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ABSTRACT 
In this paper we further study the concept of edge-edge domination in graphs. We observe that the edge-edge 
domination number of a graph may increase or decrease or remains same when a edge is removed from a graph. We 
proved a necessary and sufficient condition under which the edge-edge domination number of a graph increases and 
also we proved a necessary and sufficient condition under which the edge-edge domination number of a graph 
decreases. For this purpose we introduce two new concepts namely e-dominating neighbourhood of an edge and 
private edge-edge neighbourhood of an edge with respect to a set containing the edge. Some examples also have been 
given. 
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INTRODUCTION 
 
The concept of edge-edge domination was introduced by R. S. Bhat, S. S. Kamath and S. R. Bhat in [4]. An edge 
g uv=  be e-dominates the edge h xy=  if , [ ] [ ]x y N u N v∈ ∪ . A set F  of edges is said to be an edge-edge 
dominating(EED) set of G if for every edge h not in F , there is an edge g  in F  such that h  is e-dominated by g . An 
edge-edge dominating set with minimum cardinality is called minimum edge-edge dominating set. The cardinality of 
minimum edge-edge dominating set is called edge-edge domination number and it is denoted by ( )ee Gγ [4]. 
 
It may happens that g  e-dominates h  but h  does not e-dominate g . We may note that if F  is an edge dominating set 
then every edge g  which is not in F  is adjacent to some member of F  and thus F  is an EED set of G . However, an 
EED set need not be edge dominating set. 
 
The concept of vertices dominates edges and edges dominate vertices was introduced in 1985 by R. Laskar and Ken 
Peters [3] and then in 1992 by, Sampathkumar and S. S. Kamath [2]. A vertex v  of a graph G  m-dominates an edge 
xy  if xy  is an edge of the subgraph induced by the vertices of the [ ]N v . An edge x  m-dominates a vertex v  if 

[ ]v N x∈ . Suppose xy & uv  are two edges and suppose x  m-dominates the edge uv then obviously xy  e-dominates 
uv . Suppose xy  and uv  are two edges and suppose edge xy  m-dominates u  and xy  m-dominates v  then obviously 
xy  e-dominates uv (edge). Converse is also true. Also note that ( ) '( )ee G Gγ γ≤ . 
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PRELIMINARIES AND NOTATIONS 
 
If G  is a graph then ( )E G  denotes the edge set and ( )V G  denotes the vertex set of the graph. S  is any set then S  
denotes the cardinality of S  and ( ) \E G S is a subgraph of G obtained by removing the edges of S .  If f is an edge of 
G  then \G f  denotes the subgraph of G obtained by removing the edge f . [ ]N x  denotes the set of adjacent vertices 
of v  including v  and ( )N V denotes the set of vertices which are adjacent to v . 
 
In this paper we consider only simple graphs with finite vertex set. 
 
Proposition 1: Let G  be a graph and g uv=  be an isolated edge of G . Let F  be any EED set of G  then g F∈ . 
 
Proof: Suppose g F∉ . Now there is an edge f xy F= ∈  such that g  is e-dominated by f  and therefore u x=  or u  
is adjacent to x  and v y=  or v  is adjacent to y . But this implies that g  is not an isolated edge of G  and therefore 
g F∈ . 
 
Proposition 2: Let G  be a graph. g  be a pendant edge of G  and F  be a minimum EED set of G  then g F∈  or for 
some edge f  adjacent to g , f F∈ . 
 
Proof: Suppose g F∉ . Now e  is e-dominated by some edge f  in F . Let g uv=  and f xy= . Suppose, v  is the 
pendant vertex of g . 
 
Case-I : u x=  or u y=  
Then obviously f xy=  is adjacent to g . 
 
Case II: u x≠ , u y≠  
Then [ ] [ ]v N x N y∉ ∪  and this contradicts the fact that g  is e-dominated by f xy= . Thus g  is adjacent to f xy= . 
 
Definition 3: (e-dominating neighbourhood) Let G  be a graph and f  be an edge of G . Then e-dominating 
neighbourhood of f  in G  is the set [ ] { ( ) /  e-dominates }eeN f g E G g f= ∈ . 
 
Example 1: Consider the graph 1G . Let {15}f =  then the e-dominating neighbourhood of f  will be the set 
{12,  13,  45} . 

 
1G  

 
Theorem 4: Let G  be a graph and f  be any edge of G . Then ( \ ) ( )ee eeG f Gγ γ>  iff  

1. f  is not an isolated edge of G . 
2. For every minimum EED set F  of G , f F∈ . 

3. There is no subset F  of ( ) \ [ ]eeE G N f  such that ( )eeF Gγ≤  and F  is an EED set of \G f . 
 
Proof: First suppose that ( \ ) ( )ee eeG f Gγ γ> . 

