and the advantages and risks
attached to it are key factors in determining whether
commercialization is successful. In numerous
economic plant species, in vitro propagation
is limited by lack of contemporary techniques
to overcome rigorous labour manipulation. Scaled-
up unit cost of micropropagules can be decreased
by employing creative and more affordable options
mentioned above. In order to determine the efficacy
of such methods, pilot-scale testing is required.
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Abstract

The current work aims to provide a cost-effective and reliable micropropagation method of banana using some natural extract of
unexplored potential seaweeds. We tried natural extract of eight different seaweeds (Caulerpa racemosa, Gracilaria edalis, Caulerpa
paspaloides, Ulva lactuca, Sargassum tenerrimum., Caulerpa sertularioides, Sargassum wightii, Gracilaria corticata.) to check their
role in in vitro growth and development of micropropagules and their potential in replacing commercial plant growth regulators (PGRs)
in banana micropropagation. The in vitro developed shoots were allowed to grow on modified MS medium supplemented with different
seaweed extracts and regularly subcultured on the same medium throughout the experiment. The growth and biochemical parameters
were recorded and compared with micropropagules growing in a controlled environment (i.e., MS medium supplemented with/
without standard PGRs). We found a significant increase in shoot length (highest in S. fenerrimum, i.e. double as compared to negative
control), shoot number (highest in G. edalis, i.e., three fold as compared to negative control) and fresh weight (S. fenerrimum) of the
banana micropropagules when grown under the influence of Liquid Seaweed Extract (LSE). This is comparable to growth observed
in standard control conditions (i.e. positive control). However, addition of LSE of G. corticate, C. paspaloides and S. wightii did not
show any noteworthy effect on shoot length, shoot number and fresh weight. Total chlorophyll and other biomolecule accumulation in
test propagules varied with types and concentrations of LSE. S. tenerrimum proved to be overall good growth promoter, as it caused
maximum accumulation of chlorophyll (0.202+0.02 mg g™!) and protein (105+0.45 mg g!) and significant and encouraging results in
phenol, carbohydrates and proline. Our results show that seaweed can be potential source of beneficial natural compounds and it can
be a cheaper option in banana micropropagation technology.

Key words: Seaweed, micropropagation, banana, low-cost alternatives

in developing countries like India has been limited, with only
well-funded institutions and large corporations thriving, while
smaller units exit the market. Studies have aimed to reduce
production costs in large-scale conditions to address this issue.
They’ve explored replacing expensive medium ingredients, such
as agar-agar, a major contributor to costs, with alternatives like
guar gum, cotton fiber, xanthan gum, isabgol, and corn/potato
starch (Nirmal et al., 2023; Chauhan et al., 2018). Similarly,
high-grade analytical salts have been swapped with low-grade raw
salts, and pure sucrose (as a carbon source) with cheaper sugars.
Reducing the costs of agar-agar and sucrose, which constitute
49.61% and 38.49% of standard MS medium preparation, has
been a primary research focus (Patil et al., 2021). Synthetic plant
growth regulators (PGRs), such as 6-Benzylaminopurine (6-BA),
have been overlooked in the cost analysis of standard MS medium
production. These PGRs contribute significantly to production
costs, with 6-BA alone accounting for 7.78% of costs and other
components totaling 4.12% (Chauhan et al., 2018).

Introduction

Banana (Musa sp.) is one of humankind’s important and oldest
fruits and is valued for its nutritional properties and economic
role. Based on its gross value, it is the world’s fourth most widely
consumed food crop after rice, wheat, and corn. It is commonly
grown in the tropics and subtropics in all agricultural systems.
In India, bananas account for 32.39% (2020-2021) of total fruit
production. Multiplication of bananas by traditional methods
increases the chance of disease in plants, and these methods are
also very tedious and time-consuming. These problems in banana
cultivation can be overcome by tissue culture technology, which
is an exclusive tool for producing banana plants in less time.

Moreover, micropropagation also helps to develop pathogen-free
and healthy plants that can be directly planted to fields (Joshi
and Purohit, 2012). In the last two decades, the commercial
tissue culture has witnessed a revolution, and the technique
has been converted into a successful industry-oriented method,
especially for ornamental and horticultural plants (Patil et al.,
2021). However, there are a few limitations of this technology
when compared to the traditional methods of plant propagation.

Marine microalgae, commonly known as seaweeds, have
been used by humans since ancient times for many important
applications. Earlier, the Romans, Chinese and Japanese were

For example, commercial micropropagation is a capital-
intensive sector since it requires various expertise, infrastructure,
sophisticated equipment, and controlled environmental
conditions. Consequently, the unit cost per plant can be excessive
in some cases (Teraiya et al., 2023). Therefore, business growth

using seaweeds as a biofertilizer and manure in agriculture
and other industries. Seaweeds as a biofertilizer, promote plant
growth, provide better growth under stress conditions and help
in nutrient uptake from soil (Yadav et al., 2016). Seaweed
also contains some essential minerals (like micronutrients,
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macronutrients, amino acids, and vitamins), which help the plant
to grow in adverse conditions and act as a source of nutrients for
crops (Yadav et al., 2016). Seaweeds have garnered significant
attention in plant growth due to their potential as biofertilizers.
Maxicrop, in the 1940s, was among the pioneers to introduce
seaweed-based liquid biofertilizers to the market, igniting interest
in the growth-promoting properties of seaweeds. Researchers
have identified nine different types of plant growth-promoting
hormones in seaweeds, including auxins (IBA, NAA, [AA),
cytokinins (BAP, Kin, trans-zeatin, 2iP), and abscisic acid (ABA)
(Mori et al., 2017). Studies have also detected indole-3-pyruvic
acid (IPA), a key auxin biosynthesis regulator in seaweeds like
Sargassum tennerrimun, Kappaphcus alvarezii, and Gracilaria
edulis. Cytokinins such as iPR, tZR, tZ, and aromatic cytokinins
like 5 topolins have been reported in species like L. japonica, G.
edulis, and S. tenerrimum. Additionally, gibberellic acid (GA3)
was found in M. oxyspermum, G. edulis, S. tenerrimum, and
various Ulva species (Gupta ef al., 2011). Many studies have
utilized natural seaweed extracts to create liquid biofertilizers,
leading to increased shoot growth, longer roots, and improved
overall plant development in vivo. However, the application
of these extracts in vitro remains relatively unexplored, except
for some promising reports, particularly in tomato cultivation.
Seaweed-based biofertilizers hold the potential for enhancing
plant growth and productivity.

In plant tissue culture, synthetic MS media typically contain
various essential components, but specific nutritional requirements
vary among plant species and even within plant cells. It is
hypothesized that incorporating natural Liquid Seaweed Extracts
(LSE) into the growth medium can potentially reduce the need
for synthetic plant growth regulators (PGRs). This approach
lowers production costs and serves as a natural growth enhancer
in cultured conditions. This innovation could make banana
micropropagation more economically viable, representing a cost-
effective method for its production.

Materials and methods

Explant preparation and culture establishment: Banana
(Musa sp.) shoot culture was initiated using healthy plant
suckers collected from Sokhda farm near Vadodara (Gujarat).
Suckers were initially washed with tap water to remove dirt
and then sterilized in the lab with 2% Bavistin (fungicide) for
20 minutes. Afterward, they were rinsed twice with autoclaved
distilled water. Further, explant sterilization was performed in
a laminar airflow (LAF) bench using 1% sodium hypochlorite
(NaOCl) for 10 minutes, followed by three to four washes with
sterile distilled water. The explants, cut into 3-4 cm pieces, were
aseptically placed on Murashige and Skoog’s (1962) medium
supplemented with 5.0 mg L' 6-Benzylaminopurine (BAP),
0.01 mg L' 1-Naphthaleneacetic acid (NAA), 0.8% agar, and
3.0% sucrose. Routine sub-culturing was performed every three
weeks under controlled conditions: 28.0 °C temperature, 16-hour
light/8-hour dark cycle, 85% humidity, and a photon flux density
of 45 umol m™s™! (Ahmed et al., 2014).

