
An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             72  

 

Chapter 4 

Proposed Algorithm and NMRS Model for Mentor-Mentee 

Matching Process 

4.1  Proposed Mentor-Mentee Matching Process  

4.1.1 Information Collection and Input Plan 

The foundation of the coordinating preparation is gathering nitty gritty, organized, and 

noteworthy data from coaches and mentees through mindfully created studies or shapes. 

This step includes: 

● Planning Surveys: Consolidate a mix of subjective and quantitative questions to 

capture inclinations, ability, and desires. 

● For Coaches: Zones of mastery, a long time of involvement, industry information, 

mentoring fashion, and accessibility. 

● For Mentees: Career objectives, learning styles, zones for advancement, 

accessibility, and inclinations for mentoring approaches. 

● Energetic Areas: Incorporate versatile addressing based on the introductory 

answers to form the shapes more natural and diminish reaction weariness. 

● Organized Capacity: Utilize social databases, such as SQL, to store and categorize 

the reactions for simple recovery and preparing.  

4.2  Progressed Information Pre-processing 

Planning the crude information is basic to guaranteeing the machine learning algorithm's 

viability. This stage incorporates: 

● Comprehensive Cleaning: Address lost values utilizing domain-relevant 

ascription procedures, such as mean/mode ascription for numerical information and 

prescient ascription for categorical information. 

● Standardization and Normalization: Apply highlight scaling procedures like 

MinMaxScaler or Z-Score normalization to harmonize the information run and decrease 

change affect.  

● Exception Location and Evacuation: Utilize factual strategies (e.g., boxplots) or 

calculations like Confinement Timberlands to distinguish and evacuate inconsistencies. 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             73  

 

● Include Designing: Improve the dataset with determined properties, such as 

mentor-mentee accessibility cover or calculated expertise crevice.  

4.3  Training and Model Design 

In order to process the pre-processed data and forecast mentor-mentee compatibility, this 

stage entails choosing the proper machine learning techniques: 

4.3.1 Selection of Similarity Metrics: 

For textual data (such as descriptions of mentoring styles), use cosine similarity. For 

numerical data, such years of experience or availability overlap, use Euclidean distance. 

Try using hybrid metrics to integrate different kinds of data. 

4.3.2 Choosing an Algorithm: 

● Clustering Algorithms: To create groups with a high degree of internal similarity 

between mentors and mentees, use hierarchical clustering or K-Means. 

● Recommendation systems: Use collaborative filtering or matrix factorization (like 

Singular Value Decomposition) to get individualized matching. 

● Hybrid Models: To improve match accuracy, combine collaborative and content-

based filtering. 

● Model Training: Divide the dataset into subgroups for testing, validation, and 

training. Use strategies such as cross-validation to avoid overfitting. 

4.4  Evaluation and Suggestions 

The program rates mentors for each mentee, producing the top two matches, after 

determining similarity scores for each mentor-mentee pair. Improvements in this stage 

consist of: Determine the relative value of particular traits using weighted similarity 

scoring; for example, alignment with professional goals may be given greater weight than 

availability. 

4.4.1 Diversity Consideration:  

Put restrictions in place to guarantee a variety of mentor choices and prevent suggesting 

mentors to mentees more than once. 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             74  

 

4.4.2 Explainable AI (XAI):  

Offer comprehensible explanations for the recommendations made for particular matches 

(e.g., a high similarity score because of common data science knowledge). 

 

4.5  User Engagement and Results 

The output is intended to be actionable and easy to use: 

4.5.1 Dashboard for Mentees: 

Show the similarity scores and biographies of the top two suggested mentors. 

For every match, include important characteristics and a succinct explanation. 

Give mentees the choice to select one of the two mentors. 

4.5.2 Optional Administrator Panel: 

Give program managers the option to manually match mentors and mentees or to override 

automated recommendations. 

 

4.6  Feedback Loop and Improvement of the Model 

Feedback is included into the system as it develops to continuously improve performance: 

4.6.1 Feedback Collection:  

After the match, get comments about results and satisfaction from mentors and mentees. 

4.6.2 Model tuning:  

To improve the matching model, use feedback data. Depending on feedback trends, change 

the weights of specific features or investigate different algorithms. 

4.6.3 Data Augmentation:  

Add new mentor and mentee entries to the dataset on a regular basis, or modify the 

questions to take into account shifting program goals. 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             75  

 

 

Figure 4. 1: Mentor – Mentee Matching Process 

4.7  Machine Learning in Mentor Mentee Match making Process 

Machine learning (ML) recommendation systems, which leverage individual preferences, 

data-driven insights, and complex algorithms to optimize the pairing process, can 

significantly help with successful mentor-mentee matching. The primary goal of these 

systems is to pair mentees with mentors who can provide the best guidance, creating a 

powerful and advantageous relationship. Making sure that mentors and mentees are a good 

fit in terms of abilities, objectives, and values is a crucial component of a successful 

partnership. By evaluating how well mentor and mentee profiles overlap based on answers 

to a predetermined set of questions, machine learning—specifically, cosine similarity—

can greatly enhance the matching process. 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             76  

 

By analysing past data, patterns, and preferences to create better, more educated matches, 

machine learning (ML) can automate and improve the mentor-mentee matching process. 