1. Suppose f  is an isolated edge of G . Let F  be any minimum EED set of G . Then f F∈ . Let 1 \ { }F F f= . 
Now consider the subgraph \G f . Let h  be any edge of \G f  such that h  does not belongs to 1F . Then 
h F∉ . Now h  is e-dominated by some member g  of F . Obviously, g f≠  because f  is isolate edge of G . 
Therefore h  is e-dominated by some member of 1F . Thus 1F  is EED set of \G f .Hence, 

1( \ ) ( )ee eeG f F F Gγ γ≤ < = . Which is a contradiction. Therefore f  is not isolated edge of G . 
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2. Suppose there is a minimum EED set F  of G  such that f F∉ . Now, consider the subgraph \G f . It can be 

easily proved that F  is an EED set of \G f . Therefore, ( \ ) ( )ee eeG f F Gγ γ< = . Which is a contradiction. 
Therefore, condition (2) holds. 

3. Suppose there is a subset F  of ( ) \ [ ]eeE G N f  and F  is an EED set of \G f . Then again 

( \ ) ( )ee eeG f F Gγ γ≤ ≤ . Which is again a contradiction. Therefore, condition (3) also holds. 
 
Conversely, suppose (1), (2) & (3) hold. 
 
First suppose that ( \ ) ( )ee eeG f Gγ γ= . Let F  be any minimum EED set of \G f . Suppose F  is also an EED set of G . 
Then F  is a minimum EED set of G  not containing f . Which contradicts (2). 
 
Suppose F  is not an EED set of G . Therefore, f  is not e-dominated by any member of F  and therefore, 

[ ]eeF N f φ∩ = . Thus F  is an EED set of \G f  such that ( )eeF Gγ≤  and F  is subset of ( ) \ [ ]eeE G N f . This 

contradicts condition (3). Thus, in both the cases we have contradiction. Therefore, ( \ ) ( )ee eeG f Gγ γ=  is not possible. 
Suppose, ( \ ) ( )ee eeG f Gγ γ< . Let F  be any minimum EED set of \G f  then F  cannot be an EED set of G . 
Therefore, f  is not e-dominated by any member of F . Which means that F  is a subset of ( ) \ [ ]eeE G N f . Also, 

( )eeF Gγ≤  and F  is an EED set of \G f . This again contradicts (3). Thus ( \ ) ( )ee eeG f Gγ γ<  is also not possible. 

Hence, it must be true that ( \ ) ( )ee eeG f Gγ γ> . 
 
Definition 5: (Private edge-edge neighbourhood of g with respect to F ) Let G  be a graph. F  be a set of edges and 
g F∈ . Then the private edge-edge neighbourhood of g with respect to F  is [ , ]eeprn g F = { ( ) /h E G h∈  is e-
dominated by only one member of F  namely g } = { ( ) / [ ] { }}eeh E G N h F g∈ ∩ =  
 
Example 2: Consider the graph 2G . If we take {12,  34}F =  and {12}g =  then the private edge-edge neighbourhood 
of g  with respect to F is the set {12} .  

 
2G  

 
Theorem 6: Let G  be a graph and ( )g E G∈ . Then ( \ ) ( )ee eeG g Gγ γ< if and only if there is a minimum EED set F  of 
G  containing g  such that [ , ] { }eeprn g F g= . 
 
Proof: Suppose, ( \ ) ( )ee eeG g Gγ γ< . Let 1F  be a minimum EED set of \G g . Then 1F  cannot be an EED set of G . 
This implies that there is no member of 1F  which e-dominates g . 
 
Let 1 { }F F g= ∪ . Then obviously F  is an EED set of G . Since ( \ ) ( )ee eeG g Gγ γ< , F  must be a minimum EED set 
of G . Also, g F∈ . Since g  is not e-dominated by any other member of F  and g  is e-dominated by g  itself, 

[ , ]eeg prn g F∈ .Suppose h  is an edge of G  such that h g≠  and [ , ]eeh prn g F∈ . Then, 1h F∉  because if 1h F∈  then 
h F∈  and this implies that h  is e-dominated by two distinct member of  F  namely g  and h  which is a contradiction 
and thus 1h F∉ . 
 
Now, h  is e-dominated by some member 'h  of 1F  because 1F  is a EED set of \G g . Then 'h F∈  and we have h  is 
e-dominated by two distinct members of F  namely 'h  and g . Which is a contradiction. Thus, we have proved that if 
h g≠  then [ , ]eeh prn g F∉ . Thus, [ , ] { }eeprn g F g= . 
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Conversely, suppose there is a minimum EED set F  of G  such that [ , ] { }eeprn g F g= . Let 1 \ { }F F g= . Let h  be an 
edge of \G g  such that 1h F∉ . Then h F∉ . 
 
Suppose h  is e-dominated by g . Since [ , ]eeh prn g F∉ , h  must be e-dominated by some '   g' gg F∈ ∋ ≠ . Then 

1'g F∈  and h  is e-dominated by 'g . If h  is not e-dominated by g then h  must be e-dominated by some other 
member ''h  of G . Obviously, 1''h F∈ . Thus 1F  is an EED set of \G g . Therefore ( \ ) ( )ee eeG g Gγ γ< . 
 
