Annals of Pure and Applied Mathematics
Vol. 14, No. 2, 2017, 245-250

Annals of
IS\ 2279-087X (P), 2279-0888(online) .
Published on 6 September 2017 Pure and Applied
www.researchmathsci.org 1
DOI: http://dx.doi.org/10.22457/apam.v14n2a6 Mathe—n‘atlcs

About ve-Domination in Graphs

D. K. Thakkar! and Neha P. Jamvecha®

1Department of Mathematics, Saurashtra Universigjkét-360005, Gujarat, India.
E-mail: dkthakkarl@yahoo.co.in
“Department of Mathematics, Shree M. & N. Viraniedaie College (Autonomous)
Rajkot-360005, Gujarat, India.
E-mail: jamvechaneha30@gmail.com

Received 9 August 2017; accepted 22 August 2017

Abstract. The paper is about the ve-domination (vertex-edgmidation) in graphs.
Necessary and sufficient conditions are proved umdéch the ve-domination number
decreases or increases.

Keywords: ve-dominating set, minimal ve-dominating set, mimimve-dominating set,
ve-domination number, edge private neighbourhood.

AMS Mathematics Subject Classification (2010): 05C69

1. Introduction

The domination related results have appeared iarakuarticles like [1]. Generalizations
of graphs like hypergraphs, semigraphs and othere hIso been considered by several
authors [5,6]. Mixed domination provides a posgipibf exploring the above structures
further. The concept of vertices dominates edgeseaiges dominate vertices are studied
by several authors. The concept of ve-dominatios stadied by Sampathkumar and

others [2,4]. A vertexw of a graphG m-dominates an edggy if Xy is an edge of the
subgraph induced by the vertices of thgV] . A set S of vertices is said to be a ve-

dominating set if every edge of the gra@his m-dominated by some vertex 8. This
concept is well studied in [3].

In this paper, we study this concept in the cantédxan operation called the
vertex removal from a graph. We characterize a mmahive-dominating set of a graph
and also prove necessary and sufficient conditionder which the ve-domination
number of a graph increases or decreases.

2. Preliminaries and notations
If G is a graph then its vertex set will be denote¥ &) . For any subse$ of a set of
vertices/(G), V(G)\S is a subgraph of5 obtained by removing the vertices &f

and all the edges incident to the verticesSoflf v is a vertex ofG thenG\v denotes
the subgraph o6 obtained by removing the vertaxand all the edges incident ta If
vV(G) then N(v) = The set of all vertices adjacentwoand N[V] = N(v) U{\} .
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We consider only those graphs which are simplejractkd and having finite
vertex set.

Definition 1. (ve-dominating set) A seb [1V(G) is ave-dominating set if every edge
of G is m-dominated by a vertex $

Definition 2. (Minimal ve-dominating set) A ve-dominating s8tfor a graphG is said

to beminimal ve-dominating set for G if no proper subseB of S is a ve-dominating
set for the grapits .

Definition 3. (Minimum ve-dominating set) A ve-dominating setnofhimum cardinality
is calledminimum ve-dominating set.

Definition 4. (ve-domination number) Thee-domination number for the graphG is
denoted byy,.(G) and is the cardinality of a minimum ve-dominatse.

Definition 5. (Edge private neighbourhood of a vertex) Kete a graphS [V(G) and
vOS. Then edge private neighbourhood of v with respect toS is prngv, g ={

eJE(G) such thate is an edge of the induced subgraph of g/ bute is not an
edge of the induced subgraph of the closed neighbod of any other vertex &f}.

3. Main results
Theorem 6. Let G be a graph andIV(G). Then y,.(G\Vv) <y, (G) if and only if

there is a minimum ve-dominating s&t containingv such thatprngv, S is a non-

empty subset of all = The set of all edges incidentvat
Proof: Suppos¢,.(G\V) <), (G). Thereforev is not an isolated vertex. L&, be a

minimum ve-dominating set @\v. Then S, cannot be a ve-dominating setGf. So,

there is an edgd of G which is not m-dominated by any vertex §f. We may note

that one end vertex of this edge mustweNote that the other end vertex of this edge is
notin S . Let S=S [O{\} . First we prove tha6 is a ve-dominating set. L&t be any

edge of G . If e is an edge ofG\v thene is m-dominated by some vertex 8f. If v

is an end vertex oé thene is m-dominated by . Thus from both the above it follows
that casex is m-dominated by some vertex &. ThereforeS is a ve-dominating set.

Since |S|>|Sl| S is a minimum ve-dominating set ofG andv(S. Let
f Oprngv,S] . Suppose no end vertex dfis v. Therefore f is an edge ofG\v.
Therefore f is m-dominated by some vertexof S . This is a contradiction as
f Oprndv, . Thereforef is incident a .