The compatibility of a mentor and a mentee is assessed in a typical mentor-mentee 

matching situation based on a number of qualities or attributes, including communication 

preferences, career goals, interests, and areas of competence. 

Large data sets can be processed using machine learning techniques to uncover hidden 

trends in the profiles of mentors and mentees. An intelligent matchmaking system that 

learns from previous fruitful mentorship relationships and uses this information for 

upcoming matching jobs can be developed by utilizing these patterns. 

4.8  Cosine Similarity 

An efficient mathematical method for calculating the similarity between two vectors—in 

this example, the mentors' and mentees' response sets—is cosine similarity. The best 

matches between mentors and mentees are determined by converting each questionnaire 

response into a numerical vector and comparing their alignment using cosine similarity. 

The cosine of the angle between two vectors is used to calculate cosine similarity. On a 

scale of 0 (totally dissimilar) to 1 (identical), the similarity score is displayed. 

 

This is the cosine similarity formula: 

Similarity (A, B) = 𝐴⋅𝐵 / ∥𝐴∥∥𝐵∥ 

Where, the mentor's and mentee's response vectors are 

denoted by A and B, respectively. 

A⋅B is the vectors' dot product. 

These are the vector magnitudes: ∥𝐴∥ and ∥𝐵∥. 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             77  

 

4.9  Steps for Algorithm Formation 

4.9.1 Data Preparation  

● Representation in the Questionnaire: There are several questions in each 

questionnaire, categorized into several groups. Numerical encoding of the responses is 

used, such as weighted scores for specific responses or Likert scale values like 1–5. 

● Formation of Vectors: Every individual involved (mentor or mentee) is depicted 

as a vector of numerical answers: V=[v1,v2,v3,…,vn], where vi is the numerical value of 

the i-th question in the questionnaire. 

● Normalization: Vectors are normalized (if required) to provide uniformity and 

prevent similarity calculations from being skewed by variations in question scales. 

4.10  Procedure for the Algorithm of Matching 

4.10.1 Step 1: Input Data: 

4.10.1.1 Gather Responses to the Questionnaire: 

● Collect questionnaire answers from mentees and mentors. 

● With online tools (like Google Forms) or in-person surveys, make sure that every 

question is answered precisely and consistently. 

● To get rid of any erroneous or incomplete responses, validate and clean the data. 

4.10.1.2 Use Vectors to Show Responses: 

● Create a numerical vector from each participant's responses: 

● For questions that are binary, Yes = 1 and No = 0. 

● Use the scale values (e.g., 1 to 5) directly for Likert scale inquiries. 

● If the question is weighted, give the options predetermined weights and incorporate 

them into the vectors. 

  Example: 

● Mentor A’s responses: [1,4,1,3,5] 

● Mentee X’s responses: [1,5,1,4,5] 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             78  

 

Each vector represents a participant’s preferences, values, and personality traits based on 

the questionnaire. 

4.10.1.3 Save Information for Effective Processing: 

● Vectors for each mentor and mentee should be kept in a structured database or matrix. 

Mentors: 

Mentor A: [1, 4, 1, 3, 5] 

Mentor B: [0, 5, 1, 4, 4] 

Mentees: 

Mentee X: [1, 5, 1, 4, 5] 

Mentee Y: [1, 3, 1, 2, 4] 

4.10.2 Step 2: Cosine Similarity Calculation in Pairs 

4.10.2.1 Determine the Similarity between Pairs: 

Example: 

Mentor A’s vector: [1,4,1,3,5] 

Mentee X’s vector: [1,5,1,4,5] 

Dot product: (1×1)+(4×5)+(1×1)+(3×4)+(5×5)=1+20+1+12+25=59 

          

4.10.2.2 Store Results: 

● Save similarity scores in a similarity matrix. 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             79  

 

4.11   Proposed Algorithm 

 
Figure 4. 2: Proposed Algorithm - NMRS 

Explanation:  

Input: Answers of each question from mentors and students / mentees. 

Explanation: As an input we will take the answers from each question from each 

category from mentors and mentees. 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             80  

 

Step 1: Initialize the initial_allocation_id for mentors as null 

Every mentor's initial_allocation_id is set to null (or any other unassigned state, like 

0). Afterwards, this variable will be used to monitor if the mentor has been assigned 

a student or not. As students are matched with mentors, we will update this variable 

to reflect the allocation status of each mentor. 

Step 2:  Initialize the initial_allocation_id for students as null. In a similar manner, 

each student's initial_allocation_id is set to null. This suggests that no mentor has been 

assigned to the student as of yet. As soon as the student and mentor are matched, this 

variable will be updated.  