Corollary 7: Let G  be a graph and ( )g E G∈ . If ( \ ) ( )ee eeG g Gγ γ<  then ( \ ) ( ) 1ee eeG g Gγ γ= − . 
 
Corollary 8: Let G  be a graph, g  and h  be two edges of G  such that ( \ ) ( )ee eeG g Gγ γ<  and ( \ ) ( )ee eeG h Gγ γ> . 
Then g  is not e-dominated by h . In particular, g  and  h  cannot be an adjacent edges. 
 
Proof: There is a minimum EED set of G  such that g F∈  and [ , ] { }eeprn g F g= . This means that g  is not e-
dominated by any other member of F . In Particular, g  is not adjacent to any other member of F . Now, h F∈  by 
theorem ( ( \ ) ( )ee eeG h Gγ γ> ). Therefore, g  is not e-dominated by h . Also g  and h  are non-adjacent edges. 
 
Theorem 9: Let G  be a graph. g  be an edge of G  such that ( \ ) ( )ee eeG g Gγ γ> . If F  is a minimum EED set of G  
then g F∈  and [ , ]eeprn g F  contains two non-adjacent edges. 
 
Proof: Since, ( \ ) ( )ee eeG g Gγ γ>  and g F∈ . Since F  is a minimal EED of G , [ , ]eeprn g F φ≠ . If [ , ] { }eeprn g F g=  
then ( \ ) ( )ee eeG g Gγ γ< (By theorem 6) and this is a contradiction. Therefore, there is an edge h g≠  such that 

[ , ]eeh prn g F∈ . Obviously h F∉ . Suppose [ , ] { }eeprn g F h= . Now consider the set 1 ( \ { }) { }F F g h= ∪ . Then 

1F F=  and 1g F∉ . 
 
Let 'h  be any edge of G  such that 1'h F∈ . Suppose 'h g= . Now [ , ]eeg prn g F∉ . Therefore, 'h g=  is e-dominated 
by some member of 1F . Now suppose 'h g≠ . Again ' [ , ]eeh prn g F∉ . Therefore 'h  is e-dominated by some member 
of F  different from g . Therefore, 'h  is e-dominated by some member of 1F . Thus 1F  is a minimum EED set of G  
not containing g  which is a contradiction. Thus, [ , ]eeprn g F  must contain at least two edges.  
 
Suppose, [ , ] { , }eeprn g F g h= , where h g≠ . If g  and h  are non-adjacent edges then the statement of the theorem is 
proved. 
 
Suppose g  and h  are adjacent edges. Let 1 ( \ { }) { }F F g h= ∪ . Note that 1F F= . Since g  and h  are adjacent edges, 

g  is e-dominated by h  which is in 1F . 
 
Let f  be any edge such that 1f F∉  and f g≠ . If f  is e-dominated by g  then f  is also e-dominated by some other 
member of F  because [ , ]eef prn g F∉ . If f  is not e-dominated by g  then f  is also e-dominated by some other 
member of F . Thus f  is e-dominated by some member of 1F . Thus, 1F  is a minimum EED set of G  such that 

1g F∉  which is again a contradiction. Thus it follows that [ , ]eeprn g F contains at least two edges 1h  and 2h  such that 

1h g≠ , 2h g≠ . 
 
Suppose any two edges in the [ , ]eeprn g F  are adjacent. Let 1h , 2h  [ , ]eeprn g F∈  such that 1h g≠  and 2h g≠ . Then 1h  
and 2h  are adjacent. 
 
Suppose  [ , ]eeg prn g F∈ . If 1h  or 2h  is not adjacent to g  then we have a contradiction because 1 & g h  or 2 & g h  are 
non-adjacent edges in the [ , ]eeprn g F . Therefore 1 & g h  are adjacent and 2 & g h  are adjacent. Let 

( )1 1\ { } { }F F g h= ∪ . Obviously, g  is e-dominated by 1h  because 1 & g h  are adjacent. 2h  is e-dominated by 1h . Any 

other edge f  which is not in 1F , if it is e-dominated by g  or otherwise is e-dominated by some other member of F . 
This means that f  is e-dominated by some member of 1F . Thus we have proved that 1F  is a minimum EED set of G  
not containing g  which is a contradiction. Thus we have proved that  [ , ]eeg prn g F∉ . 
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Again let ( )1 1\ { } { }F F g h= ∪ . Then 2h  is e-dominated by 1h . Since  [ , ]eeg prn g F∉ , g  is e-dominated by some 

member f  of F  which is also a member of 1F . Any other edge which is not in 1F  and if it is in the [ , ]eeprn g F  then 
it is adjacent to 1h  and therefore it is e-dominated by some member of 1F . Any edge which is not in the [ , ]eeprn g F  
must be e-dominated by some member of 1F . Thus 1F  is minimum EED set of G  not containing g  which is a 
contradiction. Thus, we conclude that there are two distinct edges in the [ , ]eeprn g F  which are non-adjacent edges. 
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