Seaweed extraction preparation: Eight seaweed species from
Bayt Dwarka, Gujarat (22° 28’ 39.9” N, 69° 08’ 10.8” E) were
collected, cleaned, and dried at 60 °C for 72 hours. They were
then ground into a powder using an electric mill. To prepare

liquid seaweed extracts (LSEs), 500 g of each sample was boiled
in 1L of distilled water with constant stirring for 20 minutes.
The resulting solutions were filtered through muslin cloth and
Whatman No. 40 filter paper and stored at 4 °C as stock solutions
for experiments (Vinoth et al., 2014).

Experimental design: In our experiment, we assessed the impact
of seaweed extracts on banana micropropagule growth. We
selected eight seaweed species (C. racemosa, Gracilaria edulis,
Caulerpa paspaloides, Ulva Lactuca, Sargassum tenerrimum,
Caulerpa sertularioides, Sargassum wightii, and G. corticata)
and tested various concentrations of liquid seaweed extract
(LSE) ranging from 10% to 50% (v/v). We included positive
and negative controls (standard MS medium with and without
plant growth regulators) for comparison. Each experiment
was conducted in 200 mL culture bottles containing 50 mL of
medium with a pH of 5.8. After autoclaving and solidification,
five aseptically inoculated shoots were placed in each bottle. The
bottles were transferred to a growth room for 126 days, involving
six subcultures. We maintained six replicates per experiment,
with three repetitions of each treatment. At the experiment’s end,
micropropagules were evaluated using various growth factors and
biochemical analyses.

Measurement of growth parameters: We measured shoot
length, total shoot count, and biomass (fresh and dry weight) of
propagules. Fresh weight was assessed with an electronic balance,
and shoots were dried at 62 °C until a constant weight was reached
to determine dry weight.

Chlorophyll contents: The chlorophyll contents in the
micropropagules of banana were calculated as per the protocol
of Arnon (1949). Green shoots (500 mg) were crushed in 80%
acetone under darkness, and the extract was centrifuged at 10,000
rpm. The supernatant was then used for absorbance measurements
using a Shimadzu UV-1800 spectrophotometer (Japan).

Total phenols: Phenol content was assessed following
Mahadevan’s (1975) method. 500 mg of shoots were crushed in
70% methanol, centrifuged at 10,000 rpm for 15 minutes, and
the clear supernatant was used. In a test tube, it was mixed with
diluted Folin-Ciocalteu reagent and sodium carbonate. After brief
heating and cooling, the blue product was diluted, and phenol
concentration was measured at 650 nm using a Shimadzu UV-
1800 spectrophotometer with a caffeic acid standard.

Total carbohydrates: Total carbohydrate estimation followed
Tandon’s (1976) method. One-gram fresh shoot samples were
crushed in 0.1 M phosphate buffer (pH 7.0) centrifuged at 10,000
rpm for 15 min. Then, 15 pL supernatant was mixed with 4.0 mL
of 0.2% anthrone reagent in concentrated H>SO4 and boiled in a
water bath for 5 min. Absorbance at 610 nm was measured after
green colour development, with a standard curve prepared using
varying glucose concentrations.

Total protein: To estimate total protein, we followed the method
described by Bradford (1976). One mL of supernatant (methanolic
extract suitably diluted and centrifuged) was taken and mix with
5.0 mL Bradford reagent (Coomassie Brilliant Blue G-250 dye)
and absorbance was taken at 595 nm. The protein concentration
was calculated by using a standard curve of bovine serum albumin
protein.
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Total proline: Total proline was determined following
Bates et al.’s (1973) method. One gram of fresh tissue was
crushed in 10 mL of 3.0% aqueous sulphosalicylic acid
and centrifuged at 10,000 rpm for 15 minutes. Two mL of
appropriately diluted supernatant was mixed with 2.0 mL of
glacial acetic acid and 2.0 mL of freshly prepared ninhydrin.
The mixture was boiled for 1 hour, then cooled on ice.
After adding 4.0 mL of toluene, the pink toluene layer was
separated, and transmittance was measured at 520 nm using
a Shimadzu UV-1800 spectrophotometer with a standard
curve prepared using varying concentrations of L-proline.

Result and discussion

India’s agri-biotechnology industry, focusing on horticulture,
plays a significant role in the economy by supplying plantlets
to over 100 countries. The Department of Biotechnology
certified about 100 plant tissue culture-based industries
under the “National Certification System for Tissue Culture
Raised Plants (NCS-TCP)” in 2016, a significant increase
from just one in 1985. However, this number has declined
to 69 in the last decade (source: https://dbtncstcp.nic.
in/Recognised-TCPUs). Notably, bananas, guavas, date
palms, and ornamental plants are preferred for commercial
production via tissue culture. Improving micropropagation
protocols, especially for bananas, is crucial, although the
higher production cost remains a challenge compared to
traditional methods. Researchers have often tried to cut
production costs in tissue culture by altering gelling agents
and carbon sources, while the expense of synthetic plant
growth regulators (PGRs) has been overlooked. This study
investigated the potential of seaweed extracts as more
economical alternatives to synthetic PGRs.

The number of shoots was found to be highest (9.32+1.83)
when Gracilaria edalis extract was added at a 30%
(v/v) concentration range (Table 1). Among the different
concentrations of various other LSE tested, 30%
concentration was found to be best in terms of increase
in shoot number except in the case of Caulerpa racemose
and Sargassum tenerrimum where 50% concentration
(9.00£0.82) was found to be best. In contrast, in the case of
C. sertularioides, 10% concentration was found to be best
for the increase in shoot number (7.60+0.50). It was recorded
that a higher concentration (50% v/v) of LSE always resulted
in a decrease in shoot number and this can be explained by
the fact that with increasing concentrations, the number of
inhibitory molecules present in the LSE also increases, which
subsequently interfere in growth (Chauhan et al., 2018). In
addition to the growth regulators, the addition of LSE also
increases various other important nutrients like minerals,
amino acids and vitamins in the medium, which indirectly
help in the increase of shoot number (Niedz et al., 2015).
The shoot numbers in LSE-treated plants were comparable
to those obtained in control plants, where standard PGRs
were used (Table 1).