Step 3: Aggregate all mentors' responses to every question in every category. 

Answers to a series of pre-established questions are given by each mentor, perhaps 

spanning many categories (such as abilities, interests, objectives, etc.). These 

responses are saved, and subsequently, each mentor's response and the students' 

responses are compared to identify matches. 

Step 4: Combine all of the mentees' answers to each question across all categories. 

Each student responds to an identical series of questions, which might cover multiple 

categories. Their responses, like those of the mentors, will be kept on record for 

comparison purposes. The students' interests or preferences are reflected in these 

responses. 

Step 5: Compare each mentor's responses with those of every student. Examine each 

mentor's responses, question by question and category by category, to those of every 

student. A match counter may be increased for each time a student and mentor provide 

a matched response. This will provide an initial sense of how well a mentor fits with 

a given student. 

Step 6: Continue from Step 5 until all pairs of mentors and students have been 

compared. For each potential mentor-student relationship, the matching procedure 

from Step 5 is carried out over and over. We will have a record of the number of 

answers that match between each mentor and each student at the end of this stage. 

Step 7: Determine how many of each mentor's and student's replies match. The total 

number of matched answers is computed and recorded for each mentor-student pair. 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             81  

 

Based on the students' answers, this stage basically measures how compatible each 

mentor and student are. 

Step 8: Determine how many matched responses each student can have. Ascertain 

which mentor(s) best fit each student based on the greatest number of matched 

responses. This is an important step since it will assist in determining which mentors 

are best suited for each individual student. 

Step 9: Based on maximum matching, let each student get in touch with the top two 

mentors. The student is given the chance to get in touch with their top two mentors 

once the mentor(s) with the highest match scores for them have been identified.  In 

order to prevent overstuffing any one mentor, the algorithm can give preference to 

mentors with the highest match scores and let students select from the top two. This 

method gives students a feeling of independence by letting them choose from the 

options that best suit them. 

Step 10: Following an allocation, increase a mentor's initial_allocation_id by +1. 

When a student chooses a mentor, that mentor's initial_allocation_id is adjusted (for 

example, from null or 0 to 1). The number of students who have been paired with a 

mentor is tracked in this phase. The system can use this data to restrict the amount of 

students that are paired with each mentor, if necessary. 

Step 11: After matching, change the student's initial_allocation_id from null (or 0) to 

1. Similar to this, a student's initial_allocation_id is changed from null (or 0) to 1 when 

they choose a mentor. This modification shows that the student and mentor match 

went well. 

Step 12: For every student, repeat steps 8 through 11 For every student, the algorithm 

keeps up the matching and allocation procedure. Every student has the opportunity to 

meet with their top two mentors; pairs of students and mentors are then selected based 

on the highest matching scores. This iteration guarantees that a mentor is allocated to 

each student 

  Output: 

Students are paired with mentors according to the highest matching. Upon the 

completion of the algorithm, every student will have been paired with a mentor (or 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             82  

 

two mentors, contingent on the methodology), and each mentor will have been given 

students based on the greatest degree of similarity between their responses. To ensure 

the best possible mentor-student match, the allocation is based on the highest level of 

compatibility between mentors and students. 

Through a series of question comparisons, the aforementioned algorithm 

systematically assigns mentors to students / mentees. It makes sure that every student 

is paired with mentors who best fit their responses in terms of goals, interests, and 

skill sets. By giving each student / mentee a choice between their top two matching 

mentors, the method guarantees equity. 

4.12  Pseudocode used to build NMRS – Mentor Buddy Matching 

Model 

Table 4. 1: Load Excel File 

Procedure Name : load_excel 

Action : pseudo code to load excel file 

Purpose:  
The goal is to load a user-selected Excel file, store its contents in a global 

DataFrame, and then show the data along with the names of its columns. 

Input: A user-selected Excel file via a file dialog box.  

Output: 

 The loaded Excel data is contained in a DataFrame df. Column names were shown 

and a loading success confirmation was printed.  

Variables Used: 

• df (Global): The DataFrame that contains the contents of the Excel file.  

• file_path: The string pointing to the Excel file that was chosen.  

Pseudocode: 

BEGIN FUNCTION load_excel 

    DECLARE a global variable `df` to store the data from the Excel file. 

    BEGIN 

        PROMPT the user to select an Excel file using a file dialog. 

        STORE the selected file path in the variable `file_path`. 

    END 

 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             83  

 

    BEGIN 

        LOAD the Excel file from `file_path` into a DataFrame using `pandas.read_excel`. 

        ASSIGN the loaded data to `df`. 

    END 

 

    BEGIN 

        DISPLAY the content of `df` by calling the `display_data` function. 

    END 

 

    BEGIN 

        PRINT "Excel file loaded." 

        PRINT the column names of `df` using its `columns` attribute. 

