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Optimal power flow with enhancement of voltage 
stability and reduction of power loss using ant-lion 
optimizer
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Abstract: In this work, the most common problem of the modern power system 
named optimal power flow (OPF) is optimized using the novel meta-heuristic opti-
mization algorithm ant lion optimizer (ALO). ALO is inspired by the hunting process 
of ant-lions in the natural environment. ALO has a fast convergence rate due to the 
use of roulette wheel selection method. For the solution of the optimal power flow 
problem, standard 30 bus IEEE system is used. ALO is applied to solve the suggested 
problem. The problems considered in the OPF problem are fuel cost reduction, volt-
age profile improvement, voltage stability enhancement, minimization of active 
power losses and minimization of reactive power losses. The results obtained with 
ALO is compared with other methods like firefly algorithm (FA) and particle swarm 
optimization (PSO). Results show that ALO gives better optimization values as com-
pared with FA and PSO which verifies the strength of the suggested algorithm.
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1. Introduction
At the present time, the optimal power flow (OPF) is a very significant problem and most focused 
objective for power system scheduling and operation (Bouchekara, Abido, Chaib, & Mehasni, 2014). 
The OPF is the elementary tool which permits the utilities to identify the economic operational and 
many secure states in the system (Duman, Güvenç, Sönmez, & Yörükeren, 2012; Niknam, Narimani, 
Jabbari, & Malekpour, 2011). The OPF problem is one of the utmost operating desires of the electrical 
power system (Carpentier, 1962). The prior function of OPF problem is to evaluate the optimum 
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operational state for Bus system by minimizing each objective function within the limits of the op-
erational constraints like equality constraints and inequality constraints (Bouchekara, Abido, & 
Boucherma, 2014). Hence, the optimal power flow problem can be defined as an extremely non-
linear and non-convex multimodal optimization problem (Abou El Ela & Abido, 2010).

From the past few years too many optimization techniques were used to solve the optimal power 
flow (OPF) problem. Some traditional techniques are used to solve the proposed problem have been 
suffered from some limitations like converging at local optima, not suitable for binary or integer 
problems and also have the assumptions like the convexity, differentiability, and continuity 
(Bouchekara, 2013). Hence, these techniques are not suitable for the actual OPF situation (AlRashidi 
& El-Hawary, 2009; Frank, Steponavice, & Rebennack, 2012a). All these limitations are overcome by 
meta-heuristic optimization methods like genetic algorithm (GA), particle swarm optimization (PSO), 
ant colony optimization (ACO), differential evolution algorithm (DEA) and harmony search algorithm 
(HSA) (Frank, Steponavice, & Rebennack, 2012b; Yildiz, 2012).

In this paper, a newly introduced meta-heuristic optimisation technique named ant-lions opti-
mizer (ALO) is implemented to solve the optimal power flow problem. The ALO technique is a biologi-
cal and sociological inspired algorithm. This technique is follows the hunting process of the antlions. 
Key steps of hunting ants such as ants random walk, builds traps, trapping of ants, grasping foods, 
and rebuilding the traps are applied. The capabilities of ALO are finding the global solution, fast con-
vergence rate due to the use of roulette wheel selection, can handle continuous and discrete opti-
mization problems.

According to no free launch theorem state that single Meta-heuristic algorithm is not best for 
every problem so we considered ant-lions optimizer for continues optimal power flow problem. In 
this work, the ALO is applied to standard 30 bus IEEE test system (Lee, Park, & Ortiz, 1985) to solve 
the OPF (Bakirtzis, Biskas, Zoumas, & Petridis, 2002; Belhadj & Abido, 1999; Bouktir, Labdani, & 
Slimani, 2005; Ongsakul & Tantimaporn, 2006; Soliman & Mantawy, 2012) problem. There are three 
objective cases considered in this paper that have to be optimize using ant-lion optimizer (ALO) 
technique are fuel cost reduction, voltage stability improvement, and voltage deviation minimiza-
tion. The result shows the optimal adjustments of control variables in accordance with their limits. 
particle swarm optimisation (PSO) and firefly algorithm (FA) are the most popular algorithms in 
swarm algorithms. So, the results obtained using ALO technique has been compared with particle 
swarm optimisation (PSO) and firefly algorithm (FA) techniques. The results show that ALO gives 
better optimization values as compared with different methods which prove the strength of the sug-
gested method.

2. Ant-lion optimizer technique
The ALO technique reflects the intellectual activities of antlions in catching ants in the environment. 
The ALO algorithm inspired by the interface of antlions and ants inside the pit. To model such inter-
faces, ants have to travel over the exploration space, and antlions are permitted to pursuit them and 
become stronger using traps (Mirjalili, 2015).

2.1. Operators of ALO algorithm
As ants travel randomly in search space when finding the prey, a random walk is selected for dem-
onstrating ants’ effort and it is given by Equation (1) (Mirjalili, 2015):
 

where cumsum computes the cumulative sum, n is the maximum No. of iteration, t is the step of 
ants random walk (iteration), and r(t) is a stochastics function defined as follows (Mirjalili, 2015):

(1)X(t) =
[
0, cumsum

(
2r(t_1) − 1

)
, cumsum

(
2r
(
t_2

)
− 1

)
,… , cumsum

(
2r(t_n) − 1

)]

r(t) =

{
1 → rand > 0.5

0 → rand ≤ 0.5
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where t is the step of ants random walk and rand represent a random number created by constant 
circulation in the interval of [0, 1] (Mirjalili, 2015).

The location of ants are kept and used during optimisation in the given matrix (Mirjalili, 2015):

 

where MAnt = the matrix for storing the location of every ants, Aij = the value for jth variable (dimen-
sion) of ith ant, n = the No. of ants and d = the total No. of variables.