Similarly, a significant increase in shoot length was also
observed with the addition of LSE however it is not
comparable to control conditions where standard PGRs
where added. The highest increase in shoot length was
recorded in S. tenerrimum extract (4.97+0.42 cm @ 50% v/v)
treated propagules, which was more than control. In general,

Table 1. Effect of LSE on shoot length, shoot number and biomass of banana
micropropagules grown in vitro conditions

Liquid Concent-  Shoot Shoot Fresh Dry

Seaweed ration of  length number  weight weight

Extract LSE (cm) (mean) (2 (2)

(LSE) (% v/v)

C. racemosa 10 1.900° 5.000%cde 4.310%  0.980%f
30 2.700%f  5.600%%f  3.580b°  0.800°
50 3.530"  6.800°8  5.7808h  1.280M

G. corticata 10 2.800°F  4.000%¢  4.370%%  (.970°df
30 2.850" 4.800%°4 3,720 .8200d
50 2.870° 4.60024  2.480* 0.560?

C. paspaloides 10 2.800°"  4.600%¢  6.240"  1.4107
30 2370 5.800%f 6,460 1.460/
50 2770t 3.200° 4370%%  (.970°def

U. lactuca 10 2.670%F 44002 3.930bd  (.880bede
30 2.530%%f  5,000%0de 5. 8508h 1 310
50 2770 4.000%¢  3.410*  0.780%

S. tenerrimum 10 3.2708 5.400%¢f 5400 12208
30 4370 6.200%%  5.160°®  1.160%"
50 4.970* 9.000" 11.610  2.710"

C. sertularioides 10 2.470%%  7.6008"  4.040%¢  0.870°d
30 3.4708 5.200%d 4590 1.060%f
50 3.800"M  4.400%4  5.070°f  1.100%

Sargassum 10 1.600%*  6.200%% 3.830%d  (.850°¢

wightii 30 2.300°  7.600%"  6.410' 1.4700
50 1370 4.200%¢ 43600  0.970¢der

Gracilaria edalis 10 2.800°F  7.200%  6.410 1.470!
30 3.870 9.200" 8.0601 1.800%
50

MS medium with standard PGR4.5001 11.0000  16.010'  3.410™

MS medium without standard

PGR 2.300° 3.300%  3.230%  0.750°

cv 11.90 15.35 6.91 6.23

SEM 0.17 0.40 0.18 0.04

CD 5% 0.50 1.12 0.50 0.12

SEM - Standard Error Mean; CD - Critical Difference; CV - Coefficient of
variation; SD - Standard Deviation; Means in the same columns followed
by different letters are significantly different (P<0.05) using the Duncan’s
Multiple Range Test

the 50 % concentration, positively affect the increase in shoot length
except in case of S. wightii where 30 % concentration was found to be
best. The least increase in shoot length was observed with G. corticata.
This may be due to the higher concentration of zinc reported in this
species, which hampers the shoot length (Rosemary et al., 2019). When
evaluating the growth performance of in vitro grown plants, fresh weight
(FW) and dry weight (DW) gives us a better idea. The total biomass
of micropropagules can be directly connected to plant performance
as a response to photosynthetic ability, nutrition, environmental
conditions, and more. In our study, a significant increase in biomass
was recorded when LSE of Sargassum tenerrimum was used @50%
concentration (v/v) (FW 11.614+0.89 g and DW 2.71+0.01 g) (Table 1).
Overall increase in biomass was observed @ 30% concentration in all
LSE tested. LSE of G. corticata have a detrimental effect on biomass
accumulation and this was recorded 2.48+0.13 g FW, and 0.56+0.04 g
DW, almost equivalent to the data recorded for plant grown on medium
without synthetic PGRs. No morphological abnormalities like callus
formation, curling of shoots, stunted growth, or rooting were observed
in LSE treated plant at this multiplication stage.

Regarding biochemical parameters, different LSE at different
concentrations evoked varied responses (Table 2). We observed changes
in terms of biomolecule accumulation. Phenolic compounds are a vast
collection of secondary metabolites formed by plants, the common
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component of which is the aromatic ring linked to at least one hydroxyl
group. Phenolic-based secondary metabolites are required and fulfill many
important roles in the plant system. These compounds protect the plants from
UV radiation, interact with the environment, and offer a defense mechanism
against biotic and abiotic stresses. It is also evident that the phenolics give
colour to the plant and cooperate with hormones (e.g., auxins) (Kotton et
al., 2022). When LSE was added to the medium, it showed a significant
increase in the total phenol compared to the shoots growing on synthetic
PGRs (Table 2). In all cases, the highest accumulation of phenolics was
recorded on the maximum concentration of LSE (i.e., 50% concentration).
Although all seaweed extracts showed a similar response, a slightly higher
accumulation of phenolics was observed in C. paspaloides (1.31+0.03 mg
g’! fresh tissue @ 10% concentration).

The increased accumulation of phenols in tissue culture propagules can be
attributed to external glucose in the growth medium, which is facilitated by
LSE and is responsible for this effect. A similar observation was recorded in
Scarlet Rose by Amorim (1977), where an exogenous supply of glucose in
culture medium resulted in an increased accumulation of phenols. Another
important reason for increased phenol accumulation is due to increased
proline biosynthesis. It is clearly observed in Table 2 that the accumulation
of phenol and proline are correlated and directly proportionate. Our results
are in accordance with the observation of Shetty (2004) that the proline-

Table 2. Effect of Liquid Seaweeds Extracts (LSE) on accumulation of biomolecules
in in vitro grown micropropagules of banana

Name of Concent- Total Total Total protein Total
different ration of phenol  carbohydrate content(mg proline
LSE LSE content content (mg g’ fresh content
(%) (mgg' g fresh tissue) (mg g!
fresh tissue) fresh
tissue) tissue)
C. racemosa 10 1.030%  111.300°°%F  61.000% 18.000%
30 1.230%f  121.300°"  63.000%° 19.000¢"
50 1.300%h 135770 70.000°%¢  21.000¢"
G. corticata 10 1.230%f  116.470%%f  75.000%f 15.000°
30 1.450"  117.270%f  77.000%f 21.000¢"
50 1.530' 120.370°%"  78.000%f  28.000f
C. paspaloides 10 1.300%"  95570% 80.000%™h 17,000
30 1.470"  97.7200b° 82.000°"  20.000%
50 1.520;  109.7002cdf 89 0p0eh 27.0004
U. lactuca 10 1.030%°  94.470% 72.000°4¢ 18.0009¢
30 1.1205¢df 99 2902bed 75 goodef 22.000"
50 1.250°  126.600%"  77.000%f 25.000!
S. tenerrimum 10 1.240%f 955004 83.000°"  13.000°
30 1.3608"  115.570%%f  89.000¢" 15.000°
50 1.500'  136.630 105.000 18.000%
C 10 1.050%¢ 92.300? 77.000%f 19.000°f
sertularioides 30 1.110°def 111 .4702bcdef 79 opodefeh  25.0001
50 1.3602M  115.780°%f  80.000%f"  30.000*
S. wightii 10 1.140%¢f 111.500%4f 78,0009 16.000%
30 1.190%%¢f 119.230°8h  82.000°"  18.000%
50 1.250°%  124.670%"  83.000°%"  21.000%"
G. edalis 10 1.060%°¢% 102.8002b¢d 790004 15.000P
30 1.160%4T  114.230%df  85.000" 17.000¢¢
50
MS medium (+standard PGR)0.900°  125.370%"  90.400" 15.000°
MS medium (-standard PGR) 0.950°®  92.000° 58.400° 25.000'
Ccv 3.53 2.97 13.47 19.96
SEM 0.02 0.19 0.16 0.13
CD 5% 0.06 0.56 0.47 0.39

SEM - Standard Error Mean; CD - Critical Difference; CV - Coefficient of variation;
SD - Standard Deviation; Means in the same columns followed by different letters
are significantly different (P<0.05) using the Duncan’s Multiple Range Test

linked pentose phosphate pathway stimulate shikimate
and phenylpropanoid pathwa, leading to the stimulation
of phenol biosynthesis in cell. There are two views on
role of phenols under in vitro growth and development
of plants. One opinion states that the phenols depress
plants’ in vitro proliferation and growth while others
talk about the opposite (Arnaldos et al., 2001). Role of
phenols in controlling the interaction between PGRs
and averting the abscisic acid promoted cell senescence
under in vitro conditions has also been reported (Feucht
and Treutter 1996), which are in agreement with our
observation and hypothesis that an increase in phenol is
not hampering growth of propagules.

