Please use this identifier to cite or link to this item: http://10.9.150.37:8080/dspace//handle/atmiyauni/1903
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVAID, Y.A.-
dc.contributor.authorJADE, .-
dc.date.accessioned2024-11-22T05:47:19Z-
dc.date.available2024-11-22T05:47:19Z-
dc.date.issued2022-
dc.identifier.citationVAIDYA, S., & JADEJA, M. (2022). METRIC DIMENSION OF GRAPHS OBTAINED FROM COMMUTATIVE RING.en_US
dc.identifier.urihttp://10.9.150.37:8080/dspace//handle/atmiyauni/1903-
dc.description.abstractFor a connected graph of order n, the metric basis of a G is a smallest set {} k v vv S,,, 2 =1 of vertices of G such that for vertex, G u∈ the ordered k-tuples of are all distinct.distances {()()()()} k vud vud vud vud,,,,,,,, 3 2 1 The metric dimension of G, denoted as (), dim G is the cardinality of a metric basis for G. In the present work we investigate metric dimension of intersection graphs and annihilator ideal graphs of commutative ring R.en_US
dc.language.isoenen_US
dc.publisherAdvances and Applications in Mathematical Sciencesen_US
dc.subjectCommutative ringen_US
dc.subjectintersection graph; annihilator ideal graphen_US
dc.subjectmetric dimensionen_US
dc.titleMETRIC DIMENSION OF GRAPHS OBTAINED FROM COMMUTATIVE RINGen_US
dc.typeArticleen_US
Appears in Collections:01. Journal Articles

Files in This Item:
File Description SizeFormat 
METRIC DIMENSION OF GRAPHS OBTAINED.pdf513.07 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.