For calculating individual ant, a fitness function is used in optimisation and subsequent matrix 
saves the fitness value of each ants (Mirjalili, 2015):

 

where MOA = the matrix for storing the each ant fitness, Aij = the value of jth variable of ith ant, n = the 
total No. of ants and f = the objective function.

So we suppose that ants, as well as the antlions, are hide anywhere in the search area. So as to 
store their locations and fitness values, the following matrices are used:

 

where MAntlion = the matrix for storing the location of individual antlion, ALij = the value of jth variable 
of ith antlion, n = No. of ants and d = the No. of variables.

 

where MOAL = the matrix for storing the fitness of individual antlion, ALij = the value of jth variable of ith 
antlion, n = No. of ants and f = the objective function.

2.2. Random walk of ants
Each of the behaviors is mathematically modeled as (Mirjalili, 2015).

The random walks of ants is calculated by Equation (6):

(2)MAnt =

⎡
⎢⎢⎢⎢⎢⎣
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where ai  =  minimal of the random walk of ith variable, bi  =  the maximum of random walk in ith 
variable.

2.3. Trapping in antlions pits
The trapping in ant-lion’s pits is calculated by Equations (7) and (8):
 

 

2.4. Sliding ants towards antlion
The sliding ants towards ant-lion calculated by Equations (9) and (10):
 

 

where I = ratio, ct = the minimal of total variables at tth iteration, and dt = the vector containing the 
maximum of total variables at tth iteration.

2.5. Catching prey and re-building the pit
Hunting prey and re-arranging the pits calculated by Equation (11):
 

where t  =  the current iteration, Antlionj
t  =  the location of chosen jth antlion at tth iteration, and 

Anti
t = the location of ith ant at tth iteration.

2.6. Elitism
Elitism of ant-lion calculated using roulette wheel by Equation (12):
 

where RtA = the random walk nearby the antlion chose by means of the roulette wheel at tth iteration, 
RtE = the random walk nearby the elite at tth iteration, Antti  = the location of ith ant at tth iteration 
(Mirjalili, 2015).

3. Optimal power flow problem formulation
As specified before, OPF is Optimized power flow problem which provides the optimal values of con-
trol (independent) variables by minimizing a predefined objective function with respect to the oper-
ating bounds of the system (Bouchekara, Abido, Chaib, et al., 2014). The OPF problem can be 
mathematically expressed as a non-linear constrained optimization problem as follows (Bouchekara, 
Abido, Chaib, et al., 2014):
 

 

(6)
xti =

(xti − xi) × (di − c
t
i )
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(7)cti = Antlion
t
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(13)Minimize f (a, b)

(14)Subject to s(a, b) = 0
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where a  =  vector of state variables, b  =  vector of control variables, f(a, b)  =  objective function, 
s(a, b) = different equality constraints set, h(a, b) = different inequality constraints set.

3.1. Variables

3.1.1. Control variables
The control variables should be so manage to fulfill the power flow equations. For the OPF problem, 
the set of control variables can be formulated as (Bouchekara, Abido, Chaib, et al., 2014; Bouchekara, 
Abido, & Boucherma, 2014):
 

where PG = real power output on the generator buses excluding on the reference bus, VG = magnitude 
of voltage on generator buses, QC = shunt VAR compensation, T = tap settings of the transformer, 
NGen, NTr, NCom = No. of generating units, No. of tap changing transformers and No. of shunt VAR 
compensation devices, respectively.

3.1.2. State variables
There is a need for variables for all OPF formulations for the characterization of the Electrical Power 
Engineering state of the system. So, the state variables can be formulated as (Bouchekara, Abido, 
Chaib, et al., 2014; Bouchekara, Abido, & Boucherma, 2014):
 

where PG1  =  Real power output on the reference bus, VL  =  magnitude of voltage on load buses, 
QG = reactive power generation of all generators, Sl = line loading or power flow, NLB, Nline = No. of 
PQ buses and the No. of lines, respectively.

3.2. Constraints
There are two OPF constraints named inequality and equality constraints. These constraints are ex-
plained in the next topic.

3.2.1. Equality constraints
The physical condition of the system is defined by the equality constraints of the OPF. Basically these 
are the load flow equations which can be explained as follows (Bouchekara, Abido, Chaib, et al., 
2014; Bouchekara, Abido, & Boucherma, 2014).

3.2.1.1. Real power constraints.  The real power constraints can be formulated as follows 
(Bouchekara, 2013):

 

3.2.1.2. Reactive power constraints.  The reactive power constraints can be formulated as follows 
(Bouchekara, Abido, & Boucherma, 2014):

 

where δij = δi - δj, NB = total No. of buses, PG = real power generation, QG = reactive power generation, 
PD = active power load demand, QD = reactive power load demand, Bij and Gij = components of the 

(15)Andh(a, b) ≤ 0

(16)bT = [PG2
… PGNGen

,VG1
…VGNGen

,QC1
…QCNCom

, T1… TNTr]

(17)aT = [PG1
,VL1

…VLNLB
,QG1

…QGNGen
, Sl1

… SlNline
]

(18)PGi
− PDi

− Vi

NB∑
J=i

Vj[GijCos(�ij) + BijSin(�ij)] = 0

(19)QGi
− QDi

− Vi

NB∑
J=i

Vj[GijCos(�ij) + BijSin(�ij)] = 0
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admittance matrix Yij = (Gij +  jBij) shows the susceptance and conductance among bus i and bus j, 
respectively.

