Contents

Title	Content	Pg.No.
	Declaration by Research Scholar-Originality of Research Work	I
	Certificate of Supervisor	II
	Thesis Approval Form	III
	Declaration by Research Scholar – Submission of Thesis	IV
	Acknowledgement	V
	Contents	VII
	List of Figures	IX
	List of Tables	XII
	Abstract	1
Chapter : 1	Crude Oil Stability and Compatibility Evaluation Using	3
	TLC-FID SARA: Correlating P-Value with Colloidal	
	Insolubility Index	
	1.1 Introduction	3
	1.2 Materials & Methods	19
	1.3 Results and Discussion	30
	1.4 Conclusion	43
	1.5 References	45
Chapter : 2	Comprehensive Characterization of Aromatic, Resin, and	49
	Asphaltene Fractions Derived from Vacuum Residue	
	2.1 Introduction	49
	2.2 Materials & Methods	75
	2.3 Results & Discussion	88
	2.4 Conclusion	115
	2.5 References	115
Chapter: 3	Preparation of Graphitic Carbon Like Material from ARA	121
	Fractions of Vacuum Residue	
	3.1 Introduction	121
	3.2 Materials & Methods	137

	3.3 Results & Discussion	144
	3.4 Conclusion	159
	3.5 References	160
Chapter: 4	Synthesis of Graphene Oxide and Reduce Graphene Oxide	166
	from Vacuum Gas Oil Derived Graphitic Carbon	
	4.1 Introduction	166
	4.2 Materials & Methods	177
	4.3 Results & Discussion	186
	4.4 Conclusion	203
	4.5 References	205
Chapter: 5	Reduce Graphene oxide applications in wastewater	211
	treatment and oil spillage	
	5.1 Introduction	211
	5.2 Application for rGO-M in Environmental Beingness	218
	5.3 Mechanism of GO to rGO-M	226
	5.4 Conclusion	227
	5.5 References	228
Chapter : 6	Conclusion	234
	6.1 Summary of the present research work	234
	6.2 Conclusions of the present research work	235
	6.3 Future Work	236
Appendix A	Plagiarism Report	
Appendix B	Publication	

List of Figures

Figure No.	Name of the Figure	Pg. No
Figure 1.1	P-Value Stability Analyser	24
Figure 1.2	SARA Analysis Scheme	26
Figure 1.3	TLC-FID set up	26
Figure 1.4	High Temperature Simulated Distillation Gas Chromatography	28
Figure 1.5	TLC-FID graph for SARA	31
Figure 1.6	SARA verification known vs obtained percent	35
Figure 1.7	Asphaltene verified by ASTM D6560 Vs TLC-FID	37
Figure 1.8	CII Vs P-Value	40
Figure 1.9	P-Value Vs KUOP	41
Figure 1.10	Spot test of crude oil	43
Figure 2.1	Schematic diagram of VRO	50
Figure 2.2	Crude oil process	51
Figure 2.3	Spectroscopic methods for crude oil properties	54
Figure 2.4	Common aromatic compounds in VRO	57
Figure 2.5	Common resins in VRO	59
Figure 2.6	Inductively coupled Plasma (ICP-OES)	78
Figure 2.7	Nuclear Magnetic resonance Instrument	82
Figure 2.8	Gel Permeation Chromatography Instrument	83
Figure 2.9	FTIR Instrument	88
Figure 2.10	ARA fraction characterized in this study.	88
Figure 2.11	Weight distribution of aromatic, resin and asphaltene	90
Figure 2.12	TLC-FID chromatograms of the isolated a) aromatic, b) resin	
	and c) asphaltene fractions, d) Conradson carbon residue	
	prediction and e) density chart of ARA analysis. 95	
Figure 2.13	Plot showing (a) total metal and (b) ash content in origin-based	97
	ARA fractions	
Figure 2.14	FTIR spectra of the studied origin-based aromatics	99
Figure 2.15	FTIR spectra of the studied origin-based resins	100

Figure 2.16	FTIR spectra of the origin based asphaltenes	102
Figure 2.17	Gel Permeation Chromatography of different ARA fraction	104
Figure 2.18	Average molecular weight and polydispersity values by GPC	105
Figure 2.19	1H NMR spectra of different aromatics	109
Figure 2.20	1H NMR spectra of different resins	110
Figure 2.21	1H NMR spectra of different asphaltenes	111
Figure 2.22	13CNMR spectra of different aromatics	112
Figure 2.23	13CNMR spectra of different resins	113
Figure 2.24	13CNMR spectra of different asphaltenes	114
Figure 3.1	Carbon Residue test apparatus	138
Figure 3.2	Instrumentation of Elemental Analysis	140
Figure 3.3	TGA Instrumentation	143
Figure 3.3	XRD pattern of green, calcined and graphitized samples from	148
	aromatics	
Figure 3.4	XRD pattern of green, calcined and graphitized samples from	149
	resins	
Figure 3.5	XRD pattern of green, calcined and graphitized samples from	150
	asphaltenes	
Figure 3.6	Raman spectra of green, calcined and graphitized carbon of	152
	origin-based aromatics.	
Figure 3.7	Raman spectra of green, calcined and graphitized carbon of	153
	origin-based resins	
Figure 3.8	Raman spectra of green, calcined and graphitized carbon of	154
	origin-based asphaltenes	
Figure 3.9	TGA analysis of green, calcined and graphitized carbon from	156
	origin-based aromatic fractions	
Figure 3.10	TGA analysis of green, calcined and graphitized carbon from	157
	origin-based resins fractions	
Figure 3.11	TGA analysis of green, calcined and graphitized carbon from	158
	origin-based asphaltenes fractions.	
Figure 4.1	Carbon based Nano-materials	168

