Please use this identifier to cite or link to this item: http://10.9.150.37:8080/dspace//handle/atmiyauni/807
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVaidya, S.K.-
dc.contributor.authorParmar, A.D.-
dc.date.accessioned2023-05-01T03:06:19Z-
dc.date.available2023-05-01T03:06:19Z-
dc.date.issued2019-
dc.identifier.citationVaidya, S. K., & Parmar, A. D. (2019). On chromatic transversal domination in graphs. Malaya Journal of Matematik (MJM), 7(3, 2019), 419-422.en_US
dc.identifier.issn2321-5666-
dc.identifier.urihttp://10.9.150.37:8080/dspace//handle/atmiyauni/807-
dc.description.abstractA proper k - coloring of a graph G is a function f : V(G) → {1,2,..., k} such that f(u) 6= f(v) for all uv ∈ E(G). The color class Si is the subset of vertices of G that is assigned to color i. The chromatic number χ(G) is the minimum number k for which G admits proper k - coloring. A color class in a vertex coloring of a graph G is a subset of V(G) containing all the vertices of the same color. The set D ⊆ V(G) of vertices in a graph G is called dominating set if every vertex v ∈ V(G) is either an element of D or is adjacent to an element of D. If C = {S1,S2,...,Sk} is a k - coloring of a graph G then a subset D of V(G) is called a transversal of C if D∩Si 6= φ for all i ∈ {1,2,..., k}. A dominating set D of a graph G is called a chromatic transversal dominating set (cdt - set) of G if D is transversal of every chromatic partition of G. Here we prove some characterizations and also investigate chromatic transversal domination number of some graphs.en_US
dc.language.isoenen_US
dc.publisherMalaya Journal of Matematiken_US
dc.subjectcoloringen_US
dc.subjectdominationen_US
dc.subjectChromatic Transversal Dominating Seten_US
dc.titleOn chromatic transversal domination in graphsen_US
dc.typeArticleen_US
Appears in Collections:01. Journal Articles

Files in This Item:
File Description SizeFormat 
404) 57750_Anil Dhanjibhai Parmar.pdf1.77 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.