3.2.2. Inequality constraints
The boundaries of power system devices together with the bounds created to surety system security 
are given by inequality constraints of the OPF (Abou El Ela & Abido, 2010; Bouchekara, Abido, & 
Boucherma, 2014).

3.2.2.1. Generator constraints.  For all generators including the reference bus: voltage, real power, 
and reactive power outputs should be constrained by their minimum and maximum bounds as fol-
lows (Bouchekara, Abido, & Boucherma, 2014):

 

 

 

3.2.2.2. Transformer constraints.  Tap settings of the transformer should be constrained inside their 
stated lowest and highest bounds as given below (Bouchekara, 2013):

 

3.2.2.3. Shunt VAR compensator constraints.  Shunt compensators need to be constrained with their 
lowest and highest bounds as given below (Bouchekara, Abido, & Boucherma, 2014):

 

3.2.2.4. Security constraints.  These comprise the limits of the magnitude of the voltage on PQ bus-
es and line loadings. Voltage for every PQ bus should be limited by its minimum and maximum op-
erational bounds. Loadings over each line should not exceed its maximum loading limit. So, these 
limitations can be statistically stated as (Bouchekara, 2013):

 

 

The control variables are self-constraint. The inequality constrained of state variables comprises a 
magnitude of load (PQ) bus voltage, active power production at reference bus, reactive power pro-
duction, and loading on line may be encompassed by an objective function in terms of quadratic 
penalty terms. In which, the penalty factor is increased by the square of the disrespect value of state 
variables and is included in the objective function and any impractical result achieved is declined 
(Bouchekara, 2013).

Penalty function can be mathematically formulated as given below:

 

where �P , �V , �Q, �S = penalty factors, Ulim= Boundary price of the state variable U.

(20)VlowerGi
≤ VGi

≤ V
upper

Gi
, i = 1,… ,NGen

(21)PlowerGi
≤ PGi

≤ P
upper

Gi
, i = 1,… ,NGen

(22)QlowerGi
≤ QGi

≤ Q
upper

Gi
, i = 1,… ,NGen

(23)TlowerGi
≤ TGi

≤ T
upper

Gi
, i = 1,… ,NGen

(24)QlowerCi
≤ QGCi

≤ Q
upper

Ci
, i = 1,… ,NGen

(25)
VlowerLi

≤ VLi
≤ V

upper

Li
, i = 1,… ,NGen

(26)Sli
≤ S

upper

li
, i = 1,… ,Nline

(27)Jaug = J + �P

(
PG1

− PlimG1

)2
+ �V

NLB∑
i=1

(VLi
− VlimLi

)2 + �Q

NGen∑
i=1

+�S

Nline∑
i=0

(Sli
− Smaxli

)2
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If U is greater than the maximum value, Ulim takings the maximum value, if U is lesser than the 
minimum value, Ulim takings the value of that limit. This can be shown as follows (Bouchekara, 2013):

 

4. Application and results
The ALO method implemented for the OPF solution for standard 30-bus IEEE test system and for a 
number of objectives with dissimilar functions. The used program is written in MATLAB R2014b com-
puting surroundings and used on a 2.60 GHz i5 PC with 4 GB RAM. In this work, the number of search 
agents or number of ants is selected to be 40.

4.1. IEEE 30-bus test system
With the purpose of elucidating the effectiveness of the suggested ALO algorithm, it has been veri-
fied on the 30-bus IEEE standard test system as displays in Figure 1. The test system selected in the 
present work has these equipment (Bouchekara, 2013; Lee et al., 1985): six generating units, four 
regulating transformers and nine shunt VAR compensators.

In addition, generator cost coefficient numbers, the line numbers, bus numbers, and the upper 
and lower bounds for the control variables are specified in (Lee et al., 1985).

In given test system, five diverse objectives are considered for various purposes and all the ac-
quired outcomes are given in Table 1. The very first column of this table denotes the optimal values 
of control variables found where:

(28)Ulim=

{
Uupper ; U < Uupper

Ulower ; U < Ulower

Figure 1. Single line illustration 
of 30-bus IEEE test system.
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• � PG1 through PG6 and VG1 through VG6 signifies the power and voltages of generator 1 to 6.

• � T4–12, T6–9, T6–10 and T28–27 are the transformer tap settings comprised between buses 4–12, 6–9, 
6–10 and 28–27.

• � QC10 , QC12, QC12, QC15, QC17, QC20, QC21, QC23, QC24 and QC29 denote the shunt VAR compensators.

Further, fuel cost ($/h), real power losses (MW), reactive power losses (MVAR), voltage deviation 
and Lmax represent the total generation fuel cost of the system, the total real power losses, the total 
reactive power losses, the load voltages deviation from 1 and the stability index, respectively. Other 
particulars for these outcomes will be specified in the next topic.

The control parameters for ALO, FA, PSO used in this problem are given in Table 1.

Case 1: Minimization of generation fuel cost

The very common OPF objective that is generation fuel cost reduction is considered in the case 1. 
Therefore, the objective function Y signifies the total fuel cost of every generators and is calculated 
by Equation (29) (Bouchekara, Abido, Chaib, et al., 2014):

 

where fi shows the fuel cost of the ith generator. fi, may be formulated as follow:

 

where ui, vi and wi are the cost coefficients of the ith generator. The cost coefficients data are speci-
fied in Lee et al. (1985).

