Please use this identifier to cite or link to this item: http://10.9.150.37:8080/dspace//handle/atmiyauni/2202
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhatt, Tushhar-
dc.date.accessioned2025-01-01T11:14:28Z-
dc.date.available2025-01-01T11:14:28Z-
dc.date.issued2024-
dc.identifier.issn2148-2403-
dc.identifier.urihttp://10.9.150.37:8080/dspace//handle/atmiyauni/2202-
dc.description.abstractet 𝐺=(𝑉(𝐺),𝐸(𝐺))be a connected graph. Let π‘€βŠ†π‘‰(𝐺)be a minimum perfect dominating set and π‘‡βŠ†π‘‰(𝐺)\𝑀is said to be sub-restrained perfect dominating setof Gif every π‘£βˆˆπ‘‰(𝐺)βˆ–π‘‡such that|𝑁(𝑣)βˆ©π‘‡|=1. The sub-restrained perfect dominating number of 𝐺is the minimum cardinality of thesub-restrained perfect dominating set of 𝐺which is denoted byπ›Ύπ‘ π‘Ÿπ‘(G). As a novel approach to the study of domination theory, we can attempt to define sub-restrained perfect dominating set in this paper. We also identify certain novel findings, fundamental characteristics, and so forth.en_US
dc.language.isoenen_US
dc.publisherEducational Administration: Theory and Practiceen_US
dc.subjectDominating seten_US
dc.subjectperfect dominating seten_US
dc.subjectsub-restrained perfect dominating seten_US
dc.subjectrestraineddominating seten_US
dc.subjectcorona productof two graphsen_US
dc.titleSub-Restrained Perfect Domination In Graphsen_US
dc.typeArticleen_US
Appears in Collections:01. Journal Articles

Files in This Item:
File Description SizeFormat 
g-4255.pdf271.33 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.