Conversely, suppose that there is a minimum Setontaining v such that
prngv,§ is a non-empty subset of . Let S =S\{\} . Let f be any edge 0G\v.
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Since no end vertex of is equal tov, f 0T .Therefore,f O prngv, ). So, eitherf
is not m-dominated by or if it is m-dominated by then it is also m-dominated by
some other vertex 08. Supposd is not m-dominated by . Since Sis a ve-dominating

set of G, f is m-dominated by some other vertexof S. Thenu S, and therefore
f is m-dominated by some vertex & . Supposef is m-dominated by. Then f
must be m-dominated by some other venteaf S. Sincew # v, wlI§ .Thus f is m-
dominated by some vertex 0f,. ThereforeS is a ve-dominating set oG\v.

Therefore, ,.(G\V) £|S| <|S = ,.(G) . Thereforey, (G \V) < ,.(G).

Corollary 7. Let G be a graph andt OV (G). If y,.(G\V) <),.(G), then

Ve(G\V) = ,0(G) -1.

Proof: Let S be a minimum ve-dominating set @& \v. ThenS, cannot be a ve-
dominating set ofG . Let S= S U{\} . Then Sis a minimum ve-dominating set &
andS| =|S|+1. That isy,,(G) = J,,(G \V) +1. Therefore,y,,(G\V) = J,.(G) - 1.

Remark 8. The above corollary is also true for any graph Whitbes not contain a
triangle. For example, for any cyc@, with n=4 this corollary is true.

In [3], Sampathkumar and others have mentioned fitvata triangle free graph the
concepts of vertex covering and ve-domination eesame.

Proposition 9. Let G be a graph which is a triangle free andvuéfV(G). Let S be a
minimum ve-dominating set d& such thatvJ S then y, (G \Vv) < ,.(G) .

Proof: Since S is a minimal ve-dominating seprndyv, S] # @. Let e prndyv, §] . If
e=Xxy then it cannot be happen thdt# VvV and y # v because this will gives rise to a

triangle which cannot exist i . Thus one end vertex addmust bev. Thus all the
edges which are in theprndv,S] have one end vertexv. Therefore

Ve (G\V) <), (G) .

Corollary 10. Let T be a treeSbe a minimum ve-dominating set df and letv]S

Proposition 11. Let T be a treey be a pendant vertex andbe its neighbour which is
called a supporting vertex of. Let S be a minimum ve-dominating set df. Then
exactly one ofu andv belongs toS.

Proof: Supposeu1S, VLIS. Then the edgev is not m-dominated by any vertex 8f

because T is a tree and therefore it does not contain angt@ Therefore,
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udSorvdS. Suppose,ullSandvlS Since S is a minimal ve-dominating set,
every vertex inS must have a private edge neighbour butloes not have any private
edge neighbour asullJS. Thus we have a contradiction. Therefore, either
udSandvOSorvdSand ulS.

Corallary 12. Let T be a treeyv be a pendant vertex and be its supporting vertex.
Then' yve(T \V) < yve(T)

Proof: We need to show that there is a minimum ve-domigadiet such thal [1S. Let
S be a minimum ve-dominating set of and suppose,JS. ThenyS. Let

S=(S\{4)d ¥ . Then S, is a minimum ve-dominating set oF containing u.
Therefore, y, (T \u) < y,.(T) .

+
Remark 13. Consider the cycleC_, if n is odd then its ve-domination number—n+52—1.

If we remove any vertex from this cycle then we getath withn—1 vertices andn—1

. . L n-1 o
is even and its ve-domination number—isz—. Thus ve-domination number decreases.

Similarly, if n is an even the its ve-domination numberais If we remove any vertex
from this cycle then we get a path with-1 vertices which is an odd number and its ve-

L .n—=2 L ) )
domination number IST. Thus, ve-domination number decreases in this akse

Thus we conclude that ifC, is cycle with n=4 then for every vertexv,
Ve (Co\V) <4 (C,)

Theorem 14. Let G be graph and/[0V(G). Then (G \v) > y,.(G) if and only if

following three conditions are satisfied.

@ vis not an isolated vertex @5 .

2 vS, for every minimum ve-dominating s&of G .

(3) There is no subseS of G\v such that N(v) intersectsV(G)\S with

|9 < ¥..(G) and Sis a ve-dominating set G\v.
Proof: First suppose thag, (G \v) > y,.(G).
(1) If v is an isolated vertex ofG. Theny,(G\v)=y,.(G) which is a

contradiction. Therefor@ is not an isolated o .
(2) Suppose there is a minimum ve-dominating Setuch thatv[JS. Then S is a
ve-dominating set ofG\v and thereforg/, (G \Vv) <|§ < ,.(G), which is a

contradiction. Thus [J S, for every minimum ve-dominating s& of G .