The variation of the total fuel cost for different algorithms is presented in Figure 2. It demonstrates 
that the suggested method has outstanding convergence characteristics. The comparison of fuel 
cost obtained with diverse techniques is shown in Table 2 which displays that the results obtained by 
ALO are better than the other methods. The optimal ideals of control variables achieved by various 
methods for case 1 are specified in Table 3. By means of the same settings i.e. control variables 
boundaries, initial situations, and system values, the results achieved in case 1 with the ALO 

(29)Y =

NGen∑
i=1

fi($∕h)

(30)fi = ui + viPGi
+wiP

2
Gi
($∕h)

Table 1. Control parameters used in ALO, FA and PSO
Sr. no. Parameters Value
1 Population (No. of ants) (N) 40

2 Maximum iterations count (t) 500

3 No. of variables (dim) 6

4 Random number [0, 1]

Table 2. Comparison of fuel cost obtained with different algorithms
Method Fuel cost Method description
ALO 799.155 Ant-lion optimizer

FA 799.766 Firefly algorithm

PSO 799.704 Particle swarm optimization

DE 799.289 Differential evolution 

BHBO 799.921 Black hole based optimization
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technique are equated to different methods and it displays that the fuel cost is greatly decreased 
compared to the initial case (Bouchekara, 2013). Quantitatively, it is reduced from 901.951 to 
799.155 $/h.

Case 2: Voltage profile improvement

Bus voltage is considered as very essential as well as important security and service excellence 
indices (Bouchekara, 2013). Here the goal is to increase the voltage profile by reducing the voltage 
deviation of load buses from the unity 1.0 p.u.

Hence, the objective function may be formulated by Equation (31) (Bouchekara, Abido, & 
Boucherma, 2014):

 

(31)
Yvoltage_deviation =

NGen∑
i=1

|Vi − 1.0|

Table 3. Optimal values of control variables for case 1 with different algorithms
Control variable Min Max Initial ALO FA PSO
P
G
1

50 200 99.2230 177.081 177.760 177.105

P
G
2

20 80 80 48.725 48.730 48.748

P
G
5

15 50 50 21.312 21.364 21.318

P
G
8

10 35 20 21.031 20.260 20.986

P
G
11

10 30 20 11.953 12.155 12.049

P
G
13

12 40 20 12.000 12.000 12.000

V
G
1

0.95 1.1 1.05 1.100 1.100 1.100

V
G
2

0.95 1.1 1.04 1.088 1.086 1.088

V
G
5

0.95 1.1 1.01 1.062 1.058 1.061

V
G
8

0.95 1.1 1.01 1.070 1.067 1.070

V
G
11

0.95 1.1 1.05 1.083 1.070 1.100

V
G
13

0.95 1.1 1.05 1.096 1.039 1.100

T11 0 1.1 1.078 1.014 0.998 0.976

T12 0 1.1 1.069 0.987 1.023 0.975

T15 0 1.1 1.032 1.046 1.028 1.015

T36 0 1.1 1.068 0.997 1.007 0.966

Q
C
10

0 5 0 2.805 2.567 2.353

Q
C
12

0 5 0 2.060 4.314 5.000

Q
C
15

0 5 0 2.254 3.899 0.000

Q
C
17

0 5 0 4.705 3.190 0.689

Q
C
20

0 5 0 4.744 2.413 0.003

Q
C
21

0 5 0 2.685 0.021 5.000

Q
C
23

0 5 0 3.892 2.716 0.000

Q
C
24

0 5 0 2.989 3.224 0.000

Q
C
29

0 4.121 3.879 0.000

Fuel cost ($/h) – – 901.951 799.155 799.766 799.704
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The variation of voltage deviation with different algorithms over iterations is sketched in Figure 3. 
It demonstrates that the suggested method has good convergence characteristics. The statistical 
values of voltage deviation obtained with different methods are display in Table 4 which displays 
that the outcomes obtained by ALO are enhanced than the other methods. The optimal values of 
control variables achieved by different algorithms for case 2 are specified in Table 5. By means of the 
same settings, the results achieved in case 2 with the ALO technique are compared to some other 
methods and it displays that the voltage deviation is significantly reduced compared to the initial 

Figure 2. Fuel cost variations 
with different algorithms.

Figure 3. Voltage deviation 
minimization with different 
algorithms.
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case (Bouchekara, 2013). It has been made known that the voltage deviation is decreased from 
1.1496 to 0.1222 p.u. using ALO technique.

Case 3: Voltage stability enhancement

Presently, the transmission networks are enforced to work nearby their safety bounds, because of 
cost-effective and environmental causes. One of the significant characteristics of the network is its 
capability to retain continuously tolerable bus voltages to each point beneath standard operational 
environments, next to the rise in load, as soon as the network is being affected by disruption. The 

Table 4. Comparison of voltage deviations obtained with different algorithms
Method Voltage deviation Method description
ALO 0.1222 Ant-lion optimizer

FA 0.1474 Firefly algorithm

PSO 0.1506 Particle swarm optimization

DE 0.1357 Differential evolution 

BHBO 0.1262 Black hole based optimization

Table 5. Optimal values of control variables for case 2 with different algorithms
Control variable Min Max Initial ALO FA PSO
P
G
1