Carbohydrates are not only a source of energy for plant
cells but also play many important roles in signaling
pathways, photosynthesis and also in cell differentiation.
In our study, we have observed a varied response in the
accumulation of carbohydrates in various treated shoots.
In general, the gradual increase in LSE resulted in a
higher accumulation of carbohydrates, which was highest
in 50% concentration in all tested LSEs. In the case of S.
tenerrimum extract, we observed 136.63+0.31 mg g™ of
carbohydrate accumulation at 50% concentration, which
was even higher than positive control plants (Table 2).
This can be explained on the basis that LSE contain some
level of sugars that contribute to hexose feeding in the
medium and hence more carbohydrate is accumulated.
Our results are in accordance with the results obtained
by Chauhan ef al. (2018), where the addition of some
natural extracts significantly increased carbohydrates in
rose micropropagules.

Studies on the protein contents in in vitro grown shoots
give us an idea of protein metabolism and its role in cell
differentiation. We observed a steady increase in protein
accumulation regarding increased concentrations of
different LSE. The highest protein accumulation was
observed @ 50% concentration in all LSE samples,
although it is slightly lesser than the shoots grown on
synthetic medium (90.4+£0.25 mg g of fresh tissue),
except the shoots grown on Sargassum tenerrimum
extract (105+0.45 mg g! of fresh tissue). The probable
reason for decreased protein accumulation is the presence
of protein synthesis inhibitors in crude seaweed extracts
that interfere with protein biosynthesis. Moreover, the
shoots growing in a positive control environment, where
purified synthetic PGR are present, stimulate the cells to
grow and divide; hence more protein will be synthesized
and accumulated.

A similar tendency in change of proline accumulation
was observed when different LSE were tried. Proline
is an important amino acid considered as a highly
beneficial compound that protects against various stress
conditions. Proline is considered an excellent osmolyte
that protects in three ways: 1) it acts as a metal chelator,
ii) it is a proven antioxidative defense molecule and
iil) it is an important signaling molecule. As a general
observation, adding more LSE resulted in more proline
accumulation. In all cases 50 % concentration of LSE
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resulted in highest accumulation of proline which was higher than
positive control plants (15+0.10 mg g™ fresh tissue) (Table 2).
The highest proline content was recorded in propagules treated
with C. sertularioides extract @ 50 % concentration, which
was almost double compared to positive control. The possible
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Fig. 1. Effect of different LSE on accumulation of Chlorophyll a (A),
Chlorophyll b (B) and total chlorophyll (C) in banana micropropagules
grown under in vitro conditions. C (+) represent — positive control plant
grown on a standard MS medium with PGRs, C (-) represent — negative
control plant grown under standard MS medium without PGRs; C.r, G.c.,
Cp., UL, S.t, Cs., Sw. and G.e. represent C. racemosa, G. corticata,
C. paspaloides , U. lactuca, S. tenerrimum, C. sertularioides, S. wightii
and G. edalis, respectively.

reason behind increased proline synthesis under LSE treatment
is due to several inorganic salt, acidic compounds, secondary
metabolites and phenols present in seaweed extracts. Sometimes
adaptive response of micropropagules in culture conditions also
induce proline accumulation. Similar results were also observed
by Putnik-Deli¢ et al. (2012) in in vitro culture of sugar beet
where increased salt concentration resulted in increased proline
accumulation.

Chlorophyll is an important photosynthetic pigment in all
autotrophic organisms like algae, photosynthetic bacteria and
plants, which can convert light energy into chemical energy. The
chlorophyll content reflects the plant’s health condition and ability
to fix atmospheric carbon dioxide. In our experiment, adding LSE
does not significantly affect the increase in chlorophyll content
(Fig. 1). In all the cases, the increasing concentration of LSE also
resulted in a steady increase in chlorophyll, which was recorded
highest in Sargassum tenerrimum @ 50 % concentration.
However, this value did not surpass that of the positive control
plants. The probable reason for slightly low chlorophyll content
may be due to the alkaline nature of LSE, which does not support
chlorophyll synthesis. Moreover, the presence of elements in
extract, like calcium, zinc, manganese, phosphorus, or copper,
can bind with iron, making it available for chlorophyll synthesis
(Lietal., 2018).

Numerous studies have explored the use of natural extracts to
enhance the in vitro growth of plantlets in tissue culture. Plant
tissue culture media are often enriched with various natural
extracts, such as protein hydrolysates, coconut milk, yeast,
malt extract, ground banana, orange juice, potato extract, and
tomato juice. Several natural cytokinins, like zeatin and zeatin
riboside, along with cell division-promoting activity, have
been identified in sweet corn extract. In the case of Anthurium
cubense, substituting cytokinins with the cost-effective citrus
fruit rind-derived Pectimorf showed improved in vitro growth
and 90% plantlet survival during acclimatization (Montes et al.,
2000). Similar results were observed with Spathiphyllum using
Pectimorf compared to the synthetic cytokinin BA (Hernandez
et al., 2009). Orange juice has also been successfully applied
in culturing explants of various citrus species. Coconut water,
known for containing ribosyl-zeatin similar to maize zeatin, has
promoted embryo culture in multiple species. Other extracts
from sweet lime juice and tomato fruit have also demonstrated
growth-promoting properties (Maria et al., 2012). While natural
plant extracts have been extensively studied, the use of seaweed
extracts containing growth-promoting substances like auxins,
cytokinins, and betaines in tissue culture remains relatively
unexplored. Some reports have highlighted seaweed extracts,
including U. lactuca, C. sertularioides, P. gymnospora, and
Sargassum liebmannii, as cost-effective options for tomato
seedling growth under laboratory conditions. Similar seaweed-
based growth studies have been conducted with tomato, wheat,
soybean, and maize, but these were ex vifro studies. Notably, in
vitro applications of seaweed extracts in Lycopersicon esculentum
showed a significant increase in shoot length. Our findings align
with these observations, suggesting that seaweed-derived growth
promoters may positively influence in vitro growth of banana
micropropagules, potentially serving as economical alternatives
to synthetic plant growth regulators (PGRs). However, further
testing is necessary to evaluate the suitability of seaweed extracts
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for in vitro culture in a broader range of plant species, including
various horticultural plants.
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Chapter 13

Potential scope and prospects
of plant growth-promoting

microbes (PGPMs)
in micropropagation technology

Sagar Teraiya, Dhaval Nirmal, and Preetam Joshi
Department of Biotechnology, Atmiya University, Rajkot, India

1 Introduction

Plant tissue culture technology utilizes the ability of a single cell or a group of
plant cells to transform into a whole plant when grown under controlled envi-
ronmental conditions. This interesting idea of in vitro culturing of the plant cell
was put forward by Gottlieb Haberlandt in 1902 in the form of a postulate “toti-
potentiality,” which later on led to significant discoveries in biology. One
important aspect of plant tissue culture is micropropagation, which is being
exploited by a large number of researchers and business firms. The primary
use of micropropagation is large-scale production of plants, ranging from nurs-
ery stock species (like rhododendron or rose) to ornamentals (like gerbera or
carnation), fruits (like banana or raspberries), and vegetables and crops (like
cauliflower, potato, or pointed gourd). In the last two decades, there has been
a significant growth in micropropagation-based industries, and these industries
have been internationally acknowledged as one of the significant tools for the
direct application of this technology in the agriculture field. Other important
applications of tissue culture technology are conservation of endangered plants,
in vitro production of secondary metabolite, crop improvement, and develop-
ment of new varieties through transgenic approach. Besides its several advan-
tages, this technique has many challenges. For example, any micropropagation
system must produce large numbers of genetically uniform plants that maintain
the genetic truthfulness (i.e., genetic fidelity). Moreover, the technique involves
the use of certain chemical sterilizers, plant growth regulators (PGRs), and
sometimes antifungal agents and antibiotics to control the contamination. Most
of these chemicals are very costly and therefore limit the profitability to end
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users. Similarly, it requires certain costly instruments and a sophisticated setup
and skilled manpower, which further increase the production cost of plants.
Other important challenges in micropropagation are the low in vitro multipli-
cation rate, loss of plantlets due to contamination, increased susceptibility
toward pathogens pre- and postfield transfer, mixotrophic behavior of plantlets
during culture conditions, and low survival of plantlets during the hardening and
acclimatization stage.