248



About ve-Domination in Graphs

(3)  Suppose there is a subsstof V(G) such thatN(v) OV(G)\S, |9 < ),.(G)

and S is a ve-dominating set 0B \v. Then againy,,(G\Vv) <|S < J,.(G).

which is a contradiction. Therefore condition (@satisfied.
Conversely, suppose condition (1), (2) and (3) satsfied. First suppose that

Ye(G\V) = ),.(G). Let S be any minimum ve-dominating set Gf\v. First suppose

that S is a ve-dominating set d6 . Then S is a minimum ve-dominating set & and
vOS, which contradicts condition (2). ThuS is not a ve-dominating set d& .

Therefore there is a neighbour of v such thatudS. Then N(v) n (V(G)\S) # ¢
and S is a ve-dominating set d& \ vwith |S| < ¥..(G). This contradicts condition (3).
Thus y,.(G\Vv) =y,(G) is not possible. Suppoge,(G\Vv)<y,.(G). Let S be a
minimum ve-dominating set dB\v. Since,|S| <V,.(G). ThereforeS cannot be a ve-
dominating set of G. Therefore N(v) is not a subset ofS and thus
N(v) n (V(G)\S) # ¢, |9 <,(G) and S is a ve-dominating set &\ v, which is a
contradiction. Therefore ), (G\Vv) <), (G) is also not possible. Therefore
Ye(G\V) > 1, (G) .

Theorem 15. Let G be a graphy [V (G) and suppose;.(G\V) >y, (G). If Sis a

minimum ve-dominating set o6 then vIS and prngv, S| is contain at least two
non-adjacent edges.
Proof: Since y,,(G\V) >y, (G), by condition(2) of theorem 14/[1S. Also S is a

minimal ve-dominating set 06 and thereforeprngv, S| # ¢. If all the edges in the
prngv, S are incident atv then it follows that ), .(G\Vv) <y,.(G), which is a
contradiction. Therefore, there is an edgy O x#v,y#vand xylprndv,S].
Suppose Xy is the only edge such thaky[lprngv,Sland x#v, y#v. Let
S =(S\{¥ )X ¥ . Let e be any edge 06 . If e is not m-dominated by thene is
m-dominated by some vertex in S such thatz#zv. Then zOS and e is m-

dominated byz. Supposee is again any edge db . Supposee is m-dominated by
buted prndv, S| . Thene is m-dominated by some verte1S (1w # v. Then again

it is clear thateis m-dominated by some vertex 8f . Let ebe any edge o6 such that

if el prngyv, S andelJ{xy} . Therefore one end vertex ef must bev. Suppose that
other end vertex o€ is equal tox thene is m-dominated by some vertex (namely
of S . If the other end vertex dé is equal toy thene=Vy and thene is m-dominated

by x which is in S,. Thus, we have proved that & is any edge ofG thene is m-
dominated by some member 8f. ThereforeS is a minimum ve-dominating set 63
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such thatv[S,which is a contradiction. Thus apart froRy there is another edgé
such that none of its end vertexvand f O prndv, §).

Suppose any two edges which are inphedyv, S are adjacent. Ley, and
%Y, be two edges which are in therngv, S and which do not have as an end
vertex. Now, they are adjacent edges. Suppoge=Xx,and Yy, #Y,. Let
S =(S\{¥)d % .Let f beanyedge o6 . If f isnot m-dominated by or f is
not in the prngv, §] then f is m-dominated by some vertex & . Supposef is in
the prngv, S| . First supposes is an end vertex df. Let w be the other end vertex of
f.If wO{x, X, Y, Y3 then f is m-dominated byx,. Supposew{x, X,, ¥, Y3
then f =wv is not adjacent to the edgey,and both these edges are pinev, S
which is a contradiction. Thug cannot be an end vertex dfthen f = 2w, for some
vertexz# v. Then f is an edge ofG such thatf is in the prngv, S| and none of its
end vertex isv. Now f =2w is adjacent toxy, and it is also adjacent ta,y,.
Thereforez, w{y, y,} . Thereforezw is m-dominated byx,. Thus every edge o6
is m-dominated by some vertex & . ThusS, is a minimum ve-dominating set with
vS, which is a contradiction. Thus the theorem is/ptb

4. Concluding remark

In this paper, there is no restriction on the iretlsubgraph of the ve-dominating set. We
may get new variants of ve-domination by requirihgt the ve-dominating set is either

an independent set or without isolated verticeshawving isolate vertex and so on.

Different condition will provide new directions fee-domination in graphs.
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