    END 

 

END FUNCTION 

: 

Table 4. 2: Classify Roles 

Procedure Name : classify_roles 

Action : pseudo code to classify_roles Function 

Purpose: 

To use a machine learning model to categorize the dataset's members as mentors or pupils, 

compute classification metrics, and present pertinent findings. 

Input: 

• df: The loaded dataset is thought to have additional feature columns for classification as 

well as a column called student_mentor that indicates roles. 

Output: 

● The GUI shows the following metrics: F1 Score, Accuracy, Precision, and Recall.  

● Classification Outcomes:  

● Students: Rows with student_mentor = 1 are categorized as students.  

● Mentors: Rows with student_mentor = 0 are designated as mentors.  

Execution Time: The amount of time needed to finish classifying. 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             84  

 

Variables Used: 

● students: Filtered DataFrame containing rows where student_mentor = 1. 

● mentors: Filtered DataFrame containing rows where student_mentor = 0. 

● model: RandomForestClassifier object used for classification. 

● question_columns: List of feature column names used for classification. 

● classification_time: Time taken to complete the classification process. 

● X, y: Feature matrix and target variable array. 

● X_train, X_test, y_train, y_test: Split datasets for training and testing. 

y_pred: Predicted labels from the model. 

Pseudocode: 

BEGIN FUNCTION classify_roles 

    BEGIN 

        RECORD the current time as `start_time` to track execution time. 

    END 

 

    BEGIN 

        DECLARE global variables `students`, `mentors`, `model`, `question_columns`, and 

`classification_time`. 

    END 

 

    BEGIN 

        IDENTIFY all columns in the DataFrame `df` except 'sr_no' and 'student_mentor', and 

STORE them in `question_columns`. 

        EXTRACT values from `df` for the identified `question_columns` and STORE them 

in `X`. 

        EXTRACT values from `df` for the column 'student_mentor' and STORE them in `y`. 

    END 

 

    BEGIN 

        SPLIT the data in `X` and `y` into training and testing sets: 

            - Use 70% of the data for training and 30% for testing. 

            - SET random state to 42 for reproducibility. 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             85  

 

            STORE the results as `X_train`, `X_test`, `y_train`, and `y_test`. 

    END 

 

    BEGIN 

        INITIALIZE a RandomForestClassifier with 100 estimators and random state 42. 

        TRAIN the `model` using `X_train` and `y_train`. 

    END 

 

    BEGIN 

        USE the trained `model` to PREDICT labels for `X_test` and STORE the results in 

`y_pred`. 

    END 

 

    BEGIN 

        CALCULATE the following metrics based on `y_test` and `y_pred`: 

            - ACCURACY as `accuracy_score(y_test, y_pred) * 100`. 

            - PRECISION as `precision_score(y_test, y_pred, average='binary') * 100`. 

            - RECALL as `recall_score(y_test, y_pred, average='binary') * 100`. 

            - F1 SCORE as `f1_score(y_test, y_pred, average='binary') * 100`. 

        UPDATE the GUI label `accuracy_label` to display these metrics. 

    END 

 

    BEGIN 

        FILTER rows in `df` where 'student_mentor' equals 1 and STORE them in `students`. 

        FILTER rows in `df` where 'student_mentor' equals 0 and STORE them in `mentors`. 

    END 

 

    BEGIN 

        UPDATE the GUI label `students_count` to show the total number of students. 

        UPDATE the GUI label `mentors_count` to show the total number of mentors. 

    END 

 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             86  

 

    BEGIN 

        RECORD the current time as `end_time`. 

        CALCULATE the total classification time as the difference between `end_time` and 

`start_time`. 

    END 

    BEGIN 

        PRINT the message: "Classification completed in {classification_time:.4f} seconds". 

        UPDATE the GUI label `speed_label` to display `classification_time`. 

    END 

 

END FUNCTION 

 

 
Table 4. 3: Match Similarity 

Procedure Name : match_similarity 

Action : pseudo code for match_similarity Function 

Purpose: 

To calculate and display the similarity scores between students and mentors using cosine 

similarity, identifying the top matches for each student. 

Input: 

● students: DataFrame containing rows classified as students. 

● mentors: DataFrame containing rows classified as mentors. 

● question_columns: List of columns representing the feature set for similarity 

calculations. 

Output: 

● match_result: A list containing student-mentor matches with similarity scores and 

ranks. 

● Similarity Results Display: Matches displayed in the GUI, including student ID, 

mentor ID, similarity score, and rank. 

● Execution Time: Time taken to complete the matching process displayed in the 

GUI. 

Variables Used: 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             87  

 

● students: Filtered DataFrame containing student rows. 

● mentors: Filtered DataFrame containing mentor rows. 

● question_columns: List of columns used for similarity calculation. 

● students_data: Array of feature values from students. 

● mentors_data: Array of feature values from mentors. 

● match_result: List to store the results of matches. 

● similarity_scores: Array of cosine similarity scores for a student against all 

mentors. 

● top_matches: Indices of the top two mentors with the highest similarity scores for 

a student. 

● matching_time: Time taken for the matching process. 