To address these challenges and cut the production cost, plant growth-
promoting microbes (PGPMs) can be used as an effective tool. PGPMs could
be an effective agent for the promotion of growth, uptake of nutrients from soil,
and sometimes can be an alternative source of nitrogen fertilizer for plants.
After confirmation of the role of microbes in soil fertility and plant growth,
PGPMs have gained a lot of attention from many soil scientists and agriculture
biotechnologists. PGPMs promote plant growth in many ways, for example,
they may produce plant hormones [1-3] or growth-stimulating biomolecules,
viz., vitamins and related products [4], by suppressing the growth of pathogens
by different mechanisms [5]. Nowadays, PGPMs have received a lot of atten-
tion, particularly in the field of crop improvement, and many related articles got
published in the last two decades. However, research into the application of
PGPMs in plant tissue culture has not gained much popularity just because it
is a general notion that the presence of microbes in the tissue culture growth
medium is deleterious and is considered as a can of worms, which not only limit
the establishment of culture but also leads to further obstacles in subsequent
stages [6]. Hence, most of the focus in tissue culture is on how to get rid of
microbes despite the fact that many PGPMs can be beneficial at different stages
of tissue culture. However, many PGPMs can be beneficial at different stages of
tissue culture, viz., at the stage of in vitro rooting, in vitro shoot multiplication
and elongation, and the acclimatization stage. Moreover, they can provide a
defense against biotic (pathogens) and abiotic (temperature, salinity, heavy
metals, etc.) stress that arises during the hardening and acclimatization stage.
PGPMs can act as a nostrum for sustainable agriculture, if used judiciously,
and therefore promoting the use of PGPMs in tissue culture is advantageous
as well as challenging. This chapter is mainly focused on the potential possibil-
ities of PGPMs in the advancement of micropropagation technology.

2 Plant tissue culture

Plant tissue culture system is a method in which a whole plant, a plant part (gen-
erally a 1-2 cm portion of a leaf/node/internode/cotyledon or any other suitable
plant part), or even sometime a single cell is taken and allowed to grow under
controlled aseptic environmental conditions. The tissue culture setup is opti-
mized to provide all macro- and micronutrients, carbon as a source of energy,
phytohormones for division and differentiation and, of course, water, which is
necessary for the growth of plants. All these requirements are provided in the
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form of a basal growth medium. In addition, environmental factors, viz., light,
temperature, and humidity are also maintained optimally in a way that supports
better in vitro growth and multiplication. Further, the plant development and
differentiation can then be controlled by providing plant growth regulators,
viz., auxin, cytokinin, gibberellins, etc. Regeneration of a plant or plant part
(often regarded as an explant) under in vitro conditions relies on the concept
of totipotency, originally proposed by Haberlandt in 1902. The explant is
any plant part (generally 1-2cm in size, viz., a nodal segment, an internode,
a leaf segment, an immature embryo, a pollen grain, a seed, an ovule, an anther,
etc.), which is used as an initial material for establishment purpose. Micropro-
pagation may also be regarded as the method of taking explants, putting asep-
tically this explant on a suitable growth medium and allowing it to undergo
differentiation and develop into a whole new plant [7]. The plant part (i.e.,
explant) is allowed to grow in a culture vessel filled with synthetic growth
medium under aseptic conditions in a chamber where all the environmental con-
ditions are kept at the optimum level. In addition to large-scale production of
plants, micropropagation technology is also a key step in transgenic plant devel-
opment in which the regeneration of novel plants from genetically engineered
cells is carried out. Micropropagation of plants can be achieved by four different
pathways, namely: (a) enhanced axillary branching; (b) adventitious shoot bud
differentiation; (c) callus organogenesis; and (d) somatic embryogenesis. In the
case of enhanced axillary branching, the explant contains preexisting axillary
shoot buds, while in callus organogenesis and adventitious shoot bud formation,
the shoots are formed de novo by the process of organogenesis. During the pro-
cess of somatic embryogenesis, bipolar somatic embryos are formed that have
the competency to develop into a complete plant. In any chosen pathway of
micropropagation, a sequence of events is involved to achieve success
(Fig. 1). Micropropagation, in contrast to conventional propagation methods,
is a multistage process in which every stage is important to realize the goal
of producing plants in culture.

Notwithstanding the advantage or disadvantage of various methods of
micropropagation, each method involves five different stages to achieve the
goal. These stages are as follows:

Stage 0:. Management of donor plant/s (source of explant)
Stage 1:. Aseptic establishment and initiation of cultures

Stage 2:. Shoot multiplication and/or elongation

Stage 3:. In vitro rooting of shoots

Stage 4:. Hardening, acclimatization, and transplantation in soil.

The first four stages described above are carried out in a highly controlled man-
ner where the main concern is to avoid any kind of microbial contamination;
hence, a high levels of aseptic conditions is maintained which results in zero
contact of regenerated micropropagules with the common microbiota of the
environment. The outcome of this is that the regenerated plants become more
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vulnerable and, when transferred to the soil, become more sensitive to infec-
tions as well as the harsh environmental conditions. This makes it imperative
that the controlled exposure of some beneficial microorganism may positively
affect the in vitro and ex vitro growth of plants during tissue culture. Although
there have been few reports where the beneficial effects of these PGPMs during
in vitro culture conditions have been reported, a thorough study needs to be
done to explore the potential possibilities of PGPMs in micropropagation
technology.

3 Challenges in plant tissue culture

Plant tissue culture technology sometimes fails to translate at the commercial
level for large-scale production due to certain limitations. Some of the problems
that are encountered during large-scale micropropagation are discussed here:

Higher production cost: Due to the requirement of sophisticated instru-
ments, production setup and skilled labor, the production cost of plants
increases in tissue culture. Moreover, raw materials like glassware and chemi-
cals (viz., agar, sucrose, plant hormones, and other media components) make
this technology a costly affair. In some cases, the unit cost per plant becomes
exorbitant. This has restricted the growth of these industries in developing coun-
tries like India [8].

Low multiplication rate: In some plant species, the multiplication rate in
tissue culture is less than threefold, which makes it nonviable technology. The
high multiplication rate is an important primary concern, particularly during the
commercialization phase. The high multiplication rate lessens the number of
cycles required for subculturing in mass cloning and thus cuts the labor cost.
The high multiplication rate also partially compensates for the loss that occurs
due to the contamination at different culture stages.

Loss of culture due to contamination: In tissue culture, contamination is a
major problem, which sometimes wipes out the hard work of months. The major
contaminants in tissue culture are bacteria and fungi, which are either present in
explants or may arise due to handling error. Whatever the reason, the contam-
inants are responsible for the huge loss of plantlets which ultimately result in
further economic loss.

Hyperhydricity: Shoots grown in vitro are exposed to a unique microenvi-
ronment which is nutrient rich and has high humid conditions. Sometimes these
cultural conditions induce morphological, anatomical, and physiological abnor-
malities in micropropagules. Hyperhydricity or vitrification is a physiological
deformity that results in excessive hydration, low lignification, nonfunctional
stomata, and poor mechanical strength in shoots. The result of this is poor regen-
eration abilities in such plants which require intensive care and hardening and
acclimatization before soil transfer.

