Please use this identifier to cite or link to this item: http://10.9.150.37:8080/dspace//handle/atmiyauni/822
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVaidya, S.K.-
dc.contributor.authorPopat, Kalpesh M.-
dc.date.accessioned2023-05-01T05:40:52Z-
dc.date.available2023-05-01T05:40:52Z-
dc.date.issued2020-
dc.identifier.citation: S. K. Vaidya & Kalpesh M. Popat (2020) Construction of L-equienergetic graphs using some graph operations, AKCE International Journal of Graphs and Combinatorics, 17:3, 877-882, DOI: 10.1016/j.akcej.2019.06.012en_US
dc.identifier.issn2543-3474-
dc.identifier.urihttp://10.9.150.37:8080/dspace//handle/atmiyauni/822-
dc.description.abstractFor a graph G with n vertices and m edges, the eigenvalues of its adjacency matrix A (G) are known as eigenvalues of G. The sum of absolute values of eigenvalues of G is called the energy of G. The Laplacian matrix of G is defined as L (G)= D (G)− A (G) where D (G) is the diagonal matrix with (i, j) th entry is the degree of vertex vi. The collection of eigenvalues of L (G) with their multiplicities is called spectra of L (G). If μ 1, μ 2,⋯, μ n are the eigenvalues of L (G) then the Laplacian energy LE (G) of G is defined as LE (G)=∑ i= 1 n| μ i− 2 mn|. It is always interesting and challenging as well to investigate the graphs which are L-equienergetic but L-noncopectral as L-cospectral graphs are obviously L-equienergetic. We have devised a method to construct L-equienergetic graphs which are L-noncospectral.en_US
dc.language.isoenen_US
dc.publisherAKCE International Journal of Graphs and Combinatorics, Taylor & Francisen_US
dc.subjecteigenvalueen_US
dc.subjectgraph energyen_US
dc.subjectspectrumen_US
dc.subjectequienergeticen_US
dc.titleConstruction of L-equienergetic graphs using some graph operationsen_US
dc.typeArticleen_US
Appears in Collections:01. Journal Articles

Files in This Item:
File Description SizeFormat 
301) 13100_Kalpesh Mansukhlal Popat.pdf894.09 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.