
Indian Journal of Science and Technology, Vol 10(17), DOI: 10.17485/ijst/2017/v10i17/111960, May 2017
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1.  Introduction

Tracking of object precisely in dynamic and crowded 
scenes is a tough task due to occlusion between objects. 
Poor illumination and occlusions make it difficult to 
detect and track people in a crowded scene. Single camera 
system cannot handle such scenes for correct detection 
and tracking moving objects or peoples in crowded scenes 
for which multiview are required. Detection and tracking 
becomes much simpler task if an object is isolated i.e. it is 
neither occluded or occluding another object, because of 
their features1. In this paper, we offer an approach to detect 
and track objects in crowded scenes. A good number of 
videos used in this paper from the standard datasets, 
represent challenges like illumination variations, dynamic 

background and scene are suitably dense that partial or 
large amount of occlusions ensures that objects cannot be 
isolated. In this paper, we assume a camera view which 
is suitably crowded that partially or fully occluded and 
certainly that an object can be visually isolated. Figure 1 
shows some of the crowded scenes that we used to evaluate 
our proposed approach. One thing that is noticeable that, 
only few objects are isolated and rest are in occlusion. In 
our proposed approach, we have used pixel based color 
model for individual object. We detect and track objects 
in single static camera with dynamic background. Under 
the inadequate visibility and clutter background it might 
be very difficult for the intelligent surveillance system to 
detect and track multiple moving people.
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Figure 1.    Examples of crowded sequences with clutter 
background used to evaluate our approach.

Generally major part of the surveillance system is 
depends on the perception. One of the solutions of the 
said situation is that we might taken a help from the other 
view, Multi view may possibly avoid such discrepancies or 
occlusions. For the static single camera we must have to 
sense the environment and act accordingly1.

Figure 2 shows general approach of the moving object 
detection and tracking. Object location, object silhouette, 
object classification and the activities carried out by 
the object is vital in scene analysis. The robust tracking 
depends on the robustness of the foreground detection. 
The role of the object detection and tracking algorithm 
is to estimate the trajectory path which compares against 
the ground truth, in subsequent frames. Under the 
assumption that our detection model is linear and the 
system noise and posteriori distributions are Gaussian in 
nature, among all tracking approaches prediction filter 
approach gives better accuracy2.
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Figure 2.    Block diagram of object detection and tracking.

Generally we are assuming that the static backgrounds 
are available in a video sequence but for the real time 
processing background frames are not available so, for 
the initial subsequent frames are required to generate 

the background. The next step is to preprocess the input 
frames, such as morphology, image resizing along with 
edge detection is required. Morphological approach 
will reduce noise in the moving object and fill the gaps 
in it. Dilation: Will convert each background pixel into 
foreground if it touches with the foreground. Erosion: 
Will convert each foreground pixel into background if 
it touches with the background and it helps to reduce 
the noise and fill gaps. Clutter and dynamic background 
constraints can be handle by estimating background 
modeling. Foreground detection using adaptive 
thresholding will segment the moving object. Finally the 
robustness of the surveillance system depends on how 
accurate it able to track object in every successive frame3.

2.  Background

Crowd analysis requires robust background modelling 
which helps to take certain challenges like dynamic and 
clutter background and similar appearance. Most of 
the researchers are using either pixel based background 
modelling or region based background modelling. Some 
are using non adaptive approaches; such approach fails 
to handle dynamic scenes for the real time analysis. In4  

it explains a novel approach for the motion estimation 
using pixel based Gaussian mixture model. They have 
used parametric approach and colour as a feature. The 
traditional GMM does not need to store input data. They 
have used multi model GMM for the dynamic scenes and 
their approach fails to detect object in sudden illumination. 
In5 it has proposed the system which overcomes the 
demerits of4 slower learning rate. In6 it has proposed a 
colour and depth based segmentation approach. The 
proposed algorithm is suffered with slower learning rate 
because of the traditional MoG approach. In7,8 proposed 
quantize based code book and traditional GMM approach 
for the moving object detection. It is a method which uses 
quantization/clustering pixel based technique to obtain 
a multimodal background model from long observation 
sequences. The codebook algorithm was anticipated to 
sample values over a long time. The algorithm works 
well on slow as well as fast moving objects. In9 it has 
proposed used RGB background modelling for the real 
time moving object detection and used morphology for 
removing noise and blob labelling for real time moving 
object detection. They predict the velocity of the moving 
objects and detect it. In10 they proposed Kernel Density 
Estimation to model the background distribution. KDE 
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is a nonparametric region based approach which uses 
colour as a feature. It is also deal with multi modal 
backgrounds. It requires memory for the foreground 
detection. In11 they have designed an improved algorithm 
to adaptively adjust the parameters and number of 
components of GMM. The algorithm can automatically 
adapt to the scene by choosing the number of components 
of pixel. In12 they have proposed a method that computes 
the sample consensus of the background samples and 
estimates a statistical model of the background. In13 
they have proposed a background modelling method 
(SOBS) based on self-organization achieved by artificial 
neural networks. The proposed algorithm can handle 
dynamic background, gradual illumination changes and 
camouflage. It works well on stationary camera. In14 
they have proposed a random strategy in the field of 
background modelling to select values to build a sample-
based estimation of the background. It is a nonparametric 
pixel based approach which uses colour as a feature. In15 
they suggested foreground estimation by creating pixel-
based adaptive segmenter method.