Susceptibility to diseases: The tissue culture grown plants are more suscep-
tible to the soil microflora and do not show sufficient resistance against
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bacterial and fungal pathogen. One of the reasons behind this response is their
sudden exposure (mainly the roots) to the microbes present in the soil and outer
environment. Under natural conditions, plants are continuously exposed to var-
ious microflora which directly or indirectly induce various defense mechanisms
in plants, which finally leads to the development of resistance against patho-
gens. If the natural defense mechanism of plantlets is induced during the culture
conditions against different pathogens, at least for the time when they are most
susceptible, the problem of quick susceptibility to the infection can be reduced
to a great extent [9,10].

Acclimatization of micropropagated plants: During tissue culture, there is
a loss of a significant number of plants when transferred to field conditions. The
shoots grown in tissue culture are continuously exposed to a unique and lavish
microenvironment where there are minimal stress conditions. Moreover, there
is a continuous supply of sucrose in the medium which makes the plants par-
tially heterotrophic in nature. All these conditions contribute to a physiological
and anatomical transformation in the plants like poor development of cuticles,
raised and nonfunctional stomata, poorly developed internal anatomy, less effi-
cient photosystem, etc. Finally, when the plant is transferred to the field, it fails
to tolerate the sudden shock of outer stressful conditions and strives to
survive [11].

4 Plant growth-promoting microbes

Plant growth-promoting microbes (PGPMs) are a special heterogenous group of
microbes which are considered advantageous for the plants in terms of being not
only a growth promoter but also a savior against biotic and abiotic stress.
PGPMs are generally found near the rhizospheric zone of the roots of plants
or inside the plant tissue (in the case of certain endophytes) and exert their ben-
eficial effects through several mechanisms. Some of these mechanisms include
biological fixation of nitrogen, solubilization of phosphate, alleviation of stress
through modulation of ACC deaminase expression, production of siderophore,
synthesis of plant growth regulators, etc. Moreover, they also act as biocontrol
agents against several pathogens. PGPMs are further classified into three cate-
gories on the basis of their mode of action:

(a) Biofertilizers: This group of PGPMs acts through the direct mechanism of
PGP and contributes to plant growth through solubilization of minerals
(like phosphate, potassium, and zinc) and also through the biological fix-
ation of nitrogen.

(b) Biostimulants: This group includes PGPMs which enhance plant growth
through the biosynthesis of phytohormones, organic compounds, and cer-
tain enzymes. This class of microbes may act either through a direct mech-
anism or through an indirect mechanism.
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Biocontrol agents: The PGPMs of this group provide protection to the
plants against pathogens by synthesizing certain antimicrobial compounds
or by challenging the pathogens for available space and nutrients.

Few of the PGPMs exhibit more than two mechanisms of growth promotion and
hence may be categorized in two groups in the above classification [12]. Fur-
thermore, on the basis of the type of microorganisms, PGPMs can be of two

types:

(@)

(b)

Plant growth-promoting fungi (PGPF): The growth-promoting effect of
several rhizospheric fungi has been reported. These PGPF include a num-
ber of species belonging to different genera of fungi. These fungi mostly
belong to the arbuscular mycorrhizal fungi (AMF) family. The life cycle
of these AMF cannot complete without the plant host; hence, they are
termed as obligate biotrophs and are grouped in the phylum Glomeromy-
cota. The phylum Glomeromycota includes 10 important families and the
most prominent genera of this phylum include Glomus, Acaulospora, and
Gigaspora. Besides this, the other PGPF include species of the genera Tri-
choderma, Aspergillus, Penicillium, Fusarium, Piriformospora, Phoma,
and Rhizoctonia, which have the innate ability to enhance the growth of
plants [13]. These PGPF are found in soil as well as other natural habitats
and exert their beneficial effects on plants by improving the plant nutrition,
soil fertility and providing resistance against pathogens.

Plant growth-promoting (rhizo) bacteria (PGPB or PGPR): PGPB rep-
resent 2%—5% of the rhizospheric bacteria, classified mainly into four
groups: (a) free-living bacteria, (b) associative bacteria, (c) endophytic
bacteria, and (d) nodule-forming bacteria (symbiotic). Similar to PGPF,
these bacteria also have proved their potentiality as biofertilizers, biostimu-
lants, and/or biocontrol agents. On the basis of their location in the host
plant, PGPB can be classified into two groups: (1) extracellular plant
growth-promoting rhizobacteria (ePGPR) and (i1) intracellular plant
growth-promoting rhizobacteria (iPGPR). The ePGPRs may acquire the
space on the surface of the root/or on the rhizoplane/or in the intercellular
space of the root cortex. In contrast, iPGPRs are commonly found inside
the cells of the nodule (a specific compacted tissue found in roots). Exam-
ples of ePGPR include Azotobacter, Erwinia, Arthrobacter, Azospirillum,
Burkholderia, Bacillus, Chromobacterium, Flavobacterium, Caulobacter,
Micrococcus, Serratia, Pseudomonas, etc. iIPGPR mainly include certain
endophytes and species of Frankia, both of which can fix environmental
nitrogen symbiotically with the higher plants. The examples of some potent
endophytes are Azorhizobium, Mesorhizobium, Allorhizobium, Bradyrhi-
zobium, and Rhizobium of the family Rhizobiaceae. The members of this
family invade the roots of plants, particularly the members of the Legumi-
nosae family, form nodules, and fix the atmospheric nitrogen. PGPB are
generally used for the promotion of growth, uptake of nutrient from soil
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and sometimes as a substitute of N-fertilizers of nonleguminous crops.
PGPR have also proved to be an effective tool against several plant
pathogen, they act as a biocontrol agent by secreting some important
antibiotics [4].

Recently, research on PGPF and PGPB for crop improvement is gaining impor-
tance and many researchers are getting attracted toward this fascinating area.
However, the application of these microbes in micropropagation technology
is limited. Nevertheless, encouraging results from various research findings
suggest that these PGPM strains can successfully be used in micropropagation
technology to produce more vigor and resistant plants.

5 Application of PGPM in micropropagation technology

In tissue culture, sterilization of explants is carried out to remove all microbes
during the establishment stage. Moreover, strict aseptic conditions are main-
tained throughout all growth room conditions considering the microbes as a
potential enemy. After establishing the advantageous role of PGPM in plant
growth and protection, the perspective of complete removal of microbes from
tissue culture has shifted and is restricted to only harmful microbes. In fact,
more attention is paid to the right utilization of PGPM at different culture stages
during in vitro growth conditions. This idea of using beneficial microbes during
in vitro conditions was conceptualized by Nowak in 1998 and was termed as
“Biotization.” As stated by Gosal et al. [14], “Biotization is the metabolic
response of in vitro grown plant material to a microbial inoculum(s), leading
to development and physiological changes enhancing biotic and abiotic resis-
tance of the derived propagules.” The process of biotization can be carried
out at any stage of tissue culture which can generally be contingent on the objec-
tive of the researcher or the nature of the problem. For example, at the estab-
lishment stage (stage I), multiplication stage (stage II), and rooting stage
(stage III), those PGPMs are added which act as biostimulants and stimulate
overall growth, multiplication, rooting or competency in propagules, while at
stage IV (hardening and acclimatization stage), the main choice is those PGPMs
that stimulate the resistance and photosynthetic efficiency of plantlets. Besides
being potential biostimulator and biocontrol agents, certain PGPMs (e.g., Fran-
kia, Bradyrhizobium, Rhizobium, Azofobacler, Bacillus, and Xanthomonas)
play an important role in improving the physical properties of soil [15]. The
schematic representation of the Biotization approach and its advantages during
tissue culture is presented in Fig. 2.