Pseudocode: 

BEGIN FUNCTION match_similarity 

    BEGIN 

        RECORD the current time as `start_time` to track execution time. 

    END 

 

    BEGIN 

        DECLARE global variables `students`, `mentors`, `model`, `question_columns`, and 

`classification_time`. 

    END 

 

    BEGIN 

        IF `students` is empty OR `mentors` is empty THEN 

            PRINT "Please load and classify data first." 

            RETURN from the function. 

        END IF 

    END 

 

    BEGIN 

        EXTRACT feature values from `students` for `question_columns` and STORE them 

in `students_data`. 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             88  

 

        EXTRACT feature values from `mentors` for `question_columns` and STORE them 

in `mentors_data`. 

    END 

 

    BEGIN 

        INITIALIZE an empty list `match_result` to store match results. 

    END 

 

    BEGIN 

        FOR EACH student index `i` and `student` in the 'sr_no' column of `students`: 

            CALCULATE `similarity_scores` as the cosine similarity between 

`students_data[i]` and `mentors_data`. 

            FIND the indexes of the top 2 matches in `similarity_scores`, sorted in descending 

order, and STORE them in `top_matches`. 

 

            BEGIN 

                FOR EACH `rank` and `match_idx` in `top_matches`: 

                    APPEND the tuple (`student`, `mentors[match_idx]['sr_no']`, 

`similarity_scores[match_idx]`, `rank + 1`) to `match_result`. 

                END FOR 

            END 

        END FOR 

    END 

 

    BEGIN 

        CALL the `display_matches` function with `match_result` to display the matching 

results. 

    END 

 

    BEGIN 

        RECORD the current time as `end_time`. 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             89  

 

        CALCULATE `matching_time` as the difference between `end_time` and 

`start_time`. 

    END 

 

    BEGIN 

        PRINT the message: "Matching completed in {matching_time:.4f} seconds." 

        UPDATE the GUI label `speed_label` to display both `classification_time` and 

`matching_time`. 

    END 

 

END FUNCTION 

 

Table 4. 4: Classify Roles 

Procedure Name : classify_roles 

Action : pseudo code for the Program 

Purpose: 

The program provides a GUI-based solution for role classification and similarity matching 

between students and mentors based on Excel data. It performs machine learning 

classification using a Random Forest model and calculates cosine similarity for matching 

purposes. 

Input: 

1. Excel File: Loaded by the user, containing data with features and labels. 

2. Feature Columns: Columns used for training the classification model and 

similarity matching. 

Output: 

1. Metrics: Accuracy, Precision, Recall, and F1 Score of the classification model. 

2. Classified Data: 

● Students: Rows classified as students (student_mentor = 1). 

● Mentors: Rows classified as mentors (student_mentor = 0). 

2. Matching Results: Top mentor matches for each student, displayed in the GUI. 

Variables Used: 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             90  

 

● df: Global variable to store the loaded Excel data. 

● students: Global variable to store rows classified as students. 

● mentors: Global variable to store rows classified as mentors. 

● model: Random Forest classifier used for role classification. 

● question_columns: List of columns used for classification and similarity matching. 

● classification_time: Time taken to perform classification. 

● match_result: List to store similarity match details. 

● X, y: Feature matrix and target labels for classification. 

● X_train, X_test, y_train, y_test: Split datasets for training and testing. 

● y_pred: Predicted labels from the model. 

Pseudocode: 

BEGIN PROGRAM 

    BEGIN IMPORT NECESSARY LIBRARIES 

        IMPORT pandas AS pd for data manipulation. 

        IMPORT tkinter for creating the GUI. 

        IMPORT sklearn for machine learning models and metrics. 

        IMPORT time for measuring execution time. 

    END IMPORT 

 

    BEGIN DECLARE GLOBAL VARIABLES 

        DECLARE `df` for storing the loaded dataset. 

        DECLARE `students` and `mentors` for classified data. 

        DECLARE `model` for the machine learning classifier. 

        DECLARE `question_columns` for relevant feature columns. 

        DECLARE `classification_time` for recording execution time. 

    END DECLARE 

 

    BEGIN DEFINE FUNCTION load_excel 

        PROMPT the user to select an Excel file using a file dialog. 

        LOAD the selected Excel file into `df` using `pandas.read_excel`. 

        CALL the `display_data` function to display the contents of `df`. 

        PRINT "Excel file loaded successfully." 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             91  

 

        PRINT the column names of `df`. 

    END DEFINE FUNCTION 

 

    BEGIN DEFINE FUNCTION display_data 

        CLEAR any existing content in the tree view display. 

        SET the tree view headings to match the columns in `df`. 

        INSERT each row of `df` into the tree view for display. 

    END DEFINE FUNCTION 

 

    BEGIN DEFINE FUNCTION classify_roles 

        RECORD the current time as `start_time` to measure execution time. 

        IDENTIFY relevant columns in `df` (excluding 'sr_no' and 'student_mentor') and 

STORE them in `question_columns`. 