3.  Proposed Method

Crowd analysis requires vigorous detection and leads 
to a precise tracking. Our proposed approach estimates 
background which handles dynamic and clutter 
background. 

It also handles different constraints like scenes, moving 
background, entering and leaving objects in a current 
frame, clutter background, complex object silhouette etc. 

Figure 3 shows the proposed approach based on the 
modified GMM, the modifications are achieved in terms 
of the intrinsic and extrinsic. An intrinsic improvement 
significantly reduces false positives and hence increases 
the precision. An extrinsic improvement such as Pre 
processing and Post processing improves the performance 
evaluations of the proposed approach by reducing the false 
negatives and hence increases the recall. Our proposed 
algorithm works on background analysis, motion 
segmentation and a tracking. Our proposed algorithm 
use traditional Gaussian mixture model approach and 
we have modified and updated some of the parameter to 
handle different constraints.

Figure 3.    Proposed modified GMM algorithm.
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3.1 Background Analysis
In a scene analysis background generally a non static due 
to flowing leaf ’s twinkling of water surface. Usually the 
Gaussian approach along with static or dynamic threshold 
will segment the foreground for the constant background. 
For the real time crowded analysis the system must take 
challenges of the dynamic and clutter background scenes. 
We have proposed multi modal Gaussian to handle 
moving background and other constraints efficiently. 
Generally our proposed algorithm works on parametric 
pixel by pixel approach rather than region based for the 
background modelling. For the background modelling 
our proposed algorithm uses parametric colour pixel by 
pixel approach if each pixel is considered from a static 
background and the illumination can be fixed with respect 
to time, single Gaussian would detect motion from the 
every successive frame. 
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The single Gaussian handles small and gradual 
variations in background but fails to handle large and 
sudden illumination variations. For the real time crowded 
analysis multi model Gaussian is required to handle 
dynamic and clutter background. Every time mixture 
parameters are updated and it will maintain the model.

In a RGB color space, frame pixel can be characterized 
by intensities and its probability in the current fame is:
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Where,
,i tω = weighted associate to current frame Gaussian. 

k = no. of distributions.
,i tµ & ,i tΣ = mean and covariance matrix of the pixel 

intensities.
η  = the Gaussian probability density function,
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Each pixel is identified as a mixture of Gaussian and 
initializes the different mixture model parameters. The 
weight, the mean and the covariance matrix is initialized 
using an EM algorithm or Maximum a Posteriori (MAP) 
estimation16.

Foreground detection using adaptive threshold:
First backB  Gaussian distributions from K no. 

of Gaussian distributions will be considered as the 
background model and backB  can be evaluated as:

1 ,arg min( )b
back i i tB Tω== Σ 〉 			         (4)

T  is considered as the minimizing measure of 
estimating background. Particularly high threshold, 
foreground pixels with small colour differences will 
be misclassified and a lower threshold will result in 
unremovable noise. When using a single or a mixture of 
Gaussian models, the threshold for every pixel is a fixed 
multiple of its variance in which only temporal features 
are considered. Therefore, to attain satisfactory result 
we have to define threshold very precisely, particularly 
when foreground colour are similar to their surrounding 
background colour.

2 2
1 2( ) /t p s sT k kσ σ µ= + 			         (5)

2
pσ  = the local variance in the present frame. 
2
sσ = the local variance in the subtracted frame. 
sµ = the local mean in the subtracted frame .

The background can be subtracted from the present 
frame will give us the subtracted frame.