5.1 Biotization with plant growth-promoting fungi

It has been observed that prolonged exposure of plantlets to in vitro conditions
makes their roots unresponsive to water absorption, which leads to water stress
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FIG. 2 Schematic representation of the Biotization approach and its advantages during tissue
culture.

at a later stage. Inoculation of such plants with AM fungi during tissue culture
may be beneficial to overcome this problem [16]. It has also been testified that
inoculation of AM fungi during culture conditions helps the plants in nutrient
availability, increased growth and resistance to pathogens after transplantation
to the soil [ 17]. The other experimentally proved advantages of AM fungi under
in vivo conditions include the ability to utilize the available Phosphate present
in the soil through their hyphae [ 18]. Moreover, the PGPF help in better growth
of plants [19] as well as higher production of secondary metabolites and related
compounds such as alkaloids, phenolics, plant-based sterols, vitamins, lignans,
terpenes, etc. These compounds are valued from the human health perspective
as well as provide tolerance to the plants against various biotic and abiotic stres-
ses [20]. Moreover, the PGPF also play a significant role in enhancing the pro-
duction of several enzymes [21], stimulating the photosynthesis process [22],
and improving the fertility of the soil [23]. According to Streletskii et al.
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[24], fungi produce plant hormones, and these hormones regulate the develop-
ment of plants by activating signaling pathways throughout the biotic and/or
abiotic stresses. Considering the above properties, PGPFs have been tried dur-
ing tissue culture for overcoming the existing problem of post vitro survival.
Tissue culture raised plantlets of the wood-apple were allowed to get colonized
with the root fungus Piriformospora indica during stage III (in vitro rooting
stage) and stage IV (hardening and acclimatization stage), and significant
growth was observed in terms of shoot number, shoot length, root length, leaf
number, leaf area, and fresh weight. Moreover, the survival percentage and per-
formance of plants after field transfer were also significantly increased [25].
Similar results were also observed in tissue culture raised Terminalia bellerica
by Suthar and Purohit [26]. Since the AM fungi significantly upsurge mineral
uptake, their role is specifically important during stage IV (i.e., hardening and
acclimatization stage). AMF can be an effective tool to address a common prob-
lem in tissue culture derived plants, i.e., mineral absorption, since the AM fungi
have very well-developed arbuscules and hyphae which can easily transfer
nutrients (particularly the phosphate) from the soil to the plant [27]. The main
reason behind the poor survival of micropropagated plants, post transfer to the
soil, is absence of their microsymbiont partner, and this can be mitigated by
inoculating the plantlets with PGPG at the hardening stage. This was proved
in the case of in vitro grown hydrangea plants where the post survival rate
was attained up to 100% when inoculated with AMF Glomus intraradices at
the hardening stage [28]. Similar results were observed in Quercus suber, where
inoculation at the hardening stage with Pisolithus tinctorius and Scleroderma
polyrhizum resulted in better growth and performance of plants [29]. Likewise,
inoculation with Piriformospora indica showed better results in tobacco and
brinjal [30]. Besides the biostimulatory effect, the biocontrol action of certain
fungi has also been reported in tissue cultured plants [31]. A comprehensive list
of some successful biotization with PGPFs is presented in Table 1.

Apart from having many advantages, there are also some challenges in using
these PGPFs during micropropagation. The major challenge is to prepare a pure
fungal inoculum without any contamination. When such contaminated mix cul-
ture is exposed to plants, it may cause significant damage to the plants. Sec-
ondly, sometimes germination and growth of fungal spores on the Murashige
and Skoog medium is quite difficult as it is not a favorable choice to grow
[45]. To overcome this problem, the modification and optimization of the
MS medium, suitable for coculture of the plant cell and PGPF, can be done.

5.2 Biotization with plant growth-promoting (rhizo)bacteria
(PGPB or PGPR)

The beneficial effect and role of certain bacteria that can enhance plant growth
and add to productivity were known for over a century. Over time, their appli-
cation in plant tissue culture was first proved by Digat et al. [46] in Primrose.
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They observed that when microshoots of Primrose (at the rooting stage and
hardening stage) were exposed to Pseudomonas putida and Pseudomonas fluor-
escens, they exerted positive effects on growth and survival. A few years later,
Elmeskaoui et al. [43] proved that biotization also improves the photosynthetic
efficiency in in vitro grown plants, which leads to increased biomass accumu-
lation. The biostimulatory action of PGPR is generally through the production
of phytohormones. The production of auxins and cytokinins is a common phe-
nomenon in PGPRs which is reported in more than 80% of rhizobacteria. The
phytohormones produced by PGPBs mitigate the insufficient endogenous quan-
tity of these hormones in microshoots during culture conditions [47]. The
effects of phytohormones produced by a variety of PGPBs (viz., Bradyrhizo-
bium, Rhizobium, Bacillus, Microbacterium, Rhodococcus, etc.) during tissue
culture have been studied by Spaepen and Vanderleyden [48]. Rodriguez-
Romero [49] studied the combined effect of PGPF and PGPR during the hard-
ening phase of micropropagation of banana. They took Glomus manihotis
(AMF) and the rhizobacteria consortium of Bacillus spp. and inoculated them
with stage III plantlets, alone and in combination, and observed that the com-
bined application of fungi and bacteria proved to be an effective inoculant and
the resultant plants showed better growth in terms of more fresh weight, dry
weight, shoot length, leaf area and required less time to become ready to get
transplanted in the soil. Both the fungal and bacterial partners did not show
any antagonistic effect toward each other. The positive effect of biotization
was also reported in the banana plantlets at the rooting stage. In a study carried
out by Mia [50], rhizobacteria were inoculated at the in vitro rooting stage of
banana and the results were encouraging as a significant increase in the root
length, root number, and root biomass was observed. Moreover, if exposure
to PGPR continues during the subsequent steps of hardening and soil transfer,
itresults in the early attainment of the reproductive stage. Flowering takes place
3 weeks before compared to normal noninoculated plants and the yield also
increases up to 51%. Similar results were also reported in potato micropropaga-
tion. When potato microcuttings were inoculated with Azospirillum brasilense
during the in vitro rooting stage on a hormone-free medium, it significantly
increased the IAA production, which ultimately led to the development of a
solid root system and better survival in post vitro transfer [51]. Moreover, in
another study, the Azospirillum brasilense strain Sp245 was inoculated at the
hardening stage of potato, which not only results in an increase in the post vitro
survival rate of plantlets (1.5 times) but also increases the weight of tubers by
30% [52]. The inoculation of rhizobacteria on a modified MS medium was stud-
ied on in vitro grown banana plantlets by Mahmood et al. [53]. The modification
was done in terms of addition of salt (0.2% Sodium chloride), and it resulted not
only in better growth and performance but also increased the synthesis of pro-
tein and chlorophyll. Likewise, biotization with Azorhizobium caulinodans in
the rice plant gave better performance of plants in terms of biomass accumula-
tion and grain yield as compared to uninoculated plants [54]. Other successful
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biotization trials were reported in many food crops such as wheat, where inoc-
ulation of Azotobacter chroococcum resulted in better root length [55]; potato
and strawberry, where Pseudomonas aureofaciens was used which resulted in
better growth [56]; watermelon, where the pseudomonas strain resulted in
increased root length [57]; and maize, where the use of Streptomyces griseor-
ubens and Norcardiopsis alba resulted in better growth of plantlets under
phosphorus-deficient soil [58]. The addition of PGPR also resulted in the
uptake of phosphorus in banana and rapeseed [59]. In banana, besides nutrient
uptake, several physiological processes such as photosynthesis, stomatal con-
ductance, and proline accumulation are also positively got affected by PGPR
[60]. More recently, Lim et al. [61] testified that in the palm, biotized with
Herbaspirillum seropedicae induces embryogenic callus formation and
proliferation.

