Please use this identifier to cite or link to this item: http://10.9.150.37:8080/dspace//handle/atmiyauni/2188
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDuhan, Amit-
dc.contributor.authorKumar, Manoj-
dc.contributor.authorRathee, Savita-
dc.contributor.authorSwami, Monika-
dc.date.accessioned2025-01-01T10:45:08Z-
dc.date.available2025-01-01T10:45:08Z-
dc.date.issued2023-
dc.identifier.citationDuhan, Amit, Kumar, Manoj, Rathee, Savita & Swami, Monika (2023). Best Proximity Point for Generalized Rational \alpha_s Proximal Contraction. Journal of Harbin Engineering University, 44(10), 1366-1384.en_US
dc.identifier.issn1006-7043-
dc.identifier.urihttp://10.9.150.37:8080/dspace//handle/atmiyauni/2188-
dc.description.abstractBest proximity point problem in S-M(S-metric) spaces is thought to be a generalization of a G- metric spaces. In this study, we provide proof a best proximity points theorem of αs−Proximal mapping admissible and its several types by generalizing the theory of α−admissible mapping in S-M spaces. We present generalized rational αs−Proximal contraction type mappings and investigate the best proximity point in S-M spaces. In addition, we provide an illustration to show how the result can be used.en_US
dc.language.isoenen_US
dc.publisherJournal of Harbin Engineering Universityen_US
dc.relation.ispartofseries;44(10), 1366-1384-
dc.subjectBest Proximity Pointen_US
dc.subjectS-M spaceen_US
dc.subjectProximal contractionen_US
dc.subjectGeneralized rational αs−Proximal contractionen_US
dc.titleBest Proximity Point for Generalized Rational \alpha_s Proximal Contractionen_US
dc.typeArticleen_US
Appears in Collections:01. Journal Articles

Files in This Item:
File Description SizeFormat 
Best Proximity Point for Generalized Rational alpha_s Proximal Contraction.pdf638.49 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.