Please use this identifier to cite or link to this item: http://10.9.150.37:8080/dspace//handle/atmiyauni/830
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVaidya, S.K.-
dc.contributor.authorAjani, P.D.-
dc.date.accessioned2023-05-01T06:39:07Z-
dc.date.available2023-05-01T06:39:07Z-
dc.date.issued2020-
dc.identifier.citationVaidya, S. K., & Ajani, P. D. (2020). Equitable restrained domination number of some graphs. Malaya Journal of Matematik (MJM), 8(3, 2020), 1045-1049.en_US
dc.identifier.issn2321-5666-
dc.identifier.urihttp://10.9.150.37:8080/dspace//handle/atmiyauni/830-
dc.description.abstractA dominating set S ⊆ V is said to be a restrained dominating set of graph G if every vertex not in S is adjacent to a vertex in S and also to a vertex in V − S. A set S ⊆ V is called an equitable dominating set if for every vertex v ∈ V −S, there exist a vertex u ∈ S such that uv ∈ E and |deg(u)−deg(v)| ≤ 1. A dominating set S is called an equitable restrained dominating set if it is both restrained and equitable. The minimum cardinality of an equitable restrained dominating set is called equitable restrained domination number of G, denoted by γ e r (G). We investigate γ e r (G) parameter for some standard graphs and also establish some characterizations.en_US
dc.language.isoenen_US
dc.publisherMalaya Journal of Matematiken_US
dc.subjectDominating seten_US
dc.subjectEquitable dominating seten_US
dc.subjectEquitable restrained dominating seten_US
dc.subjectEquitable restrained domination numberen_US
dc.titleEquitable restrained domination number of some graphsen_US
dc.typeArticleen_US
Appears in Collections:01. Journal Articles

Files in This Item:
File Description SizeFormat 
397) 13079_Parag Devrajbhai Ajani.pdf1.42 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.