50 200 99.2230 176.422 175.763 175.922

P
G
2

20 80 80 49.012 48.396 46.389

P
G
5

15 50 50 21.829 21.492 21.597

P
G
8

10 35 20 19.974 20.564 19.396

P
G
11

10 30 20 14.073 13.163 17.656

P
G
13

12 40 20 12.001 13.829 12.000

V
G
1

0.95 1.1 1.05 1.038 1.038 1.047

V
G
2

0.95 1.1 1.04 1.022 1.023 1.034

V
G
5

0.95 1.1 1.01 1.014 1.015 0.999

V
G
8

0.95 1.1 1.01 1.006 1.000 1.005

V
G
11

0.95 1.1 1.05 1.004 1.026 0.999

V
G
13

0.95 1.1 1.05 1.006 1.050 1.018

T11 0 1.1 1.078 0.983 0.991 0.954

T12 0 1.1 1.069 0.939 0.926 0.969

T15 0 1.1 1.032 0.971 1.038 0.989

T36 0 1.1 1.068 0.966 0.964 0.960

Q
C
10

0 5 0 3.051 2.228 3.948

Q
C
12

0 5 0 3.552 1.976 1.765

Q
C
15

0 5 0 3.925 0.245 4.844

Q
C
17

0 5 0 4.221 2.092 3.075

Q
C
20

0 5 0 3.230 4.887 4.687

Q
C
21

0 5 0 4.999 2.177 4.948

Q
C
23

0 5 0 4.485 4.421 1.623

Q
C
24

0 5 0 4.597 2.846 3.559

Q
C
29

0 2.479 2.791 2.034

Vd – – 1.1496 0.1222 0.1474 0.1506
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unoptimized control variables may cause increasing and unmanageable voltage drop causing a tre-
mendous voltage collapse (Bouchekara, Abido, & Boucherma, 2014). Hence, voltage stability is invit-
ing ever more attention. By using various techniques to evaluate the margin of voltage stability, 
Glitch and Kessel have introduced a voltage stability index called L-index depends on the viability of 
load flow equations for every node (Kessel & Glavitsch, 1986). The L-index of a bus shows the prob-
ability of voltage breakdown circumstance for that particular bus. It differs between 0 and 1 equiva-
lent to zero loads and voltage breakdown, respectively.

For the given network with NB, NGen and NLB buses signifying the total No. of buses, the total No. 
of generator buses and the total No. of load buses, respectively. The buses can be distinct as PV 
buses at the top and PQ buses at the bottom as follows (Bouchekara, Abido, & Boucherma, 2014):

 

where YLL, YLG, YGL andYGG are co-matrix of Ybus. The subsequent hybrid network of equations can be 
expressed as:

 

(32)

[
IL
IG

]
=
[
Ybus

][ VL
VG

]
=

[
YLL YLG
YGL YGG

][
VL
VG

]

(33)

[
VL
IG

]
=
[
H
][ IL

VG

]
=

[
HLL HLG
HGL HGG

][
IL
VG

]

Figure 4. Lmax variations with 
different algorithms.

Table 6. Comparison of Lmax index obtained with different algorithms
Method Lmax Method description
ALO 0.1140 Ant-lion optimizer

FA 0.1184 Firefly algorithm

PSO 0.1180 Particle swarm optimization

DE 0.1219 Differential evolution

BHBO 0.1167 Black hole based optimization



Page 13 of 18

Trivedi et al., Cogent Engineering (2016), 3: 1208942
http://dx.doi.org/10.1080/23311916.2016.1208942

where matrix H is produced by the partially inverting of Ybus, HLL, HLG, HGL and HGG are co-a matrix of H, 
VG, IG, VL and IL are voltage and current vector of PV buses and PQ buses, respectively.

The matrix H is given by:

 

Hence, the L-index denoted by Lj of bus j is denoted as follows:

(34)
[
H
]
=

[
ZLL −ZLLYLG
YGLZLL YGG − YGLZLLYLG

]
ZLL = Y

−1
LL

Table 7. Optimal values of control variables for case 3 with different algorithms
Control variable Min Max Initial ALO FA PSO
P
G
1

50 200 99.2230 159.945 150.565 158.331

P
G
2

20 80 80 48.347 45.212 49.050

P
G
5

15 50 50 21.160 17.010 18.956

P
G
8

10 35 20 25.810 31.418 31.224

P
G
11

10 30 20 22.839 23.041 15.906

P
G
13

12 40 20 13.040 24.057 17.801

V
G
1

0.95 1.1 1.05 1.100 1.076 1.098

V
G
2

0.95 1.1 1.04 1.088 1.066 1.090

V
G
5

0.95 1.1 1.01 1.068 1.006 1.043

V
G
8

0.95 1.1 1.01 1.098 1.044 1.058

V
G
11

0.95 1.1 1.05 1.100 1.081 1.081

V
G
13

0.95 1.1 1.05 1.100 1.036 1.100

T11 0 1.1 1.078 1.035 0.920 0.900

T12 0 1.1 1.069 0.996 1.019 1.007

T15 0 1.1 1.032 1.002 0.954 1.071

T36 0 1.1 1.068 0.969 0.909 0.933

Q
C
10

0 5 0 1.856 2.673 3.286

Q
C
12

0 5 0 4.979 3.550 1.221

Q
C
15

0 5 0 5.000 3.464 4.601

Q
C
17

0 5 0 5.000 2.061 1.082

Q
C
20

0 5 0 5.000 3.515 0.444

Q
C
21

0 5 0 2.334 2.330 0.399

Q
C
23

0 5 0 4.161 1.972 2.446

Q
C
24

0 5 0 1.669 2.943 4.753

Q
C
29

0 5.000 4.814 3.887

Lmax – – 0.1723 0.1140 0.1184 0.1180

Table 8. Comparison of active power transmission losses obtained with different algorithms
Method Active power loss Method description
ALO 2.891 Ant-lion optimizer

FA 3.307 Firefly algorithm

PSO 3.026 Particle swarm optimization

BHBO 3.503 Black hole based optimization
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Hence, the stability of the whole system is described by a global indicator Lmax which is presented by 
(Bouchekara, 2013):

 

The system is more stable as the value of Lmax is lower.

The voltage stability can be enhanced by reducing the value of voltage stability indicator L-index 
at every bus of the system (Bouchekara, 2013).