        EXTRACT values for `question_columns` into `X` and values for 'student_mentor' 

into `y`. 

        SPLIT `X` and `y` into training and test datasets. 

        INITIALIZE a `RandomForestClassifier`. 

        TRAIN the `model` using the training data. 

        PREDICT the labels for the test data using the `model`. 

        CALCULATE metrics: accuracy, precision, recall, and F1 score. 

        DISPLAY these metrics on the GUI. 

        FILTER rows where 'student_mentor' equals 1 into `students` and 0 into `mentors`. 

        DISPLAY the total number of students and mentors on the GUI. 

        CALCULATE the classification time and display it. 

    END DEFINE FUNCTION 

 

    BEGIN DEFINE FUNCTION match_similarity 

        RECORD the current time as `start_time` to measure execution time. 

        IF `students` or `mentors` are empty: 

            PRINT "Please load and classify data first." 

            RETURN from the function. 

        END IF 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             92  

 

        EXTRACT values for `question_columns` from `students` into `students_data`. 

        EXTRACT values for `question_columns` from `mentors` into `mentors_data`. 

        INITIALIZE an empty list `match_result` to store match details. 

        FOR EACH student in `students`: 

            CALCULATE cosine similarity scores with all mentors. 

            IDENTIFY the top 2 matches based on similarity scores. 

            ADD the student ID, mentor ID, similarity score, and rank to `match_result`. 

        END FOR 

        CALL the `display_matches` function to display match results. 

        CALCULATE and DISPLAY the matching time. 

    END DEFINE FUNCTION 

 

    BEGIN DEFINE FUNCTION display_matches 

        CLEAR any existing content in the match results tree view. 

        INSERT each entry from `match_result` into the tree view. 

    END DEFINE FUNCTION 

 

    BEGIN INITIALIZE GUI 

        CREATE the main application window. 

        ADD buttons for "Load Excel File", "Classify Roles", and "Match Similarity". 

        ADD labels to display accuracy, classification time, and student/mentor counts. 

        ADD a tree view for displaying dataset contents. 

        ADD another tree view for displaying match results. 

        ASSIGN the appropriate functions to button actions. 

        START the GUI's main event loop to run the application. 

    END INITIALIZE 

 

END PROGRAM 

 

Table 4. 5: Train Dataset 

Procedure Name : train_dataset 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             93  

 

Action : pseudo code train_dataset Function 

Purpose: 

To prepare the dataset, train a Random Forest classification model using labeled data, and 

return the trained model along with the test dataset for evaluation. 

Input: 

1. df: DataFrame containing the dataset with features and target labels. 

● Relevant Columns: Feature columns (excluding sr_no and 

student_mentor). 

Target Column: student_mentor (binary classification target). 

Output: 

1. model: A trained Random Forest model. 

2. X_test: Test set features for evaluation. 

3. y_test: Test set labels for evaluation. 

Variables Used: 

● model: Random Forest classifier instance. 

● question_columns: List of relevant feature columns in the dataset. 

● X, y: Feature matrix and target variable array. 

● X_train, X_test, y_train, y_test: Training and test sets split from the dataset. 

Key Steps in the Process: 

1. Data Preparation: The function identifies the features and target columns, 

ensuring only relevant data is used for training. 

2. Splitting Data: The dataset is divided into training and testing subsets for model 

evaluation. 

3. Model Training: A Random Forest classifier is created and trained on the training 

data. 

4. Returning Results: The function returns the trained model and test data for 

evaluation or further processing. 

Pseudocode: 

BEGIN FUNCTION train_dataset 

    BEGIN 

        DECLARE global variables `model` and `question_columns`. 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             94  

 

    END 

 

    BEGIN 

        IDENTIFY all columns in the DataFrame `df` except 'sr_no' and 'student_mentor'. 

        STORE these identified columns in `question_columns`. 

    END 

 

    BEGIN 

        EXTRACT values from `df` for the columns in `question_columns` and STORE them 

in `X`. 

        EXTRACT values from `df` for the column 'student_mentor' and STORE them in `y`. 

    END 

 

    BEGIN 

        SPLIT the data in `X` and `y` into training and test sets: 

            - USE 70% of the data for training and 30% for testing. 

            - SET random state to 42 for reproducibility. 

        STORE the results in `X_train`, `X_test`, `y_train`, and `y_test`. 

    END 

 

    BEGIN 

        INITIALIZE `model` as a RandomForestClassifier with the following parameters: 

            - NUMBER OF ESTIMATORS set to 100. 

            - RANDOM STATE set to 42 for reproducibility. 

    END 

 

    BEGIN 

        TRAIN the `model` using the training data (`X_train` and `y_train`). 

        PRINT "Model training complete" to indicate the training process has finished. 

    END 

 

    BEGIN 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             95  

 

        RETURN the trained `model` along with `X_test` and `y_test` for evaluation. 

