Please use this identifier to cite or link to this item: http://10.9.150.37:8080/dspace//handle/atmiyauni/1973
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVaidya, S. K.-
dc.contributor.authorAjani, P D-
dc.date.accessioned2024-11-24T06:16:14Z-
dc.date.available2024-11-24T06:16:14Z-
dc.date.issued2018-
dc.identifier.citationS K Vaidya, P D Ajani,On Restrained Domination Number of Graphs,Vol.8, No.1 (2018), 17 - 23. doi: 10.26708/IJMSC.2018.1.8.03 Available online at www.ijmsc.comen_US
dc.identifier.issn2319 – 5215-
dc.identifier.urihttp://10.9.150.37:8080/dspace//handle/atmiyauni/1973-
dc.description.abstractFor a graph G = (V, E), a set S ⊆ V is a restrained dominating set if every vertex not in S is adjacent to a vertex in S and to a vertex in V − S. The smallest cardinality of a restrained dominating set of G is called restrained domination number of G, denoted by γr (G). We investigate restrained domination number of some cycle related graphs which are obtained by means of various graph operations on cycleen_US
dc.language.isoenen_US
dc.publisherInternational Journal of Mathematics and Soft Computingen_US
dc.subjectDominating seten_US
dc.subjectrestrained dominating seten_US
dc.subjectrestrained domination numberen_US
dc.titleOn Restrained Domination Number of Graphsen_US
dc.typeArticleen_US
Appears in Collections:01. Journal Articles

Files in This Item:
File Description SizeFormat 
On restrained domination number of some wheel.pdf1.43 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.