Thus, the objective function may be given as below equation:

 

(35)Lj =

||||||
1 −

NGen∑
i=1

HLGji

vi
vj

||||||
j = 1, 2,… ,NL

(36)Lmax = max(Lj) j = 1, 2,… ,NL

(37)
Yvoltage_stability_enhancement = Lmax

Table 9. Optimal values of control variables for case 4 with different algorithms
Control variable Min Max Initial ALO FA PSO
P
G
1

50 200 99.2230 51.290 63.292 51.427

P
G
2

20 80 80 80.000 80.000 80.000

P
G
5

15 50 50 50.000 50.000 50.000

P
G
8

10 35 20 35.000 35.000 35.000

P
G
11

10 30 20 30.000 25.730 30.000

P
G
13

12 40 20 40.000 32.686 40.000

V
G
1

0.95 1.1 1.05 1.100 1.089 1.100

V
G
2

0.95 1.1 1.04 1.099 1.084 1.100

V
G
5

0.95 1.1 1.01 1.082 1.062 1.083

V
G
8

0.95 1.1 1.01 1.089 1.071 1.090

V
G
11

0.95 1.1 1.05 1.100 1.091 1.100

V
G
13

0.95 1.1 1.05 1.091 1.084 1.100

T11 0 1.1 1.078 1.058 1.015 0.977

T12 0 1.1 1.069 0.972 0.919 1.100

T15 0 1.1 1.032 1.011 1.001 1.100

T36 0 1.1 1.068 0.995 0.993 0.998

Q
C
10

0 5 0 4.780 4.033 4.065

Q
C
12

0 5 0 3.026 4.520 0.000

Q
C
15

0 5 0 4.995 3.247 5.000

Q
C
17

0 5 0 4.936 1.836 5.000

Q
C
20

0 5 0 4.998 2.446 0.000

Q
C
21

0 5 0 4.998 2.905 5.000

Q
C
23

0 5 0 4.301 3.377 5.000

Q
C
24

0 5 0 5.000 2.033 0.000

Q
C
29

0 2.520 2.980 0.000

PLoss (MW) – – 5.8219 2.891 3.307 3.026
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The variation of the Lmax index with different algorithms over iterations is presented in Figure 4. The 
statistical results obtained with different methods are shown in Table 6 which displays that ALO 
gives improved results than the various techniques. The optimal values of control variables obtained 
by various methods for case 3 are display in Table 7. After implementing the ALO approach, it seems 
from Table 7 that the value of Lmax is considerably decreased in this case compared to initial 
(Bouchekara, 2013) from 0.1723 to 0.1140. Thus, the distance from breakdown point is improved.

Case 4: Minimization of active power transmission losses

In the case 4 the Optimal Power Flow goal is to reduce the real power transmission losses, that can 
be represented by power balance Equation (38) (Bouchekara, 2013):

Figure 5. Minimization of active 
power transmission losses with 
different algorithms.

Figure 6. Minimization of 
reactive power transmission 
losses with different 
algorithms.
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Figure 5 display the tendency for reducing the total real power losses objective function using the 
different techniques. The active power losses obtained with different techniques are shown in 
Table  8 which made sense that the results obtained by ALO give better values than the other meth-
ods. The optimal values of control variables obtained by different algorithms for case 4 are displayed 
in Table 9. By means of the same settings the results achieved in case 4 with the ALO technique are 
compared to some other methods and it displays that the real power transmission losses are greatly 
reduced compared to the initial case (Bouchekara, 2013) from 5.821 to 2.891.

(38)J =

NGen∑
i=1

Pi =

NGen∑
i=1

PGi−

NGen∑
i=1

PDi

Table 10. Comparison of reactive power losses obtained with different algorithms
Method Reactive power loss Method description
ALO −25.076 Ant-lion optimizer

FA −20.464 Firefly algorithm

PSO −23.407 Particle swarm optimization

BHBO −20.152 Black hole based optimization

Table 11. Optimal values of control variables for case 5 with different algorithms
Control variable Min Max Initial ALO FA PSO
P
G
1

50 200 99.2230 51.328 71.440 51.644

P
G
2

20 80 80 80.000 79.971 80.000

P
G
5

15 50 50 50.000 49.999 50.000

P
G
8

10 35 20 35.000 34.994 35.000

P
G
11

10 30 20 30.000 20.938 30.000

P
G
13

12 40 20 40.000 29.787 40.000

V
G
1

0.95 1.1 1.05 1.100 1.086 1.100

V
G
2

0.95 1.1 1.04 1.100 1.081 1.100

V
G
5

0.95 1.1 1.01 1.093 1.055 1.100

V
G
8

0.95 1.1 1.01 1.100 1.059 1.100

V
G
11

0.95 1.1 1.05 1.100 1.035 1.100

V
G
13

0.95 1.1 1.05 1.100 1.051 1.100

T11 0 1.1 1.078 0.990 1.027 0.962

T12 0 1.1 1.069 1.023 0.934 1.100

T15 0 1.1 1.032 0.991 0.983 0.961

T36 0 1.1 1.068 0.990 0.959 0.964

Q
C
10

0 5 0 4.940 2.963 5.000

Q
C
12

0 5 0 4.997 1.532 0.000

Q
C
15

0 5 0 4.659 4.981 0.000

Q
C
17

0 5 0 5.000 3.212 0.000

Q
C
20

0 5 0 5.000 2.817 0.000

Q
C
21

0 5 0 4.999 3.376 0.000

Q
C
23

0 5 0 5.000 4.009 0.000

Q
C
24

0 5 0 4.099 3.654 5.000

Q
C
29

0 4.448 1.874 0.000

QLoss (MVAR) – – −4.6066 −25.076 −20.464 −23.407
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Case 5: Minimization of reactive power transmission losses

The accessibility of reactive power is the main point for static system voltage stability margin to 
provision the transmission of active power from the source to sinks (Bouchekara, 2013).