    END 

 

END FUNCTION 

 

Table 4. 6: Test Dataset 

Procedure Name : test_dataset(model, X_test, y_test) 

Action : pseudo code for test_dataset Function 

Purpose: 

To evaluate the performance of a trained model on a test dataset by calculating key 

metrics: accuracy, precision, recall, and F1-score. 

Input: 

1. model: The trained Random Forest classification model. 

2. X_test: Test set features used for predictions. 

3. y_test: Test set labels (ground truth) for evaluation. 

Output: 

1. Metrics: 

● accuracy: Percentage of correct predictions. 

● precision: Proportion of positive predictions that were correct. 

● recall: Proportion of actual positives correctly identified. 

● f1_score: Harmonic mean of precision and recall. 

2. Display: 

● Printed metrics for user visibility. 

Variables Used: 

● y_pred: Predicted labels from the model for X_test. 

● accuracy: Calculated accuracy of the model. 

● precision: Calculated precision of the model. 

● recall: Calculated recall of the model. 

● f1_score: Calculated F1-score of the model. 

Key Steps in the Process: 

1. Prediction: Use the trained model to predict test labels. 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             96  

 

2. Metric Calculation: Compute accuracy, precision, recall, and F1-score to evaluate 

the model’s performance. 

3. Display Results: Print the metrics to the console for user understanding. 

4. Return Metrics: Provide the calculated metrics for further use or integration. 

Pseudocode: 

BEGIN FUNCTION test_dataset(model, X_test, y_test) 

    BEGIN 

        PREDICT the labels for the test data `X_test` using the provided `model`. 

        STORE the predicted labels in `y_pred`. 

    END 

 

    BEGIN 

        CALCULATE the accuracy as the percentage of correct predictions: 

            - USE `accuracy_score(y_test, y_pred)` and MULTIPLY by 100. 

        CALCULATE the precision as the percentage of true positive predictions: 

            - USE `precision_score(y_test, y_pred, average='binary')` and MULTIPLY by 100. 

        CALCULATE the recall as the percentage of actual positives correctly identified: 

            - USE `recall_score(y_test, y_pred, average='binary')` and MULTIPLY by 100. 

        CALCULATE the F1 score as the harmonic mean of precision and recall: 

            - USE `f1_score(y_test, y_pred, average='binary')` and MULTIPLY by 100. 

    END 

 

    BEGIN 

        DISPLAY the calculated metrics: 

            PRINT "Accuracy: {accuracy:.2f}%" 

            PRINT "Precision: {precision:.2f}%" 

            PRINT "Recall: {recall:.2f}%" 

            PRINT "F1 Score: {f1_score:.2f}%" 

    END 

 

    BEGIN 

        RETURN the calculated metrics: 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             97  

 

            - RETURN `accuracy`, `precision`, `recall`, and `f1_score`. 

    END 

 

END FUNCTION 

4.13  Generating the User Interface for study of different models 

I have created a graphical user interface application called Nehal's Mentor 

Recommendation System (NMRS) to recommend mentors based on the responses 

provided by mentors and mentees in the form. This user interface advises the mentee to 

select the most suitable mentor depending on his or her routine habits and psychological 

thinking.  

The efficacy, advantages, disadvantages, and applications of classification methods such 

as K-Nearest Centroid Classifier, Naive Bayes, One-Class SVM, and K-Means 

Classification are assessed in a comparative analysis using my datasets. 

 

4.13.1 Comparative Analysis 

● Z  Algorithm 

● Rabin Karp 

● Naïve 

● Knuth-Morris-Pratt (KMP) algorithm 

● Brute-Force 

● Boyer-Moore 

 

 

 

 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             98  

 

● Open NMRS - Mentor Matching Model 

 

Figure 4. 3: NMRS – Mentor Matching Model 

● Load Excel File 

 

Figure 4. 4: Load Excel File 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             99  

 

 

Figure 4. 5: Load Excel File 

 Z-Algorithm 

An effective string-matching method for locating every instance of a pattern in a text is the 

Z-Algorithm. The concatenated string created by connecting the pattern and text, separated 

by a special delimiter (such as "P$T"), is preprocessed. The Z-array is calculated during 

preprocessing, and each element Z[i] denotes the length of the largest substring beginning 

at position i that corresponds to the string's prefix. The algorithm then looks for values in 

the Z-array that match the pattern's length, suggesting precise textual matches. 

 

Classification 

 

Figure 4. 6: Classification of Z Algorithm 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             100  

 

Matching Similarity 

 

 

Figure 4. 7: Matching Similarity of Z Algorithm 

 Rabin Karp 

A string-matching method called the Rabin-Karp algorithm effectively finds a pattern in a 

text by using hashing. For the pattern and every text substring of the same length as the 

pattern, it calculates a hash value. The technique swiftly finds possible matches by 

comparing the hash values. Because hash collisions can happen, it confirms the match by 

directly comparing the hash values character by character. By reusing the previous hash, 

the next substring's hash can be computed in constant time thanks to the optimization of 

the hash computation through the use of a rolling hash function. 

