Please use this identifier to cite or link to this item: http://10.9.150.37:8080/dspace//handle/atmiyauni/815
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVaidya, Samir K.-
dc.contributor.authorPopat, Kalpesh M.-
dc.date.accessioned2023-05-01T04:20:51Z-
dc.date.available2023-05-01T04:20:51Z-
dc.date.issued2017-
dc.identifier.citationVaidya, S. K., & Popat, K. M. (2017). Some new results on energy of graphs. MATCH Commun. Math. Comput. Chem, 77, 589-594.en_US
dc.identifier.issn0340-6253-
dc.identifier.urihttp://10.9.150.37:8080/dspace//handle/atmiyauni/815-
dc.description.abstractThe eigenvalue of a graph G is the eigenvalue of its adjacency matrix. The energy E (G) of G is the sum of absolute values of its eigenvalues. A natural question arises: How the energy of a given graph G can be related with the graph obtained from G by means of some graph operations? In order to answer this question, we have considered two graphs namely, splitting graph S′(G) and shadow graph D2 (G). It has been proven that E (S′(G))=√ 5 E (G) and E (D2 (G))= 2E (G).en_US
dc.language.isoenen_US
dc.publisherMATCH Communications in Mathematical and in Computer Chemistryen_US
dc.titleSome new results on energy of graphsen_US
dc.typeArticleen_US
Appears in Collections:01. Journal Articles

Files in This Item:
File Description SizeFormat 
294) 13100_Kalpesh Mansukhlal Popat.pdf600.89 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.