Biotization with PGPR have also proved to be an effective method to induce
resistance against pathogens. The defense mechanism in plants are greatly
affected by ethylene. Moreover, during culture conditions, attributes of growth
and senescence are controlled by ethylene production, which is indirectly mod-
ulated through other growth hormones like auxins and cytokinins [62,63]. Eth-
ylene induces defense in plants by activating several complex pathways, which
ends in production of important defense molecules like jasmonic acid (JA), sal-
icylic acid (SA), and abscisic acid [9,10]. Similarly, phenolic compounds and
other secondary metabolites also play a significant role in pigmentation and pro-
vide protection against pathogens [64]. Biotization with Pseudomonas spp in
oregano cultures resulted in an elevated level of phenolic compounds and chlo-
rophyll [57]. Certain toxic compounds, antibiotics, and hydrolytic enzymes
have also shown a negative effect on the growth of pathogens. These com-
pounds act by either degrading the cell wall of pathogens or by suppressing
pathogenic molecules [65]. Many PGPB synthesize the ACC (1-aminocyclo-
propane-1-carboxylate) deaminase enzyme. This bacterial enzyme promotes
plant growth by decreasing the plant ethylene concentration. This enzyme con-
verts amino cyclopropane carboxylate (ACC) into ammonia and o-ketobutyrate
(a-KB), which leads to the scarcity of ACC, the prime precursor of ethylene in
the cell. The role of ACC deaminase producing PGPR in alleviating stress and
inducing resistance through reduced ethylene production has already been
reported [66]. Beside this, many PGPB also synthesize certain volatile com-
pounds which can promote callus organogenesis [67], enhance the photosynthe-
sis efficiency [68], and offer better defense against abiotic stresses [69]. PGPMs
also play a critical role in Induced Systemic Resistance (ISR) and hence provide
protection against pathogens as well as insects. Many bacteria and fungi (like
Bacillus, Pseudomonas, and Trichoderma) prepare the plant for any future
attack of pathogen and save the energy of the plant which may get wasted
unnecessarily otherwise during infection [70]. A comprehensive list of some
successful biotization with PGPBs is presented in Table 2.
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5.3 Biotization to elevate in vitro secondary metabolite production

Higher plants synthesize a variety of secondary metabolites (SM) such as alka-
loids, flavonoids, steroids, terpenoids, quinones, lignans, and anthocyanins.
These SM are immensely valued products, generally used as pharmaceuticals,
agrochemicals, flavors, fragrances, colors, biopesticides, and food additives.
For plants, these SM have no significant role in vital metabolic pathways for
survival, but play an important role in the interaction of the plant with its envi-
ronment and also act as defense chemicals [90]. Generally, these SM are accu-
mulated in plants in a very low amount (less than 1%). Moreover, their synthesis
is dependent on the physiological conditions (particularly stress conditions) and
developmental stage of the plant [91]. Considering their immense economical
values, their production through tissue culture methods was promoted. How-
ever, since 1in tissue culture, plant cells are grown under lavish environmental
conditions, which do not favor SM synthesis, their accumulation further
decreases. Several biotechnological approaches have been applied to increase
SM production under in vitro conditions, but elicitation is recognized as the
most viable technique for increasing the production of desirable SM from cell,
organ, and plant culture [92,93]. The strategy through which SM production is
stimulated through the involvement of any biotic or abiotic factor is called “elic-
itation” and the factor is called the “elicitor.” Elicitors may be formed inside or
outside plant cells and can be endogenous or exogenous in nature. Depending on
their origin, they are classified as biotic or abiotic elicitors. Abiotic elicitors
include UV irradiation, salts of heavy metals, and some other chemicals (like
jasmonic acid, salicylic acid, etc.), while biotic elicitors may include chitin,
chitosan, or glucans present in fungal cell wall materials, glycoprotein present
in bacteria, and low molecular weight organic acids. Sometimes the entire
microorganism (which may be a pathogen also) can act as elicitors. Several
PGPB and PGPF have also been proved to be potential elicitors and their role
in increasing SM production has been established. Inoculation of plant with
PGPM (biotic elicitors) may significantly induce higher production of SM dur-
ing tissue culture conditions. Several studies on the effect of PGPRs on higher
SM production were carried out and it was found that PGPRs induce SM pro-
duction through the ISR (induced systemic resistance) mechanism [94]. PGPR
act as a potent activator of the key enzymes that are involved in the biosynthetic
pathways of secondary metabolites [95].

PGPR also induce biosynthesis of certain other chemicals (like jasmonic
acid and salicylic acid) in plants which acts as a transducer for elicitor
signaling pathways and ultimately leads to the accumulation of secondary
metabolites in plants [96]. Similarly, several PGPFs (mostly AM fungi) also
induce increased production of SM when inoculated during culture conditions.
The effect of different PGPMs on secondary metabolite production is depicted
in Table 3.
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6 Future prospects of biotization

Despite their immense potential, the application of PGPMs in tissue culture has
not been exploited thoroughly. One of the reasons behind this is the response of
PGPM, which varies not only from plant to plant but also at the explant level
(e.g., root, stem, leaf, etc.) [12]. Further research is required to select efficient
PGPMs as well as the development of an efficient protocol so that these organ-
isms can be effectively used in tissue culture. Understand the signal recognition
and transduction during natural conditions and culture conditions, which leads
to association between the plant partner and microbial partner, is also a chal-
lenge. The combined use of more than two organisms can also be a viable option
for better results [115]. Moreover, an efficient technique for the inoculation of
PGPMs at different stages of tissue culture and a mechanism to control the pop-
ulation of microbes without affecting plant growth as well as potency of
microbes should also be developed. Bio-nanotechnology can be used to address
this problem and ready-to-use effective formulation of PGPMs can be devel-
oped [116]. Currently, very few reports are there on the use of bio-
nanotechnology in tissue culture; hence, it will be a bright field to investigate
and surely will add new development in the biotization process. Another impor-
tant challenge in biotization is the low potency, specificity, and neutral response
toward certain plant species. In this respect, the transgenic approach to develop
a highly vigorous strain can be adopted in order to achieve a specific objective.
The recent advancement taking place in biotechnology (such as functional
genomics, bioinformatics, signaling in the rhizosphere, etc.) can be used as
an effective tool in the development of transgenic microorganisms to confer bet-
ter utilization of these PGPMs as biotization agents in tissue culture.

7 Conclusions

Micropropagation is an important tool for the large-scale production of elite
germplasm of many economically important plants. However, due to certain
limitations (like the high production cost and loss of plants during the acclima-
tization phase), the technique has not reached the planned success point.
PGPMs are considered as potentially advantageous microbes for the plants in
terms of better growth and providing protection against biotic and abiotic stress.
The biofertilizer, biostimulation, and biocontrol properties of these PGPMs can
be exploited to overcome the existing problems in tissue culture. An efficient
consortium of PGPMs and the inoculation method can be developed which will
not only decrease the production cost (by replacing the costly synthetic phyto-
hormones) but also increase the survival percentage of plants after field transfer.
However, intensive care should be taken to ensure that any vigorous plant/
human pathogen should not contaminate the culture, particularly when the plant
is used as raw food, as certain pathogens can stably survive in the tissue for a
prolonged period both under in vitro as well as ex vitro conditions. In addition, a
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lot of research needs to be carried out in order to identify suitable PGPMs and to
develop formulations for appropriate application in plant tissue culture. More-
over, the molecular understanding of relationship between plants and PGPMs
will open new avenues in this prospective field of biotization.
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