3.2 Object Tracking
Object tracking with high precision in non-static and 
crowded scenes is a tough job due to occlusion among 
objects. The complexity can be more with the abrupt motion 
of the object, complex silhouette, illumination changes 
etc. Generally, tracking can be achieved after the motion 
segmentation but in some of the real time application it 
can be carried out along with the segmentation. Different 
kinds of recursive and non recursive tracking approaches 
are available. Among all approaches recursive Kalman 
approach will give somewhat more precise result2.

3.3 Kalman Filtering
Object's correct position can be simply and promptly 
considered by means of mathematical analysis. 

Figure 4 represents the simplified recursive Kalman 
filtering approach. Kalman is the mathematical approach 
which uses statistical equations and successive inputs. 

Kalman filter is used to estimate the state of a linear 
system where the state is contained to be distributed by a 
Gaussian2. The prediction state of the Kalman filter uses 
the state model to predict the new state of the variable.
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Figure 4.    Block diagram of Kalman filter.

The Kalman filter estimates the entire process by 
means of feedback. The Kalman estimates the process state 
and obtains feedback in a form of measurement. Time 
update and measurement update are the two states of the 
Kalman. The time update is liable for the analysing the 
current state and the measurement update are liable for 
incorporating a new measurement into a prior estimate 
to get an improved posterior estimate17.

Time update equation can also be considered as 
prediction Equations. 

1 1ˆ ˆk k kx Ax Bu−
− −= +  				          (6)

1
T

k kP AP A Q−= + 				        
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The measurement equation is recognized as correction 
Equations.

1( )T T
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4.  Experiment Result

To evaluate our proposed algorithm, we have performed 
some of experiments on own datasets and standard video 
dataset PETS 200918 and ViSOR19. Proposed approach 

can be evaluated by various performance evaluation 
parameters such as miss rate, Multi Object Detection 
Accuracy (MODA) and Multi Object Tracking Accuracy 
(MOTA).

Figure 5 is a crowded standard sequence from PETS 
200918 which is suffered with the clutter background and 
occlusions. Our proposed algorithm detects the crowded 
people under the different constraints. Figure 9 shows that 
our proposed algorithm is able to handle partial occlusion 
and give sufficient detection and tracking results. 
Figure 6 is also a crowded standard sequence ViSOR19. 
This sequence is suffered with the clutter background, 
occlusions and light variations. Our proposed approach 
is capable to detect and track the moving object against 
all constraints. Our proposed algorithm fails to detect 
and track objects which are fully occluded and those with 
similar appearance.

Figure 5.    Crowded sequences PETS 2009.

Figure 6.    Crowded sequences ViSOR.
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The result of Figure 5 and Figure 6 clearly indicate 
that our proposed algorithm gives good results against 
the clutter background and occlusions. The quantitative 
analysis shows more clearly about the validity of our 
proposed approach. We are comparing our proposed 
approach with the other similar approaches like traditional 
GMM4 and KDE10.

Figure 7 shows the comparative evalution for the 
influence of the false positives on true positives. It 
presents by means of Precision–Recall (PR) curve. We 
are comparing our prosed approach with the other 
similar approaches for the stadard videodataset PETS 
2009. It indicates that the our proposed algorithm gives 
high recall and the optimized mixture model parameters 
reduces false negatives.
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Figure 7.    Precision-recall curve.

Figure 8 indicates comparative analysis for the false 
negatives with reference to the FPPI (False Positive Per 
Image) for PETS 2009 and ViSOR. We have compared 
our proposed approach with the other two approaches. 
Proposed approaches shows significant improvement in 
both the sequences. The quantitiative performance can be 
evaluated by a their detection and tracking accuracy.
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Figure 8.    Miss rate against false positive per image.

Figure 9 indicates the comparative analysis of the 
standard sequences for the Multi Object Detection 
Accuracy (MODA) and Multi Object Tracking Accuracy 
(MOTA). MOD Accuracy gives the information regarding 
false positives with respect to miss rate or false negatives. 
MOT Accuracy depends on the total no. of false positives, 
negatives and the object mismatch errors.

Figure 9.    Multiple object detection and tracking accuracy.
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5.  Conclusion

Performance evolutions shown in sequences of the 
intense crowed occlusions are relatively common. Our 
proposed approach is capable of tracking multiple objects 
in cutter background and complex background and it is 
preferably appropriate for the partially occluded objects. 
For the fully occlusion our algorithm will fail to detect and 
track objects. There are numerous tentative approaches 
available to handle fully occlusion and among all, the 
multi view approaches may give better accuracy. For 
handling the dense crowd, we must have to increases the 
camera views. The robustness of the proposed algorithm 
is proved using the approaches and challenging datasets. 
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