 

Classification 

 

Figure 4. 8: Classification of Rabin Karp 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             101  

 

Matching Similarity 

 

Figure 4. 9: Matching Similarity of Rabin Karp 

 

 Naïve 

The simplest method for identifying a pattern in a text is the Naïve string-matching 

algorithm. By iterating over every potential starting point in the text and comparing each 

pattern character with its associated textual character, it looks for the pattern. The pattern 

is deemed to have been discovered at that location if every character matches. The program 

continues the comparison after shifting the pattern by one location if there is a discrepancy. 

 

Classification 

 

Figure 4. 10: Classification of Naive 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             102  

 

Matching Similarity 

 

Figure 4. 11: Matching Similarity of Naive 

 Knuth-Morris-Pratt (KMP) algorithm 

By pre-processing the pattern to produce a Partial Match Table (or LPS array), the Knuth-

Morris-Pratt (KMP) algorithm is an effective string-matching method that eliminates the 

need for duplicate comparisons. For every place, the length of the pattern's longest proper 

prefix that doubles as a suffix is stored in the LPS array. If a mismatch arises during the 

search, the algorithm moves the pattern to the correct location using the LPS array without 

going back to look at previously matched characters. 

 

Classification 

 

Figure 4. 12: Classification of KMP 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             103  

 

Matching Similarity 

 

Figure 4. 13: Matching Similarity of KMP 

 Brute-Force 

By methodically comparing the pattern with every potential starting point in the text, the 

Brute Force algorithm finds two strings that match. It sequentially checks each pattern 

character with its matching textual characters for every place. The pattern is deemed to 

have been discovered at that location if every character matches. The method restarts the 

comparison after shifting the pattern by one location if there is a discrepancy. 

 

Classification 

 

Figure 4. 14: Classification of Brute Force 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             104  

 

Matching Similarity 

 

Figure 4. 15: Matching Similarity of Brute Force 

 Boyer-Moore 

The Boyer-Moore algorithm is a very effective string-matching method that skips textual 

passages during comparisons by using preprocessing. The Good Suffix Rule and the Bad 

Character Rule are the two heuristics it uses. The Bad Character Rule either skips the entire 

pattern if the character is not in it or moves the pattern to match the last instance of a 

mismatched character in the text. Based on the pattern's matched suffix and its repetitions 

elsewhere in the pattern, the Good Suffix Rule modifies the pattern. By letting the pattern 

skip over portions of the text instead of inspecting each character, these heuristics reduce 

the number of pointless comparisons. 

 

Classification 

 

Figure 4. 16: Classification of Boyer Moore 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             105  

 

Matching Similarity 

 

Figure 4. 17: Matching Similarity of Boyer Moore 

 

4.13.2 NMRS Model 

 

Features of NMRS Model  

● Response Combination: Combines and classifies mentors' and mentees' answers to 

enable organized comparisons across a variety of topics and categories. 

● Pairwise Correspondence: Uses a methodical comparison of mentors' (C1) and 

mentees' (C2) responses to assess compatibility. 

● Comprehensive Pairwise Analysis: Guarantees a thorough matching procedure by 

comparing each mentor with each mentee. 

● Compatibility Rating: Provides a mathematical foundation for pairing by 

calculating a match score based on the amount of matching responses between each 

mentor and mentee. 

● Allocation Based on Priority: Ensures optimal compatibility by linking mentees 

with their top two mentors based on highest matching scores. 

 

 

 

 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             106  

 

Classify Rates 

 

 

Figure 4. 18: Classification of NMRS 

 

Matching Similarity 

 

Figure 4. 19: Matching Similarity of NMRS 



An Algorithmic Approach for Undergraduate Computer Science Students to Select Mentor using 

Recommendation System of Machine Learning 

 

 

Atmiya University, Rajkot, Gujarat, India                                                             107  

 

 Comparative Analysis 

 

Table 4. 7: Comparative Analysis 

 

 

 

  

   Classify Rate Matching 

Similarity 

  Accuracy Precision Recall F1 Score Speed in 

Seconds 

Boyer-Moore 83% 0.6767 0.8310 0.7459 0.6388 

Knuth-Morris-

Pratt (KMP) 88% 0.7592 0.8792 0.8148 0.7003 

Naive Bayes 86% 0.7252 0.8596 0.7867 0.7114 

Brute Force  85% 0.7088 0.8494 0.7728 0.5000 

Rabin karp 84% 0.6927 0.8397 0.7592 0.6928 

Z Algorithm 82% 0.6613 0.8214 0.7327 0.5000 

NMRS 98% 0.9905 0.9567 0.9733 0.4262 


	Certificate of Supervisor
	Thesis Approval Form
	Declaration by Research Scholar Submission of Thesis
	Acknowledgement
	Table of Contents
	List of Figures
	List of Tables
	Abstract