Figure 4.2	Schematic diagram showing the synthesis of rGO & rGO-M	178
	from VGO via microwave assisted method	
Figure 4.3	Schematic representation of the microwave-assisted reduction	181
	mechanism of graphene oxide (GO) to reduced graphe.3ne oxide	
	modified (rGO-M).	
Figure 4.4	Schematic representation of scanning electron microscope	184
Figure 4.5	The schematic diagram of HRTEM	185
Figure 4.6	X-ray diffraction (XRD) patterns of samples (a) Graphite, (b)	189
	GO, (c) rGO and (d) rGO-M	
Figure 4.7	FTIR spectra of graphite, GO, rGO and rGO-M	193
Figure 4.8	TGA curves showing thermal stability of graphite, GO, rGO and	195
	rGO-M	
Figure 4.9	Raman spectra of graphite, GO, rGO, and rGO-M	197
Figure 4.10	N ₂ adsorption-desorption isotherms and pore size distribution of	198
	rGO and rGO-M	
Figure 4.11	FESEM images showing the morphological evolution: (a)	201
	graphite; (b) GO; (c) rGO and (d) rGO-M	
Figure 4.12	HRTEM of (a) graphitic carbon, (b) GO, (c) rGO and (d) rGO-M	203
Figure 5.1	Adsorption efficiency of rGO-M	220
Figure 5.2	Stages of oil spill remediation using rGO-M in toluene	222
Figure 5.3	Adsorption performance of rGO-M for oil spill remediation	224
Figure 5.4	3D response surface plots	226

List of Tables

Table No.	Name of Table	Pg. No.
Table 1.1	Crude Oil Samples and Their API Gravity	20
Table 1.2	API of Crude Oil	23
Table 1.3	Different proportion of SARA fraction for blend	33
Table 1.4	SARA fractions obtained area on TLD-FID	33
Table 1.5	SARA fractions contributed percent	33
Table 1.6	Saturate and aromatic coefficient verification by HPLC	36
Table 1.7	SARA, KUOP, CII, P-Value & API of fifteen different crude oils	38
Table 2.1	SARA Analysis of Vacuum Residue Oil (VRO)	56
Table 2.2	HRMS Analysis of VRO	62
Table 2.3	API-mass spectra examination	64
Table 2.4	NMR spectroscopy studies	65
Table 2.5	GCMS observations	68
Table 2.6	Polynuclear Aromatic Hydrocarbons	70
Table 2.7	Catalyst Synthesized from VRO	74
Table 2.8	Typical Metal Content in Petroleum and Residues	80
Table 2.9	Multiple molecular weight measurements with GPC	84
Table 2.10	Properties of vacuum residue	90
Table 2.11	Origin based elemental analysis	91
Table 2.12	1H NMR protons distribution of ARA fractions	107
Table 2.13	13C NMR protons distribution of ARA fractions	108
Table 3.1	Key Properties of Raw Vacuum Residue (VR)	125
Table 3.2	Specified Properties of Battery-Grade Graphite	134
Table 3.3	Environmental Impact Comparison of Graphite Production	137
Table 3.4	Equipment and Materials Required	141
Table 3.5	Yield of carbon at different stages of pyrolysis	145
Table 3.6	Elemental analysis (CHNSO) of different stages of carbon samples	146
Table 3.7	XRD analysis of Green, Calcined and Graphitized samples obtained	151
	from different origin	

Table 3.8	Raman analysis of Green, Calcined and Graphitized samples	155
	obtained from different origin	
Table 4.1	Comparison of Synthetic Graphite, Graphene Oxide (GO), and	176
	Reduced Graphene Oxide (rGO)	
Table 4.2	d-Spacing values for Graphite, GO, RGO, and RGO-M	188
Table 4.3	Elemental composition of Graphite, GO, rGO, and rGO-M	191
Table 4.4	Raman spectroscopy data of Graphite, GO, rGO, and rGO-M.	197

Appendix A Plagiarism Report

Appendix B Publication