Thus, the minimization of VAR losses are given by the following expression:

 

It is notable that the reactive power losses may not essentially positive. The variation of reactive 
power losses with different methods shown in Figure 6. It demonstrates that the suggested method 
has good convergence characteristics. The statistical values of reactive power losses obtained with 
different methods are shown in Table 10 which displays that the results obtained by ALO are better 
than the other methods. The optimal values of control variables obtained by different algorithms for 
case 5 are given in Table 11. It is shown that the reactive power losses are greatly reduced compared 
to the initial case (Bouchekara, 2013) from −4.6066 to −25.076 using ALO technique.

5. Robustness test
In order to check the robustness of the ant-lion optimizer for solving continues optimal power flow 
problems, 10 times trials with various search agents for cases 1–5. Tables 2–11 presents the statisti-
cal results achieved by the PSO, FA and ALO algorithms for OPF problems for various cases. From 
these tables, it is clear that the optimum objective function values obtained by ant-lion optimizer are 
near to every trial and minimum compare to PSO and FA algorithms. Its proofs the robustness of 
ant-lion optimizer (ALO) to solve OPF problem.

6. Conclusion
In this work, ant-lion optimizer, firefly algorithm, and particle swarm optimization algorithm are suc-
cessfully applied to standard 30-bus IEEE systems to solve the optimal power flow problem for the 
various types of cases: fuel cost, active power loss, reactive power loss, voltage deviation and volt-
age stability index. The obtained results give the optimum sets of control variables with ALO, PSO 
and FA Algorithms which demonstrate the effectiveness of the different techniques. The solutions 
obtained from the ALO approach has good convergence characteristics and gives the better opti-
mum results compared to FA and PSO techniques which confirm the strength of recommended al-
gorithm. Further, we can improve the algorithms efficiency using different types of penalty handling 
approaches: adaptive, Deb, MQM, static methods etc. and different randomization techniques: adap-
tive and levy flight approaches for better exploration and exploitation.

(39)
J =

NGen∑
i=1

Qi =

NGen∑
i=1

QGi−

NGen∑
i=1

QDi

Acknowledgment
The authors would like to thank Professor Seyedali Mirjalili 
for his valuable comments and support. http://www.
alimirjalili.com/ALO.html

Funding
The authors received no direct funding for this research.

Author details
Indrajit N. Trivedi1

E-mail: forumtrivedi@gmail.com
Pradeep Jangir2

E-mail: pkjmtech@gmail.com
Siddharth A. Parmar2

E-mail: saparmar92@gmail.com
1 �Electrical Engineering Department, G.E. College, 

Gandhinagar, Gujarat, India.
2 �Electrical Engineering Department, L.E. College, Morbi, 

Gujarat, India.

Citation information
Cite this article as: Optimal power flow with enhancement 
of voltage stability and reduction of power loss using 
ant-lion optimizer, Indrajit N. Trivedi, Pradeep Jangir 
& Siddharth A. Parmar, Cogent Engineering (2016), 3: 
1208942.

References
Abou El Ela, A. A., & Abido, M. A. (2010). Optimal power flow 

using differential evolution algorithm. Electric Power 
Systems Research, 80, 878–885. 
http://dx.doi.org/10.1016/j.epsr.2009.12.018

AlRashidi, M. R., & El-Hawary, M. E. (2009). Applications of 
computational intelligence techniques for solving the 
revived optimal power flow problem. Electric Power 
Systems Research, 79, 694–702. 
http://dx.doi.org/10.1016/j.epsr.2008.10.004

Bakirtzis, A. G., Biskas, P. N., Zoumas, C. E., & Petridis, V. (2002). 
Optimal power flow by enhanced genetic algorithm. IEEE 
Transactions on Power Systems, 17, 229–236. 
http://dx.doi.org/10.1109/TPWRS.2002.1007886

http://www.alimirjalili.com/ALO.html
http://www.alimirjalili.com/ALO.html
mailto:forumtrivedi@gmail.com
mailto:pkjmtech@gmail.com
mailto:saparmar92@gmail.com
http://dx.doi.org/10.1016/j.epsr.2009.12.018
http://dx.doi.org/10.1016/j.epsr.2009.12.018
http://dx.doi.org/10.1016/j.epsr.2008.10.004
http://dx.doi.org/10.1016/j.epsr.2008.10.004
http://dx.doi.org/10.1109/TPWRS.2002.1007886
http://dx.doi.org/10.1109/TPWRS.2002.1007886


Page 18 of 18

Trivedi et al., Cogent Engineering (2016), 3: 1208942
http://dx.doi.org/10.1080/23311916.2016.1208942

© 2016 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.
You are free to: 
Share — copy and redistribute the material in any medium or format  
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.  
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.  
No additional restrictions  
You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Cogent Engineering (ISSN: 2331-1916) is published by Cogent OA, part of Taylor & Francis Group. 
Publishing with Cogent OA ensures:
• Immediate, universal access to your article on publication
• High visibility and discoverability via the Cogent OA website as well as Taylor & Francis Online
• Download and citation statistics for your article
• Rapid online publication
• Input from, and dialog with, expert editors and editorial boards
• Retention of full copyright of your article
• Guaranteed legacy preservation of your article
• Discounts and waivers for authors in developing regions
Submit your manuscript to a Cogent OA journal at www.CogentOA.com

Belhadj, C. A., & Abido, M. A. (1999). An optimized fast 
voltage stability indicator. In Electric Power International 
Conference on Engineering (pp. 79–83). Budapest: 
PowerTech.

