Please use this identifier to cite or link to this item: http://10.9.150.37:8080/dspace//handle/atmiyauni/1879
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVaidya, S. K.-
dc.contributor.authorParmar, A. D-
dc.date.accessioned2024-11-21T09:48:16Z-
dc.date.available2024-11-21T09:48:16Z-
dc.date.issued2019-
dc.identifier.citationVaidya, S. K., & Parmar, A. D. (2019). On chromatic transversal domination in graphs. Malaya Journal of Matematik, 7(03), 419-422.en_US
dc.identifier.urihttp://10.9.150.37:8080/dspace//handle/atmiyauni/1879-
dc.description.abstractA proper k - coloring of a graph G is a function f : V (G) → {1, 2, ..., k} such that f (u) 6 = f (v) for all uv ∈ E(G). The color class Si is the subset of vertices of G that is assigned to color i. The chromatic number χ(G) is the minimum number k for which G admits proper k - coloring. A color class in a vertex coloring of a graph G is a subset of V (G) containing all the vertices of the same color. The set D ⊆ V (G) of vertices in a graph G is called dominating set if every vertex v ∈ V (G) is either an element of D or is adjacent to an element of D. If C = {S1, S2, ..., Sk} is a k - coloring of a graph G then a subset D of V (G) is called a transversal of C if D ∩ Si 6 = φ for all i ∈ {1, 2, ..., k}. A dominating set D of a graph G is called a chromatic transversal dominating set (cdt - set) of G if D is transversal of every chromatic partition of G. Here we prove some characterizations and also investigate chromatic transversal domination number of some graphs.en_US
dc.language.isoenen_US
dc.publisherMalaya Journal of Matematiken_US
dc.subjectDominationen_US
dc.subjectChromatic Transversalen_US
dc.subjectChromatic Transversalen_US
dc.titleSOME NEW RESULTS ON CHROMATIC TRANSVERSAL DOMINATION IN GRAPHSen_US
dc.typeArticleen_US
Appears in Collections:01. Journal Articles

Files in This Item:
File Description SizeFormat 
SOME NEW RESULTS ON CHROMATIC TRANSVERSAL.pdf190.59 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.