Bouchekara, H. R. E. H. (2013). Optimal power flow using 
black-hole-based optimization approach. Applied Soft 
Computing, 24, 879–888.

Bouchekara, H. R. E. H., Abido, M. A., & Boucherma, M. (2014). 
Optimal power flow using teaching-learning-based 
optimization technique. Electric Power Systems Research, 
114, 49–59. 
http://dx.doi.org/10.1016/j.epsr.2014.03.032

Bouchekara, H. R. E. H., Abido, M. A., Chaib, A. E., & Mehasni, 
R. (2014). Optimal power flow using the league 
championship algorithm: A case study of the Algerian 
power system. Energy Conversion and Management, 87, 
58–70. http://dx.doi.org/10.1016/j.enconman.2014.06.088

Bouktir, T., Labdani, R., & Slimani, L. (2005). Optimal power 
flow of the Algerian electrical network using ant colony 
optimization method. Leonardo Journal of Sciences, 6, 
43–57.

Carpentier, J. (1962). Contribution à l’étude du Dispatching 
Economique [Contribution to the economic dispatch 
problem]. Bulletin de la Societe Francaise des Electriciens, 
3, 431–447.

Duman, S., Güvenç, U., Sönmez, Y., & Yörükeren, N. (2012). 
Optimal power flow using gravitational search algorithm. 
Energy Conversion and Management, 59, 86–95. 
http://dx.doi.org/10.1016/j.enconman.2012.02.024

Frank, S., Steponavice, I., & Rebennack, S. (2012a). Optimal 
power flow: A bibliographic survey I. Energy Systems, 3, 
221–258. http://dx.doi.org/10.1007/s12667-012-0056-y

Frank, S., Steponavice, I., & Rebennack, S. (2012b). Optimal 
power flow: A bibliographic survey II. Energy Systems, 3, 
259–289. 
http://dx.doi.org/10.1007/s12667-012-0057-x

Kessel, P., & Glavitsch, H. (1986). Estimating the voltage 
stability of a power system. IEEE Transactions on Power 
Delivery, 1, 346–354. 
http://dx.doi.org/10.1109/TPWRD.1986.4308013

Lee, K., Park, Y., & Ortiz, J. (1985). A united approach to optimal 
real and reactive power dispatch. IEEE Transactions on 
Power Apparatus and Systems, 104, 1147–1153. 
http://dx.doi.org/10.1109/TPAS.1985.323466

Mirjalili, S. (2015). The ant lion optimizer. Advances in 
Engineering Software, 83, 80–98. 
http://dx.doi.org/10.1016/j.advengsoft.2015.01.010

Niknam, T., Narimani, M. R., Jabbari, M., & Malekpour, A. R. 
(2011). A modified shuffle frog leaping algorithm for 
multi-objective optimal power flow. Energy, 36, 6420–
6432. http://dx.doi.org/10.1016/j.energy.2011.09.027

Ongsakul, W., & Tantimaporn, T. (2006). Optimal power flow 
by improved evolutionary programming. Electric Power 
Components and Systems, 34, 79–95. 
http://dx.doi.org/10.1080/15325000691001458

Soliman, S. A. H., & Mantawy, A. H. (2012). Modern optimization 
techniques with applications in electric power systems, 
energy systems. New York, NY: Springer. 
http://dx.doi.org/10.1007/978-1-4614-1752-1

Yildiz, A. R. (2012). A comparative study of population-
based optimization algorithms for turning operations. 
Information Sciences, 210, 81–88. 
http://dx.doi.org/10.1016/j.ins.2012.03.005

http://dx.doi.org/10.1016/j.epsr.2014.03.032
http://dx.doi.org/10.1016/j.epsr.2014.03.032
http://dx.doi.org/10.1016/j.enconman.2014.06.088
http://dx.doi.org/10.1016/j.enconman.2012.02.024
http://dx.doi.org/10.1016/j.enconman.2012.02.024
http://dx.doi.org/10.1007/s12667-012-0056-y
http://dx.doi.org/10.1007/s12667-012-0057-x
http://dx.doi.org/10.1007/s12667-012-0057-x
http://dx.doi.org/10.1109/TPWRD.1986.4308013
http://dx.doi.org/10.1109/TPWRD.1986.4308013
http://dx.doi.org/10.1109/TPAS.1985.323466
http://dx.doi.org/10.1109/TPAS.1985.323466
http://dx.doi.org/10.1016/j.advengsoft.2015.01.010
http://dx.doi.org/10.1016/j.advengsoft.2015.01.010
http://dx.doi.org/10.1016/j.energy.2011.09.027
http://dx.doi.org/10.1080/15325000691001458
http://dx.doi.org/10.1080/15325000691001458
http://dx.doi.org/10.1007/978-1-4614-1752-1
http://dx.doi.org/10.1007/978-1-4614-1752-1
http://dx.doi.org/10.1016/j.ins.2012.03.005
http://dx.doi.org/10.1016/j.ins.2012.03.005

	Abstract: 
	1.  Introduction
	2.  Ant-lion optimizer technique
	2.1.  Operators of ALO algorithm
	2.2.  Random walk of ants
	2.3.  Trapping in antlions pits
	2.4.  Sliding ants towards antlion
	2.5.  Catching prey and re-building the pit
	2.6.  Elitism

	3.  Optimal power flow problem formulation
	3.1.  Variables
	3.1.1.  Control variables
	3.1.2.  State variables

	3.2.  Constraints
	3.2.1.  Equality constraints
	3.2.2.  Inequality constraints


	4.  Application and results
	4.1.  IEEE 30-bus test system

	5.  Robustness test
	6.  Conclusion
